organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Benzoyl­phen­yl)(naphthalen-1-yl)methanone

aDepartment of Physics, S.M.K. Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 31 August 2012; accepted 12 September 2012; online 26 September 2012)

In the title compound, C24H16O2, the naphthalene ring system makes dihedral angles of 78.5 (6) and 65.5 (7)° with the terminal and central benzene rings, respectively. The dihedral angle between the benzene rings is 74.5 (8)°. In the crystal, neighbouring molecules are interlinked through two C—H⋯π interactions, which construct a two-dimensional supramolecular framework extending infinitely along (010).

Related literature

For the biological activity of naphthalene derivatives, see: Wiltz et al. (1998[Wiltz, B. A., Henderson, G. & Chen, J. (1998). Environ. Entomol. 27, 936-940.]); Wright et al. (2000[Wright, M. S., Lax, A. R., Henderson, G. & Chen, J. A. (2000). Mycologia, 92, 42-45.]); Varma et al. (1994[Varma, A., Kolli, B. K., Paul, J., Saxena, S. & Konig, H. (1994). FEMS Microbiol. Rev. 15, 9-28.]). For a related structure, see: Xia (2010[Xia, L.-Y. (2010). Acta Cryst. E66, o860.]).

[Scheme 1]

Experimental

Crystal data
  • C24H16O2

  • Mr = 336.37

  • Monoclinic, P 21 /n

  • a = 10.4105 (3) Å

  • b = 9.6218 (3) Å

  • c = 17.8497 (5) Å

  • β = 106.113 (2)°

  • V = 1717.73 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.985

  • 18980 measured reflections

  • 4081 independent reflections

  • 2906 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.135

  • S = 1.01

  • 4081 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Cg1i 0.93 2.71 3.618 (19) 163
C20—H20⋯Cg2ii 0.93 2.85 3.67 (3) 141
Symmetry codes: (i) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Naphthalene derivatives have manifested applications in many fields, for example, as a colorant, explosive, disinfectant, insecticide and plant hormone auxin. Naphthalene is believed to play a role in the chemical defence against biological enemies (Wiltz et al., 1998; Wright et al., 2000). It may be produced by metabolic processes in termites or by associated microorganisms which inhabit, e.g., the termite guts (Varma et al., 1994).

Bond lengths and bond angles of the title compound are comparable with the related structure (Xia, 2010). The napthyl ring C15—C24 system makes dihedral angles of 78.5 (6)° and 65.5 (7)°, with the phenyl rings C1—C6 and the C8—C13 respectively.

The C–H···π interaction C11–H11—Cg1i (Cg1 : C1–C6) [symmetry code : (i) x-1/2, -y-1/2, z-1/2] links the adjacent title moleculesto generate an extended one dimensional supramolecular network along [104] direction. Parallely stacked [104] network are further linked through C20–H20···Cg2ii (Cg2 : C8–C13) [symmetry code : (i) x-1/2, -y-1/2, z-3/2] interaction to form a two dimensional supramolecular sheet extending parallel to the (010) plane.

Related literature top

For the biological activity of naphthalene derivatives, see: Wiltz et al. (1998); Wright et al. (2000); Varma et al. (1994). For a related structure, see: Xia (2010).

Experimental top

To a stirred suspension of benzo[c]furan (2.38 g, 7.437 mmol) in dry THF (20 ml), lead tetraacetate (3.2 g, 7.437 mmol) was added and refluxed at 50°C for half an hour. The reaction mixture was then poured into water (200 ml) and extracted with ethyl acetate (2 x 20 ml), washed with brine solution and dried (Na2SO4). The removal of solvent in vacuo followed by crystallization from methanol afforded the title compound as a colorless solid. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in methanol at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed at 0.93Å with Uiso(H) = 1.2Ueq(C).

Structure description top

Naphthalene derivatives have manifested applications in many fields, for example, as a colorant, explosive, disinfectant, insecticide and plant hormone auxin. Naphthalene is believed to play a role in the chemical defence against biological enemies (Wiltz et al., 1998; Wright et al., 2000). It may be produced by metabolic processes in termites or by associated microorganisms which inhabit, e.g., the termite guts (Varma et al., 1994).

Bond lengths and bond angles of the title compound are comparable with the related structure (Xia, 2010). The napthyl ring C15—C24 system makes dihedral angles of 78.5 (6)° and 65.5 (7)°, with the phenyl rings C1—C6 and the C8—C13 respectively.

The C–H···π interaction C11–H11—Cg1i (Cg1 : C1–C6) [symmetry code : (i) x-1/2, -y-1/2, z-1/2] links the adjacent title moleculesto generate an extended one dimensional supramolecular network along [104] direction. Parallely stacked [104] network are further linked through C20–H20···Cg2ii (Cg2 : C8–C13) [symmetry code : (i) x-1/2, -y-1/2, z-3/2] interaction to form a two dimensional supramolecular sheet extending parallel to the (010) plane.

For the biological activity of naphthalene derivatives, see: Wiltz et al. (1998); Wright et al. (2000); Varma et al. (1994). For a related structure, see: Xia (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of showing the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
(2-Benzoylphenyl)(naphthalen-1-yl)methanone top
Crystal data top
C24H16O2F(000) = 704
Mr = 336.37Dx = 1.301 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4106 reflections
a = 10.4105 (3) Åθ = 2.1–27.9°
b = 9.6218 (3) ŵ = 0.08 mm1
c = 17.8497 (5) ÅT = 293 K
β = 106.113 (2)°Block, white crystalline
V = 1717.73 (9) Å30.25 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4081 independent reflections
Radiation source: fine-focus sealed tube2906 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and φ scansθmax = 27.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.980, Tmax = 0.985k = 912
18980 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0682P)2 + 0.3208P]
where P = (Fo2 + 2Fc2)/3
4081 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C24H16O2V = 1717.73 (9) Å3
Mr = 336.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.4105 (3) ŵ = 0.08 mm1
b = 9.6218 (3) ÅT = 293 K
c = 17.8497 (5) Å0.25 × 0.22 × 0.19 mm
β = 106.113 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4081 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2906 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.985Rint = 0.024
18980 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
4081 reflectionsΔρmin = 0.17 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12964 (14)0.43758 (18)0.19247 (9)0.0514 (4)
H10.19780.43980.21680.062*
C20.11530 (16)0.54645 (18)0.14567 (10)0.0577 (4)
H20.17460.62090.13790.069*
C30.01362 (17)0.54578 (18)0.11029 (10)0.0572 (4)
H30.00300.62050.07950.069*
C40.07240 (15)0.43421 (16)0.12060 (9)0.0501 (4)
H40.14130.43410.09670.060*
C50.05740 (13)0.32213 (15)0.16614 (8)0.0410 (3)
C60.04434 (13)0.32506 (15)0.20384 (8)0.0417 (3)
C70.06077 (13)0.21477 (16)0.25979 (8)0.0451 (3)
C80.04444 (13)0.20243 (14)0.33523 (8)0.0404 (3)
C90.14254 (15)0.30231 (16)0.35969 (8)0.0482 (3)
H90.14570.37800.32780.058*
C100.23568 (17)0.28980 (18)0.43124 (10)0.0598 (4)
H100.30140.35740.44750.072*
C110.23221 (18)0.1786 (2)0.47854 (10)0.0635 (5)
H110.29530.17080.52680.076*
C120.13550 (18)0.0788 (2)0.45457 (10)0.0641 (5)
H120.13370.00280.48640.077*
C130.04130 (16)0.09075 (17)0.38380 (9)0.0534 (4)
H130.02500.02360.36830.064*
C140.14196 (13)0.19692 (15)0.17171 (8)0.0423 (3)
C150.26477 (13)0.20331 (15)0.14345 (9)0.0453 (3)
C160.25771 (14)0.16839 (14)0.06570 (9)0.0452 (3)
C170.13610 (17)0.13546 (16)0.00976 (9)0.0524 (4)
H170.05610.13930.02330.063*
C180.1356 (2)0.09810 (19)0.06394 (10)0.0701 (5)
H180.05560.07510.10040.084*
C190.2565 (3)0.0944 (2)0.08489 (13)0.0841 (7)
H190.25560.06890.13530.101*
C200.3734 (3)0.1272 (2)0.03286 (14)0.0783 (6)
H200.45200.12470.04800.094*
C210.37831 (17)0.16475 (16)0.04334 (11)0.0579 (4)
C220.49996 (17)0.1967 (2)0.10048 (15)0.0723 (6)
H220.57970.19440.08670.087*
C230.50251 (17)0.2301 (2)0.17366 (14)0.0743 (6)
H230.58350.25030.20990.089*
C240.38446 (16)0.2346 (2)0.19557 (11)0.0646 (5)
H240.38700.25920.24630.078*
O10.16245 (11)0.14676 (16)0.24595 (7)0.0731 (4)
O20.11301 (12)0.08900 (12)0.19794 (7)0.0604 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0423 (7)0.0617 (10)0.0521 (8)0.0068 (7)0.0164 (6)0.0069 (7)
C20.0572 (9)0.0518 (10)0.0615 (9)0.0156 (7)0.0124 (7)0.0009 (7)
C30.0655 (10)0.0477 (9)0.0583 (9)0.0072 (7)0.0172 (8)0.0105 (7)
C40.0507 (8)0.0525 (9)0.0517 (8)0.0047 (7)0.0218 (7)0.0079 (7)
C50.0373 (6)0.0465 (8)0.0399 (7)0.0021 (6)0.0120 (5)0.0020 (6)
C60.0360 (6)0.0502 (8)0.0388 (7)0.0014 (6)0.0103 (5)0.0032 (6)
C70.0365 (6)0.0554 (9)0.0476 (8)0.0056 (6)0.0185 (6)0.0028 (6)
C80.0412 (7)0.0426 (8)0.0425 (7)0.0005 (6)0.0200 (6)0.0029 (6)
C90.0515 (8)0.0450 (8)0.0476 (8)0.0047 (6)0.0131 (6)0.0007 (6)
C100.0584 (9)0.0552 (10)0.0583 (9)0.0065 (8)0.0038 (7)0.0067 (8)
C110.0658 (10)0.0691 (12)0.0497 (9)0.0113 (9)0.0062 (8)0.0034 (8)
C120.0744 (11)0.0610 (11)0.0599 (10)0.0090 (9)0.0238 (8)0.0186 (8)
C130.0558 (8)0.0488 (9)0.0608 (9)0.0050 (7)0.0246 (7)0.0036 (7)
C140.0434 (7)0.0462 (8)0.0394 (7)0.0016 (6)0.0153 (6)0.0020 (6)
C150.0395 (7)0.0442 (8)0.0551 (8)0.0067 (6)0.0178 (6)0.0075 (6)
C160.0506 (8)0.0354 (7)0.0574 (8)0.0096 (6)0.0281 (7)0.0095 (6)
C170.0641 (9)0.0451 (8)0.0517 (8)0.0049 (7)0.0221 (7)0.0061 (7)
C180.1059 (15)0.0519 (10)0.0538 (9)0.0014 (10)0.0243 (10)0.0047 (8)
C190.149 (2)0.0582 (12)0.0668 (12)0.0200 (13)0.0655 (14)0.0093 (9)
C200.1069 (16)0.0585 (12)0.0952 (15)0.0211 (11)0.0707 (14)0.0163 (10)
C210.0665 (10)0.0403 (8)0.0830 (11)0.0154 (7)0.0474 (9)0.0164 (8)
C220.0474 (9)0.0612 (11)0.1210 (17)0.0115 (8)0.0445 (10)0.0251 (11)
C230.0413 (8)0.0803 (14)0.0990 (15)0.0006 (9)0.0156 (9)0.0176 (11)
C240.0485 (8)0.0747 (12)0.0677 (11)0.0003 (8)0.0114 (8)0.0080 (9)
O10.0483 (6)0.0960 (10)0.0732 (8)0.0269 (6)0.0139 (5)0.0079 (7)
O20.0730 (7)0.0453 (6)0.0755 (7)0.0027 (5)0.0415 (6)0.0069 (5)
Geometric parameters (Å, º) top
C1—C21.374 (2)C12—H120.9300
C1—C61.379 (2)C13—H130.9300
C1—H10.9300C14—O21.2110 (17)
C2—C31.375 (2)C14—C151.5001 (18)
C2—H20.9300C15—C241.366 (2)
C3—C41.377 (2)C15—C161.410 (2)
C3—H30.9300C16—C171.414 (2)
C4—C51.385 (2)C16—C211.420 (2)
C4—H40.9300C17—C181.362 (2)
C5—C61.4039 (18)C17—H170.9300
C5—C141.479 (2)C18—C191.410 (3)
C6—C71.499 (2)C18—H180.9300
C7—O11.2101 (17)C19—C201.347 (3)
C7—C81.486 (2)C19—H190.9300
C8—C91.382 (2)C20—C211.395 (3)
C8—C131.387 (2)C20—H200.9300
C9—C101.378 (2)C21—C221.422 (3)
C9—H90.9300C22—C231.338 (3)
C10—C111.370 (3)C22—H220.9300
C10—H100.9300C23—C241.390 (2)
C11—C121.371 (3)C23—H230.9300
C11—H110.9300C24—H240.9300
C12—C131.372 (2)
C2—C1—C6120.92 (14)C12—C13—C8120.36 (15)
C2—C1—H1119.5C12—C13—H13119.8
C6—C1—H1119.5C8—C13—H13119.8
C1—C2—C3120.22 (14)O2—C14—C5121.13 (12)
C1—C2—H2119.9O2—C14—C15119.47 (13)
C3—C2—H2119.9C5—C14—C15119.40 (12)
C4—C3—C2119.82 (15)C24—C15—C16120.76 (14)
C4—C3—H3120.1C24—C15—C14118.79 (14)
C2—C3—H3120.1C16—C15—C14120.31 (13)
C3—C4—C5120.67 (14)C15—C16—C17122.72 (13)
C3—C4—H4119.7C15—C16—C21118.30 (14)
C5—C4—H4119.7C17—C16—C21118.98 (14)
C4—C5—C6119.25 (13)C18—C17—C16120.26 (16)
C4—C5—C14120.77 (12)C18—C17—H17119.9
C6—C5—C14119.89 (12)C16—C17—H17119.9
C1—C6—C5119.07 (14)C17—C18—C19119.9 (2)
C1—C6—C7117.76 (12)C17—C18—H18120.1
C5—C6—C7123.08 (12)C19—C18—H18120.1
O1—C7—C8121.65 (14)C20—C19—C18120.89 (18)
O1—C7—C6120.12 (13)C20—C19—H19119.6
C8—C7—C6117.94 (11)C18—C19—H19119.6
C9—C8—C13119.01 (14)C19—C20—C21120.97 (18)
C9—C8—C7121.67 (13)C19—C20—H20119.5
C13—C8—C7119.28 (13)C21—C20—H20119.5
C10—C9—C8120.02 (15)C20—C21—C16119.00 (19)
C10—C9—H9120.0C20—C21—C22122.68 (17)
C8—C9—H9120.0C16—C21—C22118.31 (16)
C11—C10—C9120.49 (16)C23—C22—C21121.63 (15)
C11—C10—H10119.8C23—C22—H22119.2
C9—C10—H10119.8C21—C22—H22119.2
C10—C11—C12119.83 (16)C22—C23—C24120.17 (18)
C10—C11—H11120.1C22—C23—H23119.9
C12—C11—H11120.1C24—C23—H23119.9
C11—C12—C13120.28 (16)C15—C24—C23120.82 (18)
C11—C12—H12119.9C15—C24—H24119.6
C13—C12—H12119.9C23—C24—H24119.6
C6—C1—C2—C31.1 (2)C6—C5—C14—O211.4 (2)
C1—C2—C3—C41.3 (3)C4—C5—C14—C1514.2 (2)
C2—C3—C4—C50.2 (2)C6—C5—C14—C15169.37 (12)
C3—C4—C5—C61.9 (2)O2—C14—C15—C2487.50 (19)
C3—C4—C5—C14174.57 (14)C5—C14—C15—C2493.24 (17)
C2—C1—C6—C50.6 (2)O2—C14—C15—C1688.28 (18)
C2—C1—C6—C7176.10 (14)C5—C14—C15—C1690.98 (17)
C4—C5—C6—C12.1 (2)C24—C15—C16—C17179.91 (15)
C14—C5—C6—C1174.38 (13)C14—C15—C16—C174.4 (2)
C4—C5—C6—C7174.44 (13)C24—C15—C16—C210.9 (2)
C14—C5—C6—C79.1 (2)C14—C15—C16—C21174.84 (13)
C1—C6—C7—O164.4 (2)C15—C16—C17—C18177.89 (15)
C5—C6—C7—O1118.96 (16)C21—C16—C17—C181.3 (2)
C1—C6—C7—C8109.45 (15)C16—C17—C18—C191.0 (3)
C5—C6—C7—C867.15 (18)C17—C18—C19—C200.1 (3)
O1—C7—C8—C9163.01 (15)C18—C19—C20—C210.5 (3)
C6—C7—C8—C910.8 (2)C19—C20—C21—C160.1 (3)
O1—C7—C8—C1314.4 (2)C19—C20—C21—C22178.40 (18)
C6—C7—C8—C13171.76 (13)C15—C16—C21—C20178.49 (15)
C13—C8—C9—C100.3 (2)C17—C16—C21—C200.8 (2)
C7—C8—C9—C10177.73 (14)C15—C16—C21—C220.1 (2)
C8—C9—C10—C110.2 (2)C17—C16—C21—C22179.36 (14)
C9—C10—C11—C120.1 (3)C20—C21—C22—C23178.77 (18)
C10—C11—C12—C130.7 (3)C16—C21—C22—C230.2 (3)
C11—C12—C13—C81.2 (3)C21—C22—C23—C240.2 (3)
C9—C8—C13—C120.9 (2)C16—C15—C24—C231.3 (3)
C7—C8—C13—C12178.45 (14)C14—C15—C24—C23174.46 (16)
C4—C5—C14—O2165.07 (14)C22—C23—C24—C151.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11···Cg1i0.932.713.618 (19)163
C20—H20···Cg2ii0.932.853.67 (3)141
Symmetry codes: (i) x1/2, y1/2, z1/2; (ii) x1/2, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC24H16O2
Mr336.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.4105 (3), 9.6218 (3), 17.8497 (5)
β (°) 106.113 (2)
V3)1717.73 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
18980, 4081, 2906
Rint0.024
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.135, 1.01
No. of reflections4081
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.17

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11···Cg1i0.932.713.618 (19)162.6
C20—H20···Cg2ii0.932.853.673 (30)140.5
Symmetry codes: (i) x1/2, y1/2, z1/2; (ii) x1/2, y1/2, z3/2.
 

Acknowledgements

GG and ASP thank Dr. Babu Varghese, SAIF, IIT, Chennai, India for the data collection.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarma, A., Kolli, B. K., Paul, J., Saxena, S. & Konig, H. (1994). FEMS Microbiol. Rev. 15, 9–28.  CAS Google Scholar
First citationWiltz, B. A., Henderson, G. & Chen, J. (1998). Environ. Entomol. 27, 936–940.  CAS Google Scholar
First citationWright, M. S., Lax, A. R., Henderson, G. & Chen, J. A. (2000). Mycologia, 92, 42–45.  Web of Science CrossRef CAS Google Scholar
First citationXia, L.-Y. (2010). Acta Cryst. E66, o860.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds