organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1,2,2-Tetra­kis[2,4-di­chloro-6-(dieth­­oxy­meth­yl)phen­­oxy­meth­yl]ethene

aYeşilyurt Demir Çelik Vocational School, Ondokuz Mayis University, Samsun, Turkey, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Chemistry, Karadeniz Technical University, 61080 Trabzon, Turkey
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 4 September 2012; accepted 6 September 2012; online 26 September 2012)

In the title compound, C50H60Cl8O12, the mol­ecules are disordered about an inversion center located at the mid-point of the central C=C bond. These atoms show disorder and were modelled with two different orientations with site occupancies of 0.828 (3) and 0.172 (3). The dihedral angle between the two benzene rings in the asymmetric unit is 52.80 (6)°. Intramolecular C—H⋯O and C—H⋯Cl interactions occur and the crystal packing features inversion dimers linked by pairs of C—H⋯O bonds, generating R22(10) loops.

Related literature

For anti-oxidant, anti-inflammatory, chemopreventive, anti­bacterial, anti­carcinogenic, anti­tumor and anti­viral properties of sterically hindered phenols and secondary aromatic amines, see: Amorati et al. (2003[Amorati, R., Lucarini, M., Mugnaini, V. & Pedulli, G. F. (2003). J. Org. Chem. 68, 5198-5204.]); Torres de Pinedo et al. (2007[Torres de Pinedo, A., Penalver, P. & Morales, J. C. (2007). Food Chem. 103, 55-61.]); Leopoldini et al. (2011[Leopoldini, M., Russo, N. & Toscano, M. (2011). Food Chem. 125, 288-306.]); Leiro et al. (2011[Leiro, J. M., Varela, M., Piazzon, M. C., Arranz, J. A., Noya, M. & Lamas, J. (2011). Mol. Immunol. 47, 1114-1120.]); Link et al. (2010[Link, A., Balaguer, F. & Goel, A. (2010). Biochem. Pharmacol. 80, 1771-1792.]); Daglia (2011[Daglia, M. (2011). Curr. Opin. Biotechnol. 23, 1-8.]); Bai et al., (2003[Bai, X., Cerimele, F., Fukai, M. U., Waqas, M., Campbell, P. M., Govindarajan, B., Der, C. J., Battle, T., Frank, D. A., Ye, K., Murad, E., Dubiel, W., Soff, G. & Arbiser, J. L. (2003). J. Biol. Chem. 278, 35501-35507.]); Song et al. (2005[Song, J. L., Lee, K. H. & Seong, B. L. (2005). Antiviral Res. 68, 66-74.]); Rabek (1990[Rabek, J. F. (1990). In Photostabilization of Polymers-Principles and Applications. New Yor: Elsevier Applied Science.]); Pospisil et al. (2003[Pospisil, J., Horak, Z., Pilar, J., Billingham, N. C., Zweifel, H. & Nespurek, S. (2003). Polym. Degrad. Stab. 82, 145-162.]); Wolf & Kaul (1992[Wolf, R. & Kaul, B. L. (1992). Editors. Plastics, Additives, in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A20, pp. 459-507. Weinheim: VCH Verlag.]); Thapa et al. (2012[Thapa, P., Karki, R., Yun, M., Kadayat, T. M., Lee, E., Kwon, H. B., Na, Y., Cho, W.-J., Kim, N. D., Jeong, B.-S., Kwon, Y. & Lee, E.-S. (2012). Eur. J. Med. Chem. 52, 123-136.]). For synthetic phenolic anti­oxidants, such as butyl­ated hy­droxy­toluene (BHT), butyl­ated hy­droxy­anisole (BHA) or butyl­ated hy­droxy­quinone (TBHQ), which possess good anti-oxidant capacity, see: Omura (1995[Omura, K. (1995). J. Am. Oil Chem. Soc. 72, 1565-1570.]). For phenols capable of propagation termination due to the donation of the hydrogen atom of the phenolic OH to the free radicals, see: Kumar & Naik (2010[Kumar, H. V. & Naik, N. (2010). Eur. J. Med. Chem. 45, 2-10.]); Findik et al. (2011[Findik, E., Ceylan, M. & Elmastas, M. (2011). Eur. J. Med. Chem. 46, 4618-4624.]). For bond lengths of structurally related mol­ecules, see: Öztürk Yildirim et al. (2012[Öztürk Yildirim, S., Butcher, R. J., Köysal, Y. & Birinci, E. (2012). Acta Cryst. E68, o2633.]). For a description of the Cambridge structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For details of the synthesis, see: Er et al. (2009[Er, M., Ünver, Y., Sancak, K., Degirmencioglu, I. & Karaoglu, S. A. (2009). Arkivoc, II, 149-167.]).

[Scheme 1]

Experimental

Crystal data
  • C50H60Cl8O12

  • Mr = 1136.58

  • Triclinic, [P \overline 1]

  • a = 8.0626 (3) Å

  • b = 12.8693 (5) Å

  • c = 13.9968 (6) Å

  • α = 97.425 (3)°

  • β = 102.878 (3)°

  • γ = 105.391 (3)°

  • V = 1337.29 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 123 K

  • 0.62 × 0.19 × 0.07 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan [CrysAlis RED (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Oxfordshire, England.]), based on expressions derived from Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.755, Tmax = 0.967

  • 10254 measured reflections

  • 6125 independent reflections

  • 5231 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.090

  • S = 1.03

  • 6125 reflections

  • 336 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯Cl2 0.99 2.66 3.180 (3) 113
C14—H14B⋯O4 0.99 2.50 3.166 (3) 125
C17—H17A⋯O2i 0.95 2.47 3.3943 (18) 166
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many phenolic or polyphenolic compounds have been reported to have a wide range of biological activities such as antioxidant (Amorati et al., 2003; Torres de Pinedo et al., 2007; Leopoldini et al., 2011), anti-inflammatory (Leiro et al., 2011), chemoprevention (Link et al., 2010), antibacterial (Daglia, 2011), anti-carcinogenic and anti-tumor (Bai et al., 2003), and antiviral (Song et al., 2005) activities. The most active antioxidants typically comprise sterically hindered phenols and secondary aromatic amines (Rabek, 1990; Pospisil et al., 2003; Wolf & Kaul, 1992; Thapa et al., 2012). In addition, phenols have been utilized extensively for food preservation. Synthetic phenolic antioxidants, such as butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA) or butylated hydroxyquinone (TBHQ) possess good antioxidant capacity (Omura, 1995). The main structural feature responsible for the anti-oxidative and free radical scavenging activity of phenolic derivatives is the phenolic hydroxyl group. Phenols are able of donating the hydrogen atom of the phenolic OH to the free radicals, thus stopping the propagation chain during the oxidation process (Kumar & Naik, 2010; Findik, et al., 2011). In view of the importance of such phenolate compounds the structure of 2,2'-((2-(1,3-bis(2,4-dichloro-6-(diethoxymethyl)phenoxy)propan-2-ylidene) propane-1,3-diyl)bis(oxy))bis(1,5-dichloro-3-(diethoxymethyl)benzene) was determined.

The title compound, (Fig. 1), lies on an inversion centre, giving one half-molecule per asymmetric unit which passes through middle point of the C13=C13A double bond of the aliphatic chain. Atoms C12 C13 and C14 atoms show disorder and were modelled with two different orientations and with site occupancies of 0.828 (4):0.172 (4). The (diethoxymethyl)benzene groups adopts an all-trans conformation and the molecular structure is not planar. The O3 C12 C13 C14 and C12 C13 C14 O6 torsion angles are 68.6 (2) ° and 82.5 (2) ° and the dihedral angle between the planes of the benzene rings (C1/C6 to C15/C20) is 52.80 (6) ° [for the non-H atoms, maximum deviation = 0.007 (1) Å for C2]. Bond lengths and angles can be regarded as normal for such structures (Öztürk Yildirim et al. 2012; Allen, 2002). No classical hydrogen bonds are observed in the crystal structure.

Related literature top

For anti-oxidant, anti-inflammatory, chemopreventive, antibacterial, anticarcinogenic, antitumor and antiviral properties of sterically hindered phenols and secondary aromatic amines, see: Amorati et al. (2003); Torres de Pinedo et al. (2007); Leopoldini et al. (2011); Leiro et al. (2011); Link et al. (2010); Daglia (2011); Bai et al., (2003); Song et al. (2005); Rabek (1990); Pospisil et al. (2003); Wolf & Kaul (1992); Thapa et al. (2012). For synthetic phenolic antioxidants, such as butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA) or butylated hydroxyquinone (TBHQ), which possess good anti-oxidant capacity, see: Omura (1995). For phenols capable of propagation termination due to the donation of the hydrogen atom of the phenolic OH to the free radicals, see: Kumar & Naik (2010); Findik et al. (2011). For bond lengths of structurally related molecules, see: Öztürk Yildirim et al. (2012). For a description of the Cambridge structural Database, see: Allen (2002). For details of the synthesis, see: Er et al. (2009).

Experimental top

Title compound was published methods (Er et al., 2009). Crystals were grown by slow evaporation of an dimethylformamide/alcohol mixed solution.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.95–0.99 Å and refined using a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the methyl groups and 1.2Ueq(C) for the other H atoms]. The molecules are disordered about an inversion center, therefore, the O1—C12/C12—C13 and C13—C14/C14—O1 distances are average values. The SIMU and DELU constraint instructions in SHELXL97 were used atom C13 in order to model the disorder properly during the refinement. For C13B the ISOR instruction was used as otherwise it went non-positive definite. The displacement parameters of the pairs C12/C12B and C14/C14B were set equal using the EADP instruction.

Structure description top

Many phenolic or polyphenolic compounds have been reported to have a wide range of biological activities such as antioxidant (Amorati et al., 2003; Torres de Pinedo et al., 2007; Leopoldini et al., 2011), anti-inflammatory (Leiro et al., 2011), chemoprevention (Link et al., 2010), antibacterial (Daglia, 2011), anti-carcinogenic and anti-tumor (Bai et al., 2003), and antiviral (Song et al., 2005) activities. The most active antioxidants typically comprise sterically hindered phenols and secondary aromatic amines (Rabek, 1990; Pospisil et al., 2003; Wolf & Kaul, 1992; Thapa et al., 2012). In addition, phenols have been utilized extensively for food preservation. Synthetic phenolic antioxidants, such as butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA) or butylated hydroxyquinone (TBHQ) possess good antioxidant capacity (Omura, 1995). The main structural feature responsible for the anti-oxidative and free radical scavenging activity of phenolic derivatives is the phenolic hydroxyl group. Phenols are able of donating the hydrogen atom of the phenolic OH to the free radicals, thus stopping the propagation chain during the oxidation process (Kumar & Naik, 2010; Findik, et al., 2011). In view of the importance of such phenolate compounds the structure of 2,2'-((2-(1,3-bis(2,4-dichloro-6-(diethoxymethyl)phenoxy)propan-2-ylidene) propane-1,3-diyl)bis(oxy))bis(1,5-dichloro-3-(diethoxymethyl)benzene) was determined.

The title compound, (Fig. 1), lies on an inversion centre, giving one half-molecule per asymmetric unit which passes through middle point of the C13=C13A double bond of the aliphatic chain. Atoms C12 C13 and C14 atoms show disorder and were modelled with two different orientations and with site occupancies of 0.828 (4):0.172 (4). The (diethoxymethyl)benzene groups adopts an all-trans conformation and the molecular structure is not planar. The O3 C12 C13 C14 and C12 C13 C14 O6 torsion angles are 68.6 (2) ° and 82.5 (2) ° and the dihedral angle between the planes of the benzene rings (C1/C6 to C15/C20) is 52.80 (6) ° [for the non-H atoms, maximum deviation = 0.007 (1) Å for C2]. Bond lengths and angles can be regarded as normal for such structures (Öztürk Yildirim et al. 2012; Allen, 2002). No classical hydrogen bonds are observed in the crystal structure.

For anti-oxidant, anti-inflammatory, chemopreventive, antibacterial, anticarcinogenic, antitumor and antiviral properties of sterically hindered phenols and secondary aromatic amines, see: Amorati et al. (2003); Torres de Pinedo et al. (2007); Leopoldini et al. (2011); Leiro et al. (2011); Link et al. (2010); Daglia (2011); Bai et al., (2003); Song et al. (2005); Rabek (1990); Pospisil et al. (2003); Wolf & Kaul (1992); Thapa et al. (2012). For synthetic phenolic antioxidants, such as butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA) or butylated hydroxyquinone (TBHQ), which possess good anti-oxidant capacity, see: Omura (1995). For phenols capable of propagation termination due to the donation of the hydrogen atom of the phenolic OH to the free radicals, see: Kumar & Naik (2010); Findik et al. (2011). For bond lengths of structurally related molecules, see: Öztürk Yildirim et al. (2012). For a description of the Cambridge structural Database, see: Allen (2002). For details of the synthesis, see: Er et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level [symmetry code: (A) = 1 - x, 1 - y, 1 - z].
1,1,2,2-Tetrakis[2,4-dichloro-6-(diethoxymethyl)phenoxymethyl]ethene top
Crystal data top
C50H60Cl8O12Z = 1
Mr = 1136.58F(000) = 592
Triclinic, P1Dx = 1.411 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0626 (3) ÅCell parameters from 4477 reflections
b = 12.8693 (5) Åθ = 3.0–29.4°
c = 13.9968 (6) ŵ = 0.48 mm1
α = 97.425 (3)°T = 123 K
β = 102.878 (3)°Plate, colorless
γ = 105.391 (3)°0.62 × 0.19 × 0.07 mm
V = 1337.29 (9) Å3
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
6125 independent reflections
Radiation source: Enhance (Cu) X-ray Source5231 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 10.5081 pixels mm-1θmax = 29.5°, θmin = 3.1°
ω scansh = 811
Absorption correction: multi-scan
[CrysAlis RED (Agilent, 2011), based on expressions derived from Clark & Reid (1995)]
k = 1717
Tmin = 0.755, Tmax = 0.967l = 1817
10254 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.6175P]
where P = (Fo2 + 2Fc2)/3
6125 reflections(Δ/σ)max = 0.001
336 parametersΔρmax = 0.45 e Å3
12 restraintsΔρmin = 0.39 e Å3
Crystal data top
C50H60Cl8O12γ = 105.391 (3)°
Mr = 1136.58V = 1337.29 (9) Å3
Triclinic, P1Z = 1
a = 8.0626 (3) ÅMo Kα radiation
b = 12.8693 (5) ŵ = 0.48 mm1
c = 13.9968 (6) ÅT = 123 K
α = 97.425 (3)°0.62 × 0.19 × 0.07 mm
β = 102.878 (3)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
6125 independent reflections
Absorption correction: multi-scan
[CrysAlis RED (Agilent, 2011), based on expressions derived from Clark & Reid (1995)]
5231 reflections with I > 2σ(I)
Tmin = 0.755, Tmax = 0.967Rint = 0.020
10254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03812 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
6125 reflectionsΔρmin = 0.39 e Å3
336 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED, (Agilent, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.23088 (6)0.18327 (3)0.05330 (3)0.03455 (11)
Cl20.27679 (5)0.55748 (3)0.14470 (3)0.03249 (10)
Cl31.09088 (5)0.67178 (3)0.63733 (3)0.02509 (9)
Cl41.49291 (5)0.83171 (4)0.39813 (3)0.03397 (10)
O10.06285 (14)0.10425 (9)0.28297 (8)0.0261 (3)
O20.36555 (14)0.17140 (9)0.28761 (8)0.0224 (2)
O30.38227 (14)0.41369 (8)0.29369 (8)0.0246 (2)
O40.69832 (14)0.58377 (9)0.23343 (8)0.0247 (2)
O50.83793 (15)0.75433 (10)0.20043 (8)0.0284 (3)
O60.78680 (12)0.65010 (8)0.46395 (8)0.0199 (2)
C10.23412 (18)0.36585 (12)0.21470 (11)0.0181 (3)
C20.17432 (19)0.41902 (12)0.13926 (11)0.0207 (3)
C30.03219 (19)0.36340 (13)0.05666 (12)0.0219 (3)
H3A0.00640.40010.00530.026*
C40.05207 (19)0.25336 (13)0.05072 (11)0.0212 (3)
C50.00081 (19)0.19851 (12)0.12452 (11)0.0204 (3)
H5A0.06060.12310.11930.024*
C60.14491 (18)0.25450 (12)0.20676 (11)0.0177 (3)
C70.20623 (19)0.19703 (12)0.29041 (11)0.0203 (3)
H7A0.22880.24740.35580.024*
C80.0878 (2)0.05009 (16)0.36587 (14)0.0360 (4)
H8A0.15260.10480.42860.043*
H8B0.15810.00080.35570.043*
C90.0953 (2)0.01277 (15)0.37163 (14)0.0366 (4)
H9A0.08380.06230.41860.055*
H9B0.16640.05590.30520.055*
H9C0.15450.03910.39480.055*
C100.3566 (2)0.10171 (17)0.19734 (14)0.0384 (4)
H10A0.33980.14030.14080.046*
H10B0.25380.03420.18280.046*
C110.5243 (3)0.07216 (18)0.20881 (18)0.0505 (6)
H11A0.52350.03020.14500.076*
H11B0.53400.02740.26010.076*
H11C0.62630.13940.22890.076*
C120.3929 (3)0.5092 (2)0.36286 (19)0.0173 (5)0.828 (3)
H12A0.27430.50510.37380.021*0.828 (3)
H12B0.43600.57680.33740.021*0.828 (3)
C130.5229 (2)0.50930 (13)0.45844 (14)0.0173 (4)0.828 (3)
C140.7108 (3)0.5318 (2)0.44948 (19)0.0156 (5)0.828 (3)
H14A0.78170.50290.50080.019*0.828 (3)
H14B0.71090.49570.38260.019*0.828 (3)
C12B0.3501 (18)0.5066 (13)0.3681 (11)0.0173 (5)0.172 (3)
H12C0.41650.58020.36010.021*0.172 (3)
H12D0.22150.50030.35180.021*0.172 (3)
C13B0.5857 (9)0.5064 (6)0.5228 (6)0.0069 (12)0.172 (3)
C14B0.7384 (19)0.5280 (13)0.4666 (12)0.0156 (5)0.172 (3)
H14C0.84340.50960.50310.019*0.172 (3)
H14D0.69460.48310.39790.019*0.172 (3)
C150.95214 (18)0.68454 (11)0.44614 (11)0.0173 (3)
C161.10747 (19)0.70221 (12)0.52180 (11)0.0184 (3)
C171.27632 (19)0.74633 (12)0.50857 (12)0.0212 (3)
H17A1.38170.75820.56070.025*
C181.28421 (19)0.77210 (12)0.41639 (12)0.0217 (3)
C191.13317 (19)0.75490 (13)0.33920 (12)0.0223 (3)
H19A1.14370.77290.27670.027*
C200.96562 (19)0.71107 (12)0.35371 (11)0.0193 (3)
C210.7944 (2)0.69472 (13)0.27337 (12)0.0225 (3)
H21A0.71650.72840.30520.027*
C220.7855 (2)0.52048 (15)0.18194 (14)0.0321 (4)
H22A0.88990.51210.22950.039*
H22B0.82720.55740.13000.039*
C230.6502 (3)0.40991 (17)0.13475 (16)0.0435 (5)
H23A0.70470.36380.09860.065*
H23B0.54780.41950.08800.065*
H23C0.61010.37440.18700.065*
C240.6835 (2)0.76496 (16)0.13328 (14)0.0350 (4)
H24A0.60440.78680.17140.042*
H24B0.61570.69380.08710.042*
C250.7450 (3)0.85117 (19)0.07503 (15)0.0456 (5)
H25A0.64090.86120.03000.068*
H25B0.81980.82760.03570.068*
H25C0.81450.92090.12140.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0297 (2)0.0299 (2)0.0292 (2)0.00642 (17)0.01299 (17)0.00331 (17)
Cl20.02656 (19)0.02333 (18)0.0371 (2)0.00010 (16)0.00738 (17)0.01357 (17)
Cl30.02481 (17)0.03109 (19)0.02040 (18)0.00847 (15)0.00794 (14)0.00553 (15)
Cl40.01604 (16)0.0430 (2)0.0429 (2)0.00276 (16)0.01405 (16)0.01116 (19)
O10.0259 (5)0.0241 (5)0.0267 (6)0.0042 (5)0.0045 (5)0.0113 (5)
O20.0229 (5)0.0233 (5)0.0196 (5)0.0105 (4)0.0005 (4)0.0010 (4)
O30.0228 (5)0.0194 (5)0.0229 (6)0.0075 (4)0.0080 (4)0.0036 (4)
O40.0190 (5)0.0270 (5)0.0270 (6)0.0078 (4)0.0050 (4)0.0022 (5)
O50.0246 (5)0.0366 (6)0.0276 (6)0.0123 (5)0.0057 (5)0.0150 (5)
O60.0138 (4)0.0155 (5)0.0317 (6)0.0032 (4)0.0103 (4)0.0041 (4)
C10.0154 (6)0.0211 (7)0.0152 (7)0.0064 (6)0.0001 (5)0.0000 (6)
C20.0178 (7)0.0185 (7)0.0231 (8)0.0041 (6)0.0016 (6)0.0043 (6)
C30.0193 (7)0.0258 (7)0.0207 (7)0.0094 (6)0.0016 (6)0.0064 (6)
C40.0170 (7)0.0249 (7)0.0169 (7)0.0075 (6)0.0024 (6)0.0030 (6)
C50.0194 (7)0.0183 (7)0.0214 (7)0.0058 (6)0.0027 (6)0.0012 (6)
C60.0173 (6)0.0204 (7)0.0170 (7)0.0084 (6)0.0053 (5)0.0026 (6)
C70.0210 (7)0.0197 (7)0.0194 (7)0.0064 (6)0.0040 (6)0.0030 (6)
C80.0341 (9)0.0397 (9)0.0376 (10)0.0102 (8)0.0088 (8)0.0233 (8)
C90.0396 (10)0.0340 (9)0.0291 (9)0.0006 (8)0.0074 (8)0.0096 (8)
C100.0356 (9)0.0479 (11)0.0287 (9)0.0231 (8)0.0003 (8)0.0092 (8)
C110.0298 (9)0.0471 (12)0.0633 (14)0.0164 (9)0.0021 (9)0.0197 (11)
C120.0173 (11)0.0176 (7)0.0158 (8)0.0066 (8)0.0015 (8)0.0017 (6)
C130.0155 (8)0.0130 (8)0.0214 (10)0.0031 (6)0.0036 (7)0.0016 (7)
C140.0124 (9)0.0145 (7)0.0211 (11)0.0048 (7)0.0049 (7)0.0048 (7)
C12B0.0173 (11)0.0176 (7)0.0158 (8)0.0066 (8)0.0015 (8)0.0017 (6)
C13B0.0069 (14)0.0069 (14)0.0065 (15)0.0017 (9)0.0020 (9)0.0011 (9)
C14B0.0124 (9)0.0145 (7)0.0211 (11)0.0048 (7)0.0049 (7)0.0048 (7)
C150.0140 (6)0.0137 (6)0.0255 (7)0.0041 (5)0.0082 (6)0.0033 (6)
C160.0190 (6)0.0173 (7)0.0199 (7)0.0055 (5)0.0077 (6)0.0031 (6)
C170.0154 (6)0.0215 (7)0.0255 (8)0.0061 (6)0.0042 (6)0.0017 (6)
C180.0137 (6)0.0210 (7)0.0314 (8)0.0031 (6)0.0107 (6)0.0055 (6)
C190.0208 (7)0.0258 (7)0.0240 (8)0.0080 (6)0.0097 (6)0.0095 (6)
C200.0170 (6)0.0182 (7)0.0234 (7)0.0064 (6)0.0053 (6)0.0042 (6)
C210.0181 (7)0.0258 (7)0.0246 (8)0.0070 (6)0.0058 (6)0.0082 (6)
C220.0277 (8)0.0348 (9)0.0354 (9)0.0118 (7)0.0120 (7)0.0013 (8)
C230.0336 (9)0.0421 (11)0.0464 (12)0.0112 (8)0.0071 (9)0.0131 (9)
C240.0313 (9)0.0422 (10)0.0293 (9)0.0134 (8)0.0009 (7)0.0109 (8)
C250.0484 (11)0.0707 (13)0.0388 (10)0.0367 (10)0.0196 (9)0.0309 (10)
Geometric parameters (Å, º) top
Cl1—C41.7454 (15)C11—H11C0.9800
Cl2—C21.7376 (15)C12—C131.504 (3)
Cl3—C161.7374 (15)C12—H12A0.9900
Cl4—C181.7442 (14)C12—H12B0.9900
O1—C71.3980 (17)C13—C13i1.328 (4)
O1—C81.433 (2)C13—C141.502 (3)
O2—C71.4158 (18)C14—H14A0.9900
O2—C101.428 (2)C14—H14B0.9900
O3—C11.3686 (17)C12B—C13Bi1.546 (17)
O3—C121.434 (3)C12B—H12C0.9900
O3—C12B1.595 (15)C12B—H12D0.9900
O4—C211.4018 (18)C13B—C13Bi1.342 (15)
O4—C221.433 (2)C13B—C12Bi1.546 (17)
O5—C211.4047 (19)C13B—C14B1.587 (18)
O5—C241.433 (2)C14B—H14C0.9900
O6—C151.3779 (16)C14B—H14D0.9900
O6—C141.451 (3)C15—C161.392 (2)
O6—C14B1.522 (16)C15—C201.400 (2)
C1—C21.397 (2)C16—C171.393 (2)
C1—C61.400 (2)C17—C181.384 (2)
C2—C31.386 (2)C17—H17A0.9500
C3—C41.381 (2)C18—C191.381 (2)
C3—H3A0.9500C19—C201.390 (2)
C4—C51.378 (2)C19—H19A0.9500
C5—C61.393 (2)C20—C211.519 (2)
C5—H5A0.9500C21—H21A1.0000
C6—C71.524 (2)C22—C231.504 (3)
C7—H7A1.0000C22—H22A0.9900
C8—C91.509 (2)C22—H22B0.9900
C8—H8A0.9900C23—H23A0.9800
C8—H8B0.9900C23—H23B0.9800
C9—H9A0.9800C23—H23C0.9800
C9—H9B0.9800C24—C251.505 (3)
C9—H9C0.9800C24—H24A0.9900
C10—C111.479 (3)C24—H24B0.9900
C10—H10A0.9900C25—H25A0.9800
C10—H10B0.9900C25—H25B0.9800
C11—H11A0.9800C25—H25C0.9800
C11—H11B0.9800
C7—O1—C8113.60 (12)C13—C14—H14A110.2
C7—O2—C10115.03 (12)O6—C14—H14B110.2
C1—O3—C12120.44 (13)C13—C14—H14B110.2
C1—O3—C12B110.8 (5)H14A—C14—H14B108.5
C21—O4—C22116.34 (12)C13Bi—C12B—O3109.8 (10)
C21—O5—C24112.49 (12)C13Bi—C12B—H12C109.7
C15—O6—C14114.90 (14)O3—C12B—H12C109.7
C15—O6—C14B109.8 (6)C13Bi—C12B—H12D109.7
O3—C1—C2124.19 (13)O3—C12B—H12D109.7
O3—C1—C6117.07 (13)H12C—C12B—H12D108.2
C2—C1—C6118.61 (13)C13Bi—C13B—C12Bi123.3 (10)
C3—C2—C1121.46 (14)C13Bi—C13B—C14B122.6 (10)
C3—C2—Cl2117.32 (12)C12Bi—C13B—C14B113.9 (9)
C1—C2—Cl2121.21 (11)O6—C14B—C13B105.5 (10)
C4—C3—C2118.47 (14)O6—C14B—H14C110.6
C4—C3—H3A120.8C13B—C14B—H14C110.6
C2—C3—H3A120.8O6—C14B—H14D110.6
C5—C4—C3121.80 (14)C13B—C14B—H14D110.6
C5—C4—Cl1119.71 (12)H14C—C14B—H14D108.8
C3—C4—Cl1118.50 (12)O6—C15—C16120.73 (13)
C4—C5—C6119.47 (14)O6—C15—C20119.87 (13)
C4—C5—H5A120.3C16—C15—C20119.18 (12)
C6—C5—H5A120.3C15—C16—C17121.93 (14)
C5—C6—C1120.17 (13)C15—C16—Cl3119.22 (11)
C5—C6—C7121.03 (13)C17—C16—Cl3118.82 (11)
C1—C6—C7118.79 (12)C18—C17—C16117.21 (14)
O1—C7—O2112.96 (12)C18—C17—H17A121.4
O1—C7—C6106.45 (11)C16—C17—H17A121.4
O2—C7—C6113.03 (12)C19—C18—C17122.55 (13)
O1—C7—H7A108.1C19—C18—Cl4118.80 (12)
O2—C7—H7A108.1C17—C18—Cl4118.63 (11)
C6—C7—H7A108.1C18—C19—C20119.52 (14)
O1—C8—C9107.14 (14)C18—C19—H19A120.2
O1—C8—H8A110.3C20—C19—H19A120.2
C9—C8—H8A110.3C19—C20—C15119.61 (13)
O1—C8—H8B110.3C19—C20—C21122.06 (13)
C9—C8—H8B110.3C15—C20—C21118.30 (12)
H8A—C8—H8B108.5O4—C21—O5113.06 (13)
C8—C9—H9A109.5O4—C21—C20113.33 (12)
C8—C9—H9B109.5O5—C21—C20108.04 (12)
H9A—C9—H9B109.5O4—C21—H21A107.4
C8—C9—H9C109.5O5—C21—H21A107.4
H9A—C9—H9C109.5C20—C21—H21A107.4
H9B—C9—H9C109.5O4—C22—C23106.83 (14)
O2—C10—C11109.21 (15)O4—C22—H22A110.4
O2—C10—H10A109.8C23—C22—H22A110.4
C11—C10—H10A109.8O4—C22—H22B110.4
O2—C10—H10B109.8C23—C22—H22B110.4
C11—C10—H10B109.8H22A—C22—H22B108.6
H10A—C10—H10B108.3C22—C23—H23A109.5
C10—C11—H11A109.5C22—C23—H23B109.5
C10—C11—H11B109.5H23A—C23—H23B109.5
H11A—C11—H11B109.5C22—C23—H23C109.5
C10—C11—H11C109.5H23A—C23—H23C109.5
H11A—C11—H11C109.5H23B—C23—H23C109.5
H11B—C11—H11C109.5O5—C24—C25108.28 (14)
O3—C12—C13105.59 (18)O5—C24—H24A110.0
O3—C12—H12A110.6C25—C24—H24A110.0
C13—C12—H12A110.6O5—C24—H24B110.0
O3—C12—H12B110.6C25—C24—H24B110.0
C13—C12—H12B110.6H24A—C24—H24B108.4
H12A—C12—H12B108.8C24—C25—H25A109.5
C13i—C13—C14123.5 (2)C24—C25—H25B109.5
C13i—C13—C12123.9 (2)H25A—C25—H25B109.5
C14—C13—C12112.58 (17)C24—C25—H25C109.5
O6—C14—C13107.35 (19)H25A—C25—H25C109.5
O6—C14—H14A110.2H25B—C25—H25C109.5
C12—O3—C1—C260.8 (2)C12—C13—C14—O682.5 (2)
C12B—O3—C1—C269.3 (6)C1—O3—C12B—C13Bi133.7 (6)
C12—O3—C1—C6123.32 (17)C12—O3—C12B—C13Bi83 (3)
C12B—O3—C1—C6114.9 (6)C15—O6—C14B—C13B161.1 (6)
O3—C1—C2—C3174.42 (14)C14—O6—C14B—C13B80 (4)
C6—C1—C2—C31.4 (2)C13Bi—C13B—C14B—O680.1 (12)
O3—C1—C2—Cl25.0 (2)C12Bi—C13B—C14B—O6104.0 (10)
C6—C1—C2—Cl2179.27 (11)C14—O6—C15—C1687.63 (18)
C1—C2—C3—C40.9 (2)C14B—O6—C15—C1676.5 (6)
Cl2—C2—C3—C4179.74 (12)C14—O6—C15—C2097.79 (17)
C2—C3—C4—C50.4 (2)C14B—O6—C15—C20108.9 (6)
C2—C3—C4—Cl1179.94 (12)O6—C15—C16—C17174.14 (13)
C3—C4—C5—C61.1 (2)C20—C15—C16—C170.5 (2)
Cl1—C4—C5—C6179.24 (12)O6—C15—C16—Cl34.17 (19)
C4—C5—C6—C10.6 (2)C20—C15—C16—Cl3178.78 (11)
C4—C5—C6—C7179.39 (14)C15—C16—C17—C180.1 (2)
O3—C1—C6—C5175.45 (13)Cl3—C16—C17—C18178.42 (11)
C2—C1—C6—C50.6 (2)C16—C17—C18—C190.5 (2)
O3—C1—C6—C75.7 (2)C16—C17—C18—Cl4177.93 (11)
C2—C1—C6—C7178.22 (14)C17—C18—C19—C200.6 (2)
C8—O1—C7—O264.73 (17)Cl4—C18—C19—C20177.74 (12)
C8—O1—C7—C6170.66 (13)C18—C19—C20—C150.3 (2)
C10—O2—C7—O161.96 (17)C18—C19—C20—C21177.35 (14)
C10—O2—C7—C658.98 (17)O6—C15—C20—C19174.37 (13)
C5—C6—C7—O119.60 (19)C16—C15—C20—C190.3 (2)
C1—C6—C7—O1159.23 (13)O6—C15—C20—C213.3 (2)
C5—C6—C7—O2104.97 (15)C16—C15—C20—C21177.98 (13)
C1—C6—C7—O276.20 (17)C22—O4—C21—O560.38 (17)
C7—O1—C8—C9155.99 (14)C22—O4—C21—C2063.00 (18)
C7—O2—C10—C11173.98 (16)C24—O5—C21—O466.86 (17)
C1—O3—C12—C13155.76 (13)C24—O5—C21—C20166.88 (13)
C12B—O3—C12—C13116 (3)C19—C20—C21—O4111.86 (16)
O3—C12—C13—C13i110.9 (2)C15—C20—C21—O470.51 (18)
O3—C12—C13—C1468.6 (2)C19—C20—C21—O514.2 (2)
C15—O6—C14—C13172.50 (14)C15—C20—C21—O5163.40 (13)
C14B—O6—C14—C13122 (4)C21—O4—C22—C23172.83 (15)
C13i—C13—C14—O698.1 (3)C21—O5—C24—C25166.58 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···Cl20.992.663.180 (3)113
C14—H14B···O30.992.532.918 (2)103
C14—H14B···O40.992.503.166 (3)125
C17—H17A···O2ii0.952.473.3943 (18)166
Symmetry code: (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC50H60Cl8O12
Mr1136.58
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)8.0626 (3), 12.8693 (5), 13.9968 (6)
α, β, γ (°)97.425 (3), 102.878 (3), 105.391 (3)
V3)1337.29 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.62 × 0.19 × 0.07
Data collection
DiffractometerAgilent Xcalibur (Ruby, Gemini)
Absorption correctionMulti-scan
[CrysAlis RED (Agilent, 2011), based on expressions derived from Clark & Reid (1995)]
Tmin, Tmax0.755, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
10254, 6125, 5231
Rint0.020
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.090, 1.03
No. of reflections6125
No. of parameters336
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.39

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···Cl20.992.663.180 (3)112.7
C14—H14B···O30.992.532.918 (2)103.2
C14—H14B···O40.992.503.166 (3)124.7
C17—H17A···O2i0.952.473.3943 (18)165.8
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

References

First citationAgilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Oxfordshire, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAmorati, R., Lucarini, M., Mugnaini, V. & Pedulli, G. F. (2003). J. Org. Chem. 68, 5198–5204.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBai, X., Cerimele, F., Fukai, M. U., Waqas, M., Campbell, P. M., Govindarajan, B., Der, C. J., Battle, T., Frank, D. A., Ye, K., Murad, E., Dubiel, W., Soff, G. & Arbiser, J. L. (2003). J. Biol. Chem. 278, 35501–35507.  Web of Science CrossRef PubMed CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDaglia, M. (2011). Curr. Opin. Biotechnol. 23, 1–8.  Google Scholar
First citationEr, M., Ünver, Y., Sancak, K., Degirmencioglu, I. & Karaoglu, S. A. (2009). Arkivoc, II, 149–167.  CrossRef Google Scholar
First citationFindik, E., Ceylan, M. & Elmastas, M. (2011). Eur. J. Med. Chem. 46, 4618–4624.  Web of Science CAS PubMed Google Scholar
First citationKumar, H. V. & Naik, N. (2010). Eur. J. Med. Chem. 45, 2–10.  PubMed CAS Google Scholar
First citationLeiro, J. M., Varela, M., Piazzon, M. C., Arranz, J. A., Noya, M. & Lamas, J. (2011). Mol. Immunol. 47, 1114–1120.  Web of Science CrossRef Google Scholar
First citationLeopoldini, M., Russo, N. & Toscano, M. (2011). Food Chem. 125, 288–306.  Web of Science CrossRef CAS Google Scholar
First citationLink, A., Balaguer, F. & Goel, A. (2010). Biochem. Pharmacol. 80, 1771–1792.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOmura, K. (1995). J. Am. Oil Chem. Soc. 72, 1565–1570.  CrossRef CAS Web of Science Google Scholar
First citationÖztürk Yildirim, S., Butcher, R. J., Köysal, Y. & Birinci, E. (2012). Acta Cryst. E68, o2633.  CSD CrossRef IUCr Journals Google Scholar
First citationPospisil, J., Horak, Z., Pilar, J., Billingham, N. C., Zweifel, H. & Nespurek, S. (2003). Polym. Degrad. Stab. 82, 145–162.  CAS Google Scholar
First citationRabek, J. F. (1990). In Photostabilization of Polymers-Principles and Applications. New Yor: Elsevier Applied Science.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, J. L., Lee, K. H. & Seong, B. L. (2005). Antiviral Res. 68, 66–74.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThapa, P., Karki, R., Yun, M., Kadayat, T. M., Lee, E., Kwon, H. B., Na, Y., Cho, W.-J., Kim, N. D., Jeong, B.-S., Kwon, Y. & Lee, E.-S. (2012). Eur. J. Med. Chem. 52, 123–136.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTorres de Pinedo, A., Penalver, P. & Morales, J. C. (2007). Food Chem. 103, 55–61.  Web of Science CrossRef CAS Google Scholar
First citationWolf, R. & Kaul, B. L. (1992). Editors. Plastics, Additives, in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A20, pp. 459–507. Weinheim: VCH Verlag.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds