organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(5-Iodo­thio­phen-2-yl)-3-(3,4,5-trimeth­­oxy­phen­yl)prop-2-en-1-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 5 September 2012; accepted 6 September 2012; online 12 September 2012)

In the title compound, C16H15IO4S, the dihedral angle between the thio­phene and benzene rings is 11.50 (2)°. The methoxy O atoms deviate by 0.0060 (2), −0.1319 (2) and 0.0426 (2) Å from the phenyl ring plane. The crystal packing features C—H⋯O hydrogen bonds, which link the molecules into C(11) chains propagating in [100xxx].

Related literature

For the biological activity of chalcones, see: Di Carlo et al. (1999[Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65,337-353.]); Lin et al. (2002[Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795-2802.]). For a related structure, see Ranjith et al. (2010[Ranjith, S., Thirunarayanan, A., Raja, S., Rajakumar, P. & SubbiahPandi, A. (2010). Acta Cryst. E66, o2261-o2262.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15IO4S

  • Mr = 430.25

  • Orthorhombic, P b c a

  • a = 17.2328 (12) Å

  • b = 8.1885 (6) Å

  • c = 23.7049 (17) Å

  • V = 3345.0 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.05 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.578, Tmax = 0.684

  • 17211 measured reflections

  • 4092 independent reflections

  • 3263 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.062

  • S = 1.06

  • 4092 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O2i 0.93 2.45 3.341 (3) 159
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP 3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones are one of the major classes of natural products with widespread distribution in fruits, vegetables, spices, tea and soy based foodstuff and have recently been the subject of great interest because of their interesting pharmacological activities (Di Carlo et al., 1999). Chalcones and flavonoids as anti-tuberculosis agents are also reported (Lin et al., 2002). Against this background and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

In the title compound, the dihedral angle between the thiophene ring (S1/C13/C14/C15/C16) and the three methoxy substituted phenyl ring is 11.50 (2)°. The oxygen atoms O2, O3 & O4 attached with the phenyl ring (C4/C5/C6/C7/C8/C9) deviate by 0.0060 (2)Å, -0.1319 (2)Å and 0.0426 (2)Å, respectively. The iodine atom (I1) attached with the thiophene ring deviates by a value of -0.0195 (1)Å. The crystal packing is stabilized by intermolecular C–H···O hydrogen bonds.

Related literature top

For the biological activity of chalcones, see: Di Carlo et al. (1999); Lin et al. (2002). For related structures, see Ranjith et al. (2010).

Experimental top

The iodo chalcone was prepared by condensation of 2-acetyl,5-iodo-thiophene (1 equiv) with 3,4,5-trimethoxybenzaldehyde (1 equiv) with 10% NaOH solution (10 mL) in ethyl alcohol (100 mL) stirred at room temperature for 12 h. The reaction mixture was poured into ice water (100 ml) and acidified with dilute HCl. The precipitated product was filtered and washed many times with water and dried to give the crude product. This was recrystallised in methyl alcohol to afford the pure iodo chalcone in dark brown colour. Yield: 82%

Refinement top

Hydrogen atoms were placed in calculated positions with Caromatic—H = 0.93 Å and Cmethyl—H = 0.96Å and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(Cmethyl). The methyl groups were allowed to rotate but not to tip.

Structure description top

Chalcones are one of the major classes of natural products with widespread distribution in fruits, vegetables, spices, tea and soy based foodstuff and have recently been the subject of great interest because of their interesting pharmacological activities (Di Carlo et al., 1999). Chalcones and flavonoids as anti-tuberculosis agents are also reported (Lin et al., 2002). Against this background and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

In the title compound, the dihedral angle between the thiophene ring (S1/C13/C14/C15/C16) and the three methoxy substituted phenyl ring is 11.50 (2)°. The oxygen atoms O2, O3 & O4 attached with the phenyl ring (C4/C5/C6/C7/C8/C9) deviate by 0.0060 (2)Å, -0.1319 (2)Å and 0.0426 (2)Å, respectively. The iodine atom (I1) attached with the thiophene ring deviates by a value of -0.0195 (1)Å. The crystal packing is stabilized by intermolecular C–H···O hydrogen bonds.

For the biological activity of chalcones, see: Di Carlo et al. (1999); Lin et al. (2002). For related structures, see Ranjith et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP 3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis. H-atoms not involved in H-bonds have been excluded for clarity.
(E)-1-(5-Iodothiophen-2-yl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H15IO4SF(000) = 1696
Mr = 430.25Dx = 1.709 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4092 reflections
a = 17.2328 (12) Åθ = 1.7–28.2°
b = 8.1885 (6) ŵ = 2.05 mm1
c = 23.7049 (17) ÅT = 293 K
V = 3345.0 (4) Å3Block, colourless
Z = 80.30 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII area-detector
diffractometer
4092 independent reflections
Radiation source: fine-focus sealed tube3263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and φ scansθmax = 28.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2212
Tmin = 0.578, Tmax = 0.684k = 810
17211 measured reflectionsl = 2531
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0255P)2 + 1.7451P]
where P = (Fo2 + 2Fc2)/3
4092 reflections(Δ/σ)max = 0.003
202 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C16H15IO4SV = 3345.0 (4) Å3
Mr = 430.25Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.2328 (12) ŵ = 2.05 mm1
b = 8.1885 (6) ÅT = 293 K
c = 23.7049 (17) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII area-detector
diffractometer
4092 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3263 reflections with I > 2σ(I)
Tmin = 0.578, Tmax = 0.684Rint = 0.020
17211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.06Δρmax = 0.45 e Å3
4092 reflectionsΔρmin = 0.51 e Å3
202 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.772746 (8)0.12196 (2)0.038840 (8)0.04680 (7)
S10.58646 (3)0.18751 (8)0.02816 (2)0.04050 (13)
O30.06960 (10)0.0979 (2)0.24845 (7)0.0542 (5)
O20.21744 (11)0.1501 (3)0.27590 (8)0.0596 (5)
O10.41760 (9)0.2434 (2)0.02460 (7)0.0520 (4)
O40.02969 (9)0.0186 (3)0.14688 (8)0.0567 (5)
C80.24287 (13)0.0457 (3)0.13714 (9)0.0390 (5)
C130.51699 (12)0.1111 (3)0.07348 (9)0.0351 (5)
C50.12645 (14)0.0588 (3)0.21007 (9)0.0409 (5)
C40.10723 (13)0.0096 (3)0.15811 (10)0.0407 (5)
C100.30318 (13)0.1074 (3)0.09885 (10)0.0412 (5)
H100.28660.17210.06900.049*
C70.26207 (13)0.0265 (3)0.18831 (9)0.0417 (5)
H70.31390.03970.19820.050*
C150.63199 (13)0.0081 (3)0.10998 (10)0.0422 (5)
H150.66340.05020.13470.051*
C160.65890 (12)0.0932 (3)0.06498 (10)0.0363 (5)
C140.55074 (13)0.0186 (3)0.11476 (9)0.0402 (5)
H140.52270.03240.14330.048*
C60.20423 (15)0.0790 (3)0.22465 (9)0.0421 (5)
C90.16523 (13)0.0637 (3)0.12198 (10)0.0418 (5)
H90.15230.11180.08770.050*
C110.37838 (13)0.0804 (3)0.10249 (10)0.0425 (5)
H110.39630.01240.13110.051*
C120.43547 (13)0.1525 (3)0.06352 (10)0.0384 (5)
C30.00578 (16)0.0851 (4)0.09421 (12)0.0601 (7)
H3A0.02470.19490.09080.090*
H3B0.04990.08520.09220.090*
H3C0.02640.01990.06410.090*
C10.2956 (2)0.1641 (5)0.29405 (13)0.0774 (10)
H1A0.32400.23020.26780.116*
H1B0.29700.21410.33070.116*
H1C0.31860.05750.29600.116*
C20.0342 (2)0.2524 (4)0.24123 (16)0.0881 (12)
H2A0.00990.25720.20480.132*
H2B0.00410.26840.27010.132*
H2C0.07290.33630.24390.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02665 (9)0.04840 (11)0.06536 (12)0.00074 (6)0.00204 (7)0.00160 (8)
S10.0274 (3)0.0511 (3)0.0430 (3)0.0001 (2)0.0009 (2)0.0131 (3)
O30.0510 (10)0.0671 (12)0.0447 (9)0.0104 (9)0.0219 (8)0.0070 (9)
O20.0588 (12)0.0806 (14)0.0393 (9)0.0107 (10)0.0099 (8)0.0124 (9)
O10.0302 (8)0.0679 (11)0.0580 (10)0.0010 (8)0.0014 (7)0.0209 (9)
O40.0311 (9)0.0854 (14)0.0537 (10)0.0024 (9)0.0062 (7)0.0030 (10)
C80.0313 (11)0.0469 (14)0.0387 (11)0.0043 (10)0.0050 (9)0.0018 (11)
C130.0301 (10)0.0406 (12)0.0347 (10)0.0029 (9)0.0028 (8)0.0021 (10)
C50.0411 (12)0.0431 (12)0.0384 (11)0.0027 (10)0.0139 (10)0.0068 (10)
C40.0324 (11)0.0482 (13)0.0413 (12)0.0019 (10)0.0072 (9)0.0078 (10)
C100.0324 (11)0.0512 (14)0.0398 (12)0.0052 (10)0.0022 (9)0.0034 (11)
C70.0333 (12)0.0531 (15)0.0388 (11)0.0007 (10)0.0037 (9)0.0032 (11)
C150.0353 (12)0.0503 (14)0.0411 (12)0.0051 (10)0.0052 (9)0.0055 (11)
C160.0263 (10)0.0400 (12)0.0425 (12)0.0002 (9)0.0035 (9)0.0044 (10)
C140.0364 (12)0.0489 (14)0.0352 (11)0.0006 (10)0.0033 (9)0.0064 (10)
C60.0490 (13)0.0455 (13)0.0318 (11)0.0042 (11)0.0071 (10)0.0035 (10)
C90.0369 (12)0.0500 (13)0.0384 (12)0.0013 (10)0.0043 (9)0.0022 (11)
C110.0340 (12)0.0531 (14)0.0404 (12)0.0008 (10)0.0033 (9)0.0054 (11)
C120.0300 (11)0.0445 (13)0.0405 (11)0.0030 (9)0.0000 (9)0.0003 (10)
C30.0392 (14)0.0727 (19)0.0684 (18)0.0050 (13)0.0044 (13)0.0029 (15)
C10.070 (2)0.111 (3)0.0507 (16)0.024 (2)0.0007 (15)0.0221 (18)
C20.099 (3)0.076 (2)0.089 (2)0.034 (2)0.044 (2)0.0086 (19)
Geometric parameters (Å, º) top
I1—C162.071 (2)C10—H100.9300
S1—C161.708 (2)C7—C61.386 (3)
S1—C131.726 (2)C7—H70.9300
O3—C51.375 (3)C15—C161.356 (3)
O3—C21.414 (3)C15—C141.407 (3)
O2—C61.366 (3)C15—H150.9300
O2—C11.418 (4)C14—H140.9300
O1—C121.225 (3)C9—H90.9300
O4—C41.364 (3)C11—C121.473 (3)
O4—C31.423 (3)C11—H110.9300
C8—C71.390 (3)C3—H3A0.9600
C8—C91.393 (3)C3—H3B0.9600
C8—C101.469 (3)C3—H3C0.9600
C13—C141.367 (3)C1—H1A0.9600
C13—C121.464 (3)C1—H1B0.9600
C5—C41.393 (3)C1—H1C0.9600
C5—C61.394 (4)C2—H2A0.9600
C4—C91.389 (3)C2—H2B0.9600
C10—C111.317 (3)C2—H2C0.9600
C16—S1—C1391.44 (11)O2—C6—C7124.4 (2)
C5—O3—C2115.8 (2)O2—C6—C5115.6 (2)
C6—O2—C1117.5 (2)C7—C6—C5120.0 (2)
C4—O4—C3118.39 (19)C4—C9—C8119.9 (2)
C7—C8—C9119.9 (2)C4—C9—H9120.1
C7—C8—C10121.1 (2)C8—C9—H9120.1
C9—C8—C10118.9 (2)C10—C11—C12123.3 (2)
C14—C13—C12130.7 (2)C10—C11—H11118.4
C14—C13—S1110.55 (16)C12—C11—H11118.4
C12—C13—S1118.78 (16)O1—C12—C13120.2 (2)
O3—C5—C4120.6 (2)O1—C12—C11123.2 (2)
O3—C5—C6119.6 (2)C13—C12—C11116.6 (2)
C4—C5—C6119.7 (2)O4—C3—H3A109.5
O4—C4—C9124.6 (2)O4—C3—H3B109.5
O4—C4—C5115.3 (2)H3A—C3—H3B109.5
C9—C4—C5120.2 (2)O4—C3—H3C109.5
C11—C10—C8126.7 (2)H3A—C3—H3C109.5
C11—C10—H10116.6H3B—C3—H3C109.5
C8—C10—H10116.6O2—C1—H1A109.5
C6—C7—C8120.2 (2)O2—C1—H1B109.5
C6—C7—H7119.9H1A—C1—H1B109.5
C8—C7—H7119.9O2—C1—H1C109.5
C16—C15—C14111.8 (2)H1A—C1—H1C109.5
C16—C15—H15124.1H1B—C1—H1C109.5
C14—C15—H15124.1O3—C2—H2A109.5
C15—C16—S1112.61 (17)O3—C2—H2B109.5
C15—C16—I1128.15 (17)H2A—C2—H2B109.5
S1—C16—I1119.23 (12)O3—C2—H2C109.5
C13—C14—C15113.6 (2)H2A—C2—H2C109.5
C13—C14—H14123.2H2B—C2—H2C109.5
C15—C14—H14123.2
C16—S1—C13—C140.39 (18)C16—C15—C14—C130.0 (3)
C16—S1—C13—C12179.91 (19)C1—O2—C6—C73.0 (4)
C2—O3—C5—C484.7 (3)C1—O2—C6—C5176.2 (3)
C2—O3—C5—C699.0 (3)C8—C7—C6—O2179.5 (2)
C3—O4—C4—C91.2 (4)C8—C7—C6—C50.3 (4)
C3—O4—C4—C5179.1 (2)O3—C5—C6—O25.0 (3)
O3—C5—C4—O46.1 (3)C4—C5—C6—O2178.7 (2)
C6—C5—C4—O4177.6 (2)O3—C5—C6—C7174.3 (2)
O3—C5—C4—C9173.6 (2)C4—C5—C6—C72.0 (4)
C6—C5—C4—C92.7 (4)O4—C4—C9—C8178.7 (2)
C7—C8—C10—C1111.7 (4)C5—C4—C9—C81.6 (4)
C9—C8—C10—C11169.6 (3)C7—C8—C9—C40.2 (4)
C9—C8—C7—C60.8 (4)C10—C8—C9—C4178.6 (2)
C10—C8—C7—C6177.9 (2)C8—C10—C11—C12177.4 (2)
C14—C15—C16—S10.3 (3)C14—C13—C12—O1177.4 (2)
C14—C15—C16—I1179.10 (17)S1—C13—C12—O12.1 (3)
C13—S1—C16—C150.38 (19)C14—C13—C12—C112.2 (4)
C13—S1—C16—I1179.33 (13)S1—C13—C12—C11178.35 (17)
C12—C13—C14—C15179.8 (2)C10—C11—C12—O10.1 (4)
S1—C13—C14—C150.3 (3)C10—C11—C12—C13179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O2i0.932.453.341 (3)159
Symmetry code: (i) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H15IO4S
Mr430.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)17.2328 (12), 8.1885 (6), 23.7049 (17)
V3)3345.0 (4)
Z8
Radiation typeMo Kα
µ (mm1)2.05
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.578, 0.684
No. of measured, independent and
observed [I > 2σ(I)] reflections
17211, 4092, 3263
Rint0.020
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.062, 1.06
No. of reflections4092
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.51

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP 3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O2i0.932.453.341 (3)159.4
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and TS thanks the DST for an Inspire fellowship.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDi Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65,337–353.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795–2802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRanjith, S., Thirunarayanan, A., Raja, S., Rajakumar, P. & SubbiahPandi, A. (2010). Acta Cryst. E66, o2261–o2262.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds