organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[4-(4-Chloro­benzo­yl)-2,3-di­phenyl­isoxazolidin-5-yl]-1-(4-meth­­oxy­phen­yl)-3-phenyl­azetidin-2-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 29 August 2012; accepted 5 September 2012; online 12 September 2012)

In the title compound, C38H31ClN2O4, the isoxazole ring adopts an envelope conformation with the N atom as the flap. The crystal packing is stabilized by C—H⋯O hydrogen bonds, forming chains running along the c-axis direction.

Related literature

For general background to β-lactams, see: Jones et al. (1989[Jones, R. N., Barry, A. L. & Thornsberry, C. (1989). J. Antimicrob. Chemother., 24 , 9-29.]); Brakhage (1998[Brakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62 , 547-585.]); Banik & Becker (2000[Banik, B. K. & Becker, F. F. (2000). Tetrahedron Lett. 41, 6551-6554.]). For a related structure, see: Sundaramoorthy et al. (2012[Sundaramoorthy, S., Rajesh, R., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2202.]).

[Scheme 1]

Experimental

Crystal data
  • C38H31ClN2O4

  • Mr = 615.10

  • Monoclinic, P 21 /n

  • a = 10.1221 (10) Å

  • b = 17.4890 (17) Å

  • c = 17.7421 (18) Å

  • β = 98.150 (6)°

  • V = 3109.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.967

  • 23486 measured reflections

  • 5491 independent reflections

  • 3214 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.132

  • S = 0.99

  • 5491 reflections

  • 407 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯O2i 0.98 2.41 3.338 (3) 158
C21—H21⋯O2i 0.93 2.50 3.425 (4) 173
C37—H37⋯O1ii 0.93 2.58 3.407 (4) 148
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The role of β-lactam antibiotics is well known (Banik & Becker, 2000). The most commonly used β-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin (Brakhage, 1998). β-Lactam based antibiotics have been successfully used in the treatment of infectious diseases for many years (Jones et al., 1989). In view of potential applications, the crystal structure determination of the titled β-lactam derivative was carried out.

In the title compound (Fig. 1), the β-lactam ring makes a dihedral angle of 10.33 (14)° with a isoxazole ring (N2/03/C17/C18/C19), a dihedral angle of 40.33 (14)° with the methoxy phenyl ring and a dihedral angle of 70.05 (16)° with the unsubstited phenyl ring. The dihedral angle between the isoxazole ring and the unsubstited phenyl ring (C20/C21/C22/C23/C24/C25) is 81.42 (12)°, which shows that they are almost orthogonal to each other. The dihedral angle between the isoxazole ring and the unsubstited phenyl ring (C11/C12/C13/C14/C15/C16) is 80.38 (14)°, which shows that they are also almost orthogonal to each other. The isoxazole ring makes a dihedral angle of 40.35 (12)° with the chlorolophenyl ring.

The oxygen atom attached to the β-lactam ring deviates by -0.1871 (18)Å. The oxygen atom attached to the phenyl ring deviates by 0.0237 (21)Å. The packing of the crystal structure is stabilized by intermolecular C—H···O hydrogen bonds (Fig. 2). A related structure was published by Sundaramoorthy et al. (2012).

Related literature top

For general background to β-lactams, see: Jones et al. (1989); Brakhage (1998); Banik & Becker (2000). For a related structure, see: Sundaramoorthy et al. (2012).

Experimental top

To a solution of the N-benzylideneaniline oxide (1 mol) in dry acetonitrile (20 ml) was added (E)-4-(3-(4-chlorophenyl)-3-oxoprop-1-enyl) -1-(4-methoxyphenyl)-3-phenylazetidin-2-one (1 mol) under N2 atmosphere. The reaction was refluxed for 48 hours. After the completion of the reaction the solvent was distilled off under reduced pressure and the crude product was purified by column chromatography using 9:1 mixture of hexane-ethyl acetate. Crystallization of the pure compound was done using 1:1 mixture of chloroform-ethyl acetate.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.93 Å to 0.98 Å and refined using a riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for the methyl group and Uiso(H) = 1.2Ueq(C) for the remaining H atoms.

Structure description top

The role of β-lactam antibiotics is well known (Banik & Becker, 2000). The most commonly used β-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin (Brakhage, 1998). β-Lactam based antibiotics have been successfully used in the treatment of infectious diseases for many years (Jones et al., 1989). In view of potential applications, the crystal structure determination of the titled β-lactam derivative was carried out.

In the title compound (Fig. 1), the β-lactam ring makes a dihedral angle of 10.33 (14)° with a isoxazole ring (N2/03/C17/C18/C19), a dihedral angle of 40.33 (14)° with the methoxy phenyl ring and a dihedral angle of 70.05 (16)° with the unsubstited phenyl ring. The dihedral angle between the isoxazole ring and the unsubstited phenyl ring (C20/C21/C22/C23/C24/C25) is 81.42 (12)°, which shows that they are almost orthogonal to each other. The dihedral angle between the isoxazole ring and the unsubstited phenyl ring (C11/C12/C13/C14/C15/C16) is 80.38 (14)°, which shows that they are also almost orthogonal to each other. The isoxazole ring makes a dihedral angle of 40.35 (12)° with the chlorolophenyl ring.

The oxygen atom attached to the β-lactam ring deviates by -0.1871 (18)Å. The oxygen atom attached to the phenyl ring deviates by 0.0237 (21)Å. The packing of the crystal structure is stabilized by intermolecular C—H···O hydrogen bonds (Fig. 2). A related structure was published by Sundaramoorthy et al. (2012).

For general background to β-lactams, see: Jones et al. (1989); Brakhage (1998); Banik & Becker (2000). For a related structure, see: Sundaramoorthy et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the c axis. H-atoms not involved in H-bonds have been excluded for clarity.
4-[4-(4-Chlorobenzoyl)-2,3-diphenylisoxazolidin-5-yl]-1-(4-methoxyphenyl)- 3-phenylazetidin-2-one top
Crystal data top
C38H31ClN2O4F(000) = 1288
Mr = 615.10Dx = 1.314 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7716 reflections
a = 10.1221 (10) Åθ = 1.6–28.4°
b = 17.4890 (17) ŵ = 0.17 mm1
c = 17.7421 (18) ÅT = 293 K
β = 98.150 (6)°Block, colourless
V = 3109.1 (5) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5491 independent reflections
Radiation source: fine-focus sealed tube3214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω and φ scansθmax = 25.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1211
Tmin = 0.951, Tmax = 0.967k = 2019
23486 measured reflectionsl = 2117
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.7516P]
where P = (Fo2 + 2Fc2)/3
5491 reflections(Δ/σ)max < 0.001
407 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C38H31ClN2O4V = 3109.1 (5) Å3
Mr = 615.10Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.1221 (10) ŵ = 0.17 mm1
b = 17.4890 (17) ÅT = 293 K
c = 17.7421 (18) Å0.30 × 0.25 × 0.20 mm
β = 98.150 (6)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5491 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3214 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.967Rint = 0.050
23486 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 0.99Δρmax = 0.29 e Å3
5491 reflectionsΔρmin = 0.41 e Å3
407 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1235 (4)0.56910 (18)0.92991 (18)0.0952 (11)
H1A0.19440.60300.92110.143*
H1B0.04900.59850.94170.143*
H1C0.09660.53910.88510.143*
C20.2637 (3)0.46709 (15)0.98273 (15)0.0641 (7)
C30.3357 (3)0.46562 (15)0.92296 (15)0.0671 (8)
H30.32180.50280.88520.080*
C40.4285 (3)0.40889 (15)0.91917 (14)0.0623 (7)
H40.47820.40850.87890.075*
C50.4491 (2)0.35290 (13)0.97360 (13)0.0490 (6)
C60.3775 (3)0.35466 (16)1.03403 (14)0.0639 (7)
H60.39140.31741.07180.077*
C70.2856 (3)0.41155 (17)1.03833 (15)0.0748 (8)
H70.23740.41271.07920.090*
C80.5786 (2)0.24964 (13)0.90286 (12)0.0473 (6)
H80.60730.28210.86320.057*
C90.6982 (2)0.21662 (14)0.95941 (13)0.0531 (6)
H90.78030.24320.95150.064*
C100.6345 (2)0.25842 (15)1.02071 (14)0.0567 (6)
C110.7257 (2)0.13271 (15)0.96688 (13)0.0549 (6)
C120.8284 (3)0.10087 (19)0.93330 (15)0.0781 (9)
H120.87950.13190.90620.094*
C130.8558 (4)0.0236 (2)0.9396 (2)0.1023 (12)
H130.92460.00290.91660.123*
C140.7824 (5)0.0220 (2)0.9795 (2)0.1094 (13)
H140.80210.07380.98420.131*
C150.6803 (4)0.0074 (2)1.0126 (2)0.0951 (10)
H150.62950.02441.03920.114*
C160.6521 (3)0.08535 (18)1.00663 (16)0.0729 (8)
H160.58290.10551.02980.087*
C170.4693 (2)0.19375 (13)0.87231 (12)0.0433 (5)
H170.43980.16680.91540.052*
C180.3478 (2)0.23073 (13)0.82526 (11)0.0426 (5)
H180.37320.28170.80930.051*
C190.3247 (2)0.17755 (14)0.75339 (12)0.0470 (6)
H190.28960.20830.70890.056*
C200.5419 (2)0.20436 (14)0.71008 (13)0.0490 (6)
C210.4897 (3)0.25163 (16)0.65020 (14)0.0638 (7)
H210.39810.25270.63410.077*
C220.5739 (3)0.29695 (18)0.61468 (17)0.0814 (9)
H220.53860.32870.57480.098*
C230.7086 (3)0.29552 (19)0.63755 (19)0.0838 (9)
H230.76480.32660.61380.101*
C240.7602 (3)0.24798 (18)0.69571 (17)0.0747 (8)
H240.85200.24670.71100.090*
C250.6786 (2)0.20225 (16)0.73171 (14)0.0608 (7)
H250.71510.16980.77070.073*
C260.2310 (2)0.11091 (14)0.75998 (12)0.0483 (6)
C270.2709 (3)0.04226 (16)0.79247 (16)0.0697 (8)
H270.36070.03430.81060.084*
C280.1794 (3)0.01581 (17)0.79888 (17)0.0771 (8)
H280.20830.06190.82150.092*
C290.0477 (3)0.00560 (18)0.77219 (16)0.0706 (8)
H290.01380.04420.77690.085*
C300.0075 (3)0.06236 (19)0.73840 (17)0.0786 (8)
H300.08210.06990.71960.094*
C310.0981 (3)0.11970 (17)0.73199 (15)0.0685 (7)
H310.06900.16530.70830.082*
C320.2290 (2)0.23887 (14)0.86813 (13)0.0489 (6)
C330.1259 (2)0.29713 (13)0.84202 (14)0.0522 (6)
C340.1156 (2)0.33164 (15)0.77096 (16)0.0642 (7)
H340.17470.31780.73770.077*
C350.0194 (3)0.38610 (16)0.74874 (19)0.0758 (8)
H350.01270.40820.70070.091*
C360.0656 (3)0.40701 (16)0.7980 (2)0.0777 (9)
C370.0583 (3)0.37409 (19)0.8685 (2)0.0842 (9)
H370.11720.38900.90150.101*
C380.0370 (3)0.31840 (16)0.89081 (16)0.0698 (8)
H380.04120.29550.93840.084*
N10.54326 (19)0.29368 (11)0.96857 (10)0.0519 (5)
N20.45940 (18)0.15261 (11)0.74562 (10)0.0497 (5)
O10.1687 (2)0.52014 (13)0.99171 (11)0.0979 (7)
O20.65372 (19)0.26133 (11)1.08976 (10)0.0793 (6)
O30.51966 (15)0.13785 (9)0.82304 (8)0.0513 (4)
O40.21907 (18)0.19892 (11)0.92295 (10)0.0692 (5)
Cl10.18375 (10)0.47664 (6)0.77110 (7)0.1308 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.113 (3)0.078 (2)0.091 (2)0.039 (2)0.005 (2)0.0199 (19)
C20.0778 (18)0.0607 (18)0.0536 (16)0.0226 (14)0.0088 (14)0.0012 (14)
C30.096 (2)0.0519 (17)0.0545 (16)0.0145 (15)0.0133 (15)0.0090 (13)
C40.0837 (19)0.0566 (17)0.0489 (15)0.0082 (15)0.0170 (13)0.0030 (13)
C50.0548 (14)0.0471 (15)0.0430 (13)0.0035 (12)0.0000 (11)0.0054 (12)
C60.0723 (18)0.0700 (18)0.0498 (15)0.0125 (15)0.0099 (13)0.0132 (14)
C70.084 (2)0.091 (2)0.0535 (16)0.0277 (17)0.0215 (14)0.0107 (16)
C80.0481 (13)0.0491 (14)0.0438 (13)0.0020 (11)0.0033 (10)0.0010 (11)
C90.0403 (13)0.0650 (17)0.0508 (14)0.0004 (12)0.0042 (10)0.0040 (13)
C100.0537 (15)0.0605 (17)0.0512 (16)0.0007 (12)0.0091 (12)0.0105 (13)
C110.0495 (14)0.0650 (18)0.0457 (14)0.0104 (13)0.0084 (11)0.0058 (13)
C120.080 (2)0.095 (2)0.0580 (17)0.0271 (18)0.0027 (14)0.0005 (16)
C130.122 (3)0.106 (3)0.077 (2)0.060 (3)0.004 (2)0.007 (2)
C140.148 (4)0.080 (3)0.092 (3)0.039 (3)0.014 (3)0.007 (2)
C150.112 (3)0.075 (3)0.091 (2)0.000 (2)0.010 (2)0.019 (2)
C160.0710 (19)0.075 (2)0.0696 (19)0.0076 (16)0.0004 (15)0.0054 (16)
C170.0471 (13)0.0475 (14)0.0350 (11)0.0047 (11)0.0050 (9)0.0009 (11)
C180.0419 (12)0.0458 (14)0.0396 (12)0.0019 (10)0.0037 (9)0.0001 (10)
C190.0415 (12)0.0592 (15)0.0387 (12)0.0030 (11)0.0005 (9)0.0007 (11)
C200.0489 (14)0.0538 (15)0.0451 (13)0.0039 (12)0.0098 (11)0.0106 (12)
C210.0522 (15)0.0765 (19)0.0610 (16)0.0079 (14)0.0027 (12)0.0081 (15)
C220.073 (2)0.093 (2)0.079 (2)0.0151 (17)0.0104 (16)0.0232 (18)
C230.069 (2)0.090 (2)0.096 (2)0.0198 (17)0.0265 (18)0.008 (2)
C240.0476 (15)0.094 (2)0.084 (2)0.0071 (15)0.0167 (15)0.0120 (19)
C250.0465 (14)0.0752 (19)0.0613 (16)0.0064 (13)0.0101 (12)0.0069 (14)
C260.0502 (14)0.0548 (16)0.0397 (13)0.0016 (12)0.0052 (10)0.0042 (12)
C270.0583 (16)0.0639 (19)0.084 (2)0.0020 (15)0.0022 (14)0.0003 (16)
C280.083 (2)0.0572 (19)0.089 (2)0.0065 (16)0.0047 (17)0.0030 (16)
C290.0679 (19)0.076 (2)0.0694 (18)0.0208 (16)0.0155 (15)0.0064 (16)
C300.0526 (16)0.091 (2)0.090 (2)0.0152 (17)0.0039 (15)0.0075 (19)
C310.0534 (16)0.077 (2)0.0726 (18)0.0081 (14)0.0015 (13)0.0103 (15)
C320.0526 (14)0.0484 (15)0.0466 (14)0.0005 (11)0.0094 (11)0.0017 (12)
C330.0432 (13)0.0490 (15)0.0646 (16)0.0015 (11)0.0087 (11)0.0039 (13)
C340.0509 (15)0.0632 (18)0.0787 (19)0.0096 (13)0.0103 (13)0.0086 (15)
C350.0585 (17)0.0674 (19)0.099 (2)0.0093 (15)0.0019 (16)0.0116 (17)
C360.0550 (17)0.0597 (19)0.114 (3)0.0115 (14)0.0048 (17)0.0134 (19)
C370.0585 (18)0.089 (2)0.107 (3)0.0188 (17)0.0163 (17)0.027 (2)
C380.0583 (16)0.077 (2)0.0760 (18)0.0093 (15)0.0149 (14)0.0115 (16)
N10.0569 (12)0.0550 (13)0.0407 (11)0.0073 (10)0.0040 (9)0.0063 (10)
N20.0462 (11)0.0620 (13)0.0387 (10)0.0027 (10)0.0020 (8)0.0027 (9)
O10.1229 (18)0.1013 (17)0.0726 (13)0.0604 (15)0.0244 (12)0.0142 (12)
O20.0865 (13)0.0973 (15)0.0458 (11)0.0217 (11)0.0194 (9)0.0177 (10)
O30.0540 (9)0.0556 (10)0.0408 (8)0.0124 (8)0.0055 (7)0.0049 (8)
O40.0768 (12)0.0724 (13)0.0636 (11)0.0104 (10)0.0279 (9)0.0149 (10)
Cl10.0894 (7)0.1048 (8)0.1876 (11)0.0526 (6)0.0169 (6)0.0139 (7)
Geometric parameters (Å, º) top
C1—O11.415 (3)C18—H180.9800
C1—H1A0.9600C19—N21.457 (3)
C1—H1B0.9600C19—C261.517 (3)
C1—H1C0.9600C19—H190.9800
C2—O11.362 (3)C20—C251.383 (3)
C2—C31.369 (3)C20—C211.390 (3)
C2—C71.380 (4)C20—N21.436 (3)
C3—C41.375 (3)C21—C221.380 (4)
C3—H30.9300C21—H210.9300
C4—C51.370 (3)C22—C231.367 (4)
C4—H40.9300C22—H220.9300
C5—C61.377 (3)C23—C241.370 (4)
C5—N11.419 (3)C23—H230.9300
C6—C71.372 (4)C24—C251.371 (4)
C6—H60.9300C24—H240.9300
C7—H70.9300C25—H250.9300
C8—N11.483 (3)C26—C271.368 (3)
C8—C171.518 (3)C26—C311.375 (3)
C8—C91.569 (3)C27—C281.390 (4)
C8—H80.9800C27—H270.9300
C9—C111.496 (3)C28—C291.362 (4)
C9—C101.527 (3)C28—H280.9300
C9—H90.9800C29—C301.367 (4)
C10—O21.214 (3)C29—H290.9300
C10—N11.359 (3)C30—C311.375 (4)
C11—C161.374 (4)C30—H300.9300
C11—C121.386 (4)C31—H310.9300
C12—C131.381 (4)C32—O41.213 (3)
C12—H120.9300C32—C331.485 (3)
C13—C141.355 (5)C33—C381.385 (3)
C13—H130.9300C33—C341.388 (3)
C14—C151.360 (5)C34—C351.379 (4)
C14—H140.9300C34—H340.9300
C15—C161.394 (4)C35—C361.360 (4)
C15—H150.9300C35—H350.9300
C16—H160.9300C36—C371.370 (4)
C17—O31.451 (2)C36—Cl11.726 (3)
C17—C181.529 (3)C37—C381.389 (4)
C17—H170.9800C37—H370.9300
C18—C321.518 (3)C38—H380.9300
C18—C191.569 (3)N2—O31.445 (2)
O1—C1—H1A109.5N2—C19—C18102.75 (16)
O1—C1—H1B109.5C26—C19—C18114.55 (17)
H1A—C1—H1B109.5N2—C19—H19109.0
O1—C1—H1C109.5C26—C19—H19109.0
H1A—C1—H1C109.5C18—C19—H19109.0
H1B—C1—H1C109.5C25—C20—C21119.0 (2)
O1—C2—C3124.4 (2)C25—C20—N2118.8 (2)
O1—C2—C7116.1 (2)C21—C20—N2121.9 (2)
C3—C2—C7119.4 (2)C22—C21—C20119.9 (2)
C2—C3—C4119.6 (2)C22—C21—H21120.1
C2—C3—H3120.2C20—C21—H21120.1
C4—C3—H3120.2C23—C22—C21120.6 (3)
C5—C4—C3121.2 (2)C23—C22—H22119.7
C5—C4—H4119.4C21—C22—H22119.7
C3—C4—H4119.4C22—C23—C24119.5 (3)
C4—C5—C6119.3 (2)C22—C23—H23120.2
C4—C5—N1120.9 (2)C24—C23—H23120.2
C6—C5—N1119.8 (2)C23—C24—C25120.9 (3)
C7—C6—C5119.7 (2)C23—C24—H24119.5
C7—C6—H6120.2C25—C24—H24119.5
C5—C6—H6120.2C24—C25—C20120.0 (3)
C6—C7—C2120.8 (2)C24—C25—H25120.0
C6—C7—H7119.6C20—C25—H25120.0
C2—C7—H7119.6C27—C26—C31117.7 (2)
N1—C8—C17111.74 (18)C27—C26—C19123.8 (2)
N1—C8—C986.49 (16)C31—C26—C19118.4 (2)
C17—C8—C9116.66 (19)C26—C27—C28121.0 (3)
N1—C8—H8113.1C26—C27—H27119.5
C17—C8—H8113.1C28—C27—H27119.5
C9—C8—H8113.1C29—C28—C27120.4 (3)
C11—C9—C10119.9 (2)C29—C28—H28119.8
C11—C9—C8122.33 (19)C27—C28—H28119.8
C10—C9—C885.07 (17)C28—C29—C30118.8 (3)
C11—C9—H9109.1C28—C29—H29120.6
C10—C9—H9109.1C30—C29—H29120.6
C8—C9—H9109.1C29—C30—C31120.7 (3)
O2—C10—N1131.6 (2)C29—C30—H30119.7
O2—C10—C9135.7 (2)C31—C30—H30119.7
N1—C10—C992.71 (19)C30—C31—C26121.3 (3)
C16—C11—C12118.2 (3)C30—C31—H31119.4
C16—C11—C9121.9 (2)C26—C31—H31119.4
C12—C11—C9119.8 (3)O4—C32—C33120.7 (2)
C13—C12—C11120.8 (3)O4—C32—C18120.6 (2)
C13—C12—H12119.6C33—C32—C18118.7 (2)
C11—C12—H12119.6C38—C33—C34118.6 (2)
C14—C13—C12120.0 (3)C38—C33—C32118.6 (2)
C14—C13—H13120.0C34—C33—C32122.7 (2)
C12—C13—H13120.0C35—C34—C33121.3 (3)
C13—C14—C15120.7 (4)C35—C34—H34119.4
C13—C14—H14119.7C33—C34—H34119.4
C15—C14—H14119.7C36—C35—C34119.2 (3)
C14—C15—C16119.7 (4)C36—C35—H35120.4
C14—C15—H15120.1C34—C35—H35120.4
C16—C15—H15120.1C35—C36—C37121.1 (3)
C11—C16—C15120.6 (3)C35—C36—Cl1119.3 (3)
C11—C16—H16119.7C37—C36—Cl1119.6 (3)
C15—C16—H16119.7C36—C37—C38120.0 (3)
O3—C17—C8110.41 (17)C36—C37—H37120.0
O3—C17—C18106.27 (16)C38—C37—H37120.0
C8—C17—C18114.33 (18)C33—C38—C37119.8 (3)
O3—C17—H17108.6C33—C38—H38120.1
C8—C17—H17108.6C37—C38—H38120.1
C18—C17—H17108.6C10—N1—C5133.33 (19)
C32—C18—C17113.52 (18)C10—N1—C894.76 (18)
C32—C18—C19115.19 (17)C5—N1—C8131.89 (18)
C17—C18—C19102.05 (17)C20—N2—O3109.67 (16)
C32—C18—H18108.6C20—N2—C19117.59 (18)
C17—C18—H18108.6O3—N2—C19103.78 (15)
C19—C18—H18108.6C2—O1—C1118.5 (2)
N2—C19—C26112.38 (19)N2—O3—C17108.38 (15)
O1—C2—C3—C4179.4 (3)C18—C19—C26—C3193.9 (3)
C7—C2—C3—C40.0 (4)C31—C26—C27—C281.8 (4)
C2—C3—C4—C51.0 (4)C19—C26—C27—C28178.0 (2)
C3—C4—C5—C61.5 (4)C26—C27—C28—C290.5 (4)
C3—C4—C5—N1178.8 (2)C27—C28—C29—C300.6 (4)
C4—C5—C6—C70.9 (4)C28—C29—C30—C310.5 (4)
N1—C5—C6—C7179.4 (2)C29—C30—C31—C260.8 (4)
C5—C6—C7—C20.1 (4)C27—C26—C31—C301.9 (4)
O1—C2—C7—C6178.9 (3)C19—C26—C31—C30177.9 (2)
C3—C2—C7—C60.6 (5)C17—C18—C32—O421.7 (3)
N1—C8—C9—C11129.4 (2)C19—C18—C32—O495.4 (3)
C17—C8—C9—C1116.8 (3)C17—C18—C32—C33157.8 (2)
N1—C8—C9—C106.87 (17)C19—C18—C32—C3385.1 (3)
C17—C8—C9—C10105.7 (2)O4—C32—C33—C3815.7 (4)
C11—C9—C10—O247.9 (4)C18—C32—C33—C38163.8 (2)
C8—C9—C10—O2172.6 (3)O4—C32—C33—C34164.9 (2)
C11—C9—C10—N1132.2 (2)C18—C32—C33—C3415.6 (3)
C8—C9—C10—N17.50 (18)C38—C33—C34—C350.0 (4)
C10—C9—C11—C1627.0 (3)C32—C33—C34—C35179.4 (2)
C8—C9—C11—C1677.3 (3)C33—C34—C35—C361.0 (4)
C10—C9—C11—C12152.7 (2)C34—C35—C36—C371.0 (5)
C8—C9—C11—C12103.0 (3)C34—C35—C36—Cl1178.6 (2)
C16—C11—C12—C130.1 (4)C35—C36—C37—C380.1 (5)
C9—C11—C12—C13179.8 (3)Cl1—C36—C37—C38179.6 (2)
C11—C12—C13—C140.4 (5)C34—C33—C38—C371.0 (4)
C12—C13—C14—C150.9 (6)C32—C33—C38—C37178.4 (2)
C13—C14—C15—C161.1 (5)C36—C37—C38—C331.0 (4)
C12—C11—C16—C150.2 (4)O2—C10—N1—C59.2 (5)
C9—C11—C16—C15179.9 (2)C9—C10—N1—C5170.7 (2)
C14—C15—C16—C110.7 (5)O2—C10—N1—C8172.1 (3)
N1—C8—C17—O3164.49 (16)C9—C10—N1—C87.93 (19)
C9—C8—C17—O367.2 (2)C4—C5—N1—C10139.2 (3)
N1—C8—C17—C1875.8 (2)C6—C5—N1—C1040.5 (4)
C9—C8—C17—C18173.01 (18)C4—C5—N1—C839.0 (4)
O3—C17—C18—C32135.15 (18)C6—C5—N1—C8141.3 (2)
C8—C17—C18—C32102.8 (2)C17—C8—N1—C10109.6 (2)
O3—C17—C18—C1910.6 (2)C9—C8—N1—C107.72 (19)
C8—C17—C18—C19132.61 (18)C17—C8—N1—C571.7 (3)
C32—C18—C19—N2155.04 (19)C9—C8—N1—C5170.9 (2)
C17—C18—C19—N231.6 (2)C25—C20—N2—O331.7 (3)
C32—C18—C19—C2632.9 (3)C21—C20—N2—O3154.0 (2)
C17—C18—C19—C2690.6 (2)C25—C20—N2—C19149.9 (2)
C25—C20—C21—C221.6 (4)C21—C20—N2—C1935.8 (3)
N2—C20—C21—C22176.0 (2)C26—C19—N2—C20156.22 (18)
C20—C21—C22—C230.4 (4)C18—C19—N2—C2080.1 (2)
C21—C22—C23—C240.7 (5)C26—C19—N2—O382.5 (2)
C22—C23—C24—C250.5 (5)C18—C19—N2—O341.1 (2)
C23—C24—C25—C200.8 (4)C3—C2—O1—C111.6 (5)
C21—C20—C25—C241.9 (4)C7—C2—O1—C1167.9 (3)
N2—C20—C25—C24176.3 (2)C20—N2—O3—C1790.60 (19)
N2—C19—C26—C2730.9 (3)C19—N2—O3—C1735.8 (2)
C18—C19—C26—C2785.9 (3)C8—C17—O3—N2109.89 (18)
N2—C19—C26—C31149.3 (2)C18—C17—O3—N214.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O2i0.982.413.338 (3)158
C21—H21···O2i0.932.503.425 (4)173
C37—H37···O1ii0.932.583.407 (4)148
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC38H31ClN2O4
Mr615.10
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.1221 (10), 17.4890 (17), 17.7421 (18)
β (°) 98.150 (6)
V3)3109.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.951, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
23486, 5491, 3214
Rint0.050
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.132, 0.99
No. of reflections5491
No. of parameters407
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.41

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O2i0.982.413.338 (3)157.5
C21—H21···O2i0.932.503.425 (4)173.2
C37—H37···O1ii0.932.583.407 (4)148.1
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y+1, z+2.
 

Acknowledgements

The authors thank the TBI X–ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. TS thanks the DST for an Inspire fellowship.

References

First citationBanik, B. K. & Becker, F. F. (2000). Tetrahedron Lett. 41, 6551–6554.  Web of Science CrossRef CAS Google Scholar
First citationBrakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62 , 547–585.  Web of Science CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJones, R. N., Barry, A. L. & Thornsberry, C. (1989). J. Antimicrob. Chemother., 24 , 9–29.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundaramoorthy, S., Rajesh, R., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2202.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds