organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(3RS,4SR)-1-Benzyl-4-methyl­piperi­din-3-yl]-1-(4-methylphenyl­sulfonyl)-5-nitro-1H-pyrrolo­[2,3-b]pyridin-4-amine

aEberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and bUniversity Mainz, Institute of Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 17 September 2012; accepted 18 September 2012; online 26 September 2012)

The structure of the title compound, C27H29N5O4S, displays an intra­molecular N—H⋯O hydrogen bond. The pyrrolo­[2,3-b]pyridine core makes a dihedral angle of 85.5 (4)° with the benzyl residue and a dihedral angle of 89.4 (9)° with the tosyl ring. The nitro group is slightly twisted out of the plane of the planar pyrrolo­pyridine system [(—N—)C—C—N—O torsion angle = −4.61 (18)° and (—NH—)C—C—N—O = −6.46 (18)°].

Related literature

For inhibitors of Janus kinases, see: Hoffmann-La Roche (2011[Hoffmann-La Roche (2011). World Patent WO 2011/086053 A1.]).

[Scheme 1]

Experimental

Crystal data
  • C27H29N5O4S

  • Mr = 519.61

  • Monoclinic, C 2/c

  • a = 29.5164 (12) Å

  • b = 9.1388 (2) Å

  • c = 23.3008 (9) Å

  • β = 124.803 (3)°

  • V = 5160.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 193 K

  • 0.55 × 0.32 × 0.30 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • 32401 measured reflections

  • 6211 independent reflections

  • 5273 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.101

  • S = 1.03

  • 6211 reflections

  • 336 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N23—H23⋯O21 0.87 1.93 2.6274 (14) 137

Data collection: X-AREA (Stoe & Cie, 2010[Stoe & Cie (2010). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2010[Stoe & Cie (2010). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

N-(1-Benzyl-4-methylpiperidin-3-yl)-5-nitro-1-tosyl-1H-pyrrolo[2,3-b]pyridine-4-amine is an important intermediate in the synthesis of tricyclic heterocyclic compounds being inhibitors of Janus kinases (Hoffmann-La Roche, 2011).

The pyrrolo-pyridine system shows a dihedral angle of 85.5 (4)° towards the benzyl residue and 89.4 (9)° towards the tosyl ring. The methylene group in the title compound presents an angle of 74.4 (9)° between the phenyl and piperidine residue. The equatorial substituents of the piperidine are in trans configuration displaying a torsion angle of 57.4 (2)° (Fig. 1). The intramolecular hydrogen bond N23—H23···O21 1.92 Å stabilize the molecular conformation (Table 1).

Related literature top

For inhibitors of Janus kinases, see: Hoffmann-La Roche (2011).

Experimental top

The compound was prepared by nucleophilic substitution of 4-chloro-5-nitro-1-tosyl-1H-pyrrolo[2,3-b]pyridine with trans-1-benzyl-3-aminopiperidine in the presence of tetriary amine base. A mixture of 4-chloro-5-nitro-1-tosyl-1H-pyrrolo[2,3-b]pyridine (0.213 g, 0.607 mmol), trans-1-benzyl-3-aminopiperidine-hydrochloride (0.335 g, 1.214 mmol) and diisopropylethylamine (0.6 ml, 3.641 mmol) in dioxane (2 ml) was heated in a microwave reactor at 373 K for 1 h. The reaction media was concentrated under vacuo and purrified by column chromatography (SiO2, n-hexane / ethyl acetate; 3:1).

Refinement top

All H atoms were visible in a difference map. Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters set at 1.2–1.5 times of the Ueq of the parent atom.

Structure description top

N-(1-Benzyl-4-methylpiperidin-3-yl)-5-nitro-1-tosyl-1H-pyrrolo[2,3-b]pyridine-4-amine is an important intermediate in the synthesis of tricyclic heterocyclic compounds being inhibitors of Janus kinases (Hoffmann-La Roche, 2011).

The pyrrolo-pyridine system shows a dihedral angle of 85.5 (4)° towards the benzyl residue and 89.4 (9)° towards the tosyl ring. The methylene group in the title compound presents an angle of 74.4 (9)° between the phenyl and piperidine residue. The equatorial substituents of the piperidine are in trans configuration displaying a torsion angle of 57.4 (2)° (Fig. 1). The intramolecular hydrogen bond N23—H23···O21 1.92 Å stabilize the molecular conformation (Table 1).

For inhibitors of Janus kinases, see: Hoffmann-La Roche (2011).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2010); cell refinement: X-AREA (Stoe & Cie, 2010); data reduction: X-RED (Stoe & Cie, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. Hydrogen bond is represented as dashed lines.
N-[(3RS,4SR)-1-Benzyl-4-methylpiperidin-3-yl]-1-(4- methylphenylsulfonyl)-5-nitro-1H-pyrrolo[2,3-b]pyridin-4-amine top
Crystal data top
C27H29N5O4SF(000) = 2192
Mr = 519.61Dx = 1.337 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 28567 reflections
a = 29.5164 (12) Åθ = 3.1–29.5°
b = 9.1388 (2) ŵ = 0.17 mm1
c = 23.3008 (9) ÅT = 193 K
β = 124.803 (3)°Block, yellow
V = 5160.9 (3) Å30.55 × 0.32 × 0.30 mm
Z = 8
Data collection top
Stoe IPDS 2T
diffractometer
5273 reflections with I > 2σ(I)
Radiation source: sealed TubeRint = 0.049
Graphite monochromatorθmax = 28.0°, θmin = 3.1°
Detector resolution: 6.67 pixels mm-1h = 3838
rotation method scansk = 1210
32401 measured reflectionsl = 3030
6211 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0532P)2 + 2.4419P]
where P = (Fo2 + 2Fc2)/3
6211 reflections(Δ/σ)max = 0.002
336 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C27H29N5O4SV = 5160.9 (3) Å3
Mr = 519.61Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.5164 (12) ŵ = 0.17 mm1
b = 9.1388 (2) ÅT = 193 K
c = 23.3008 (9) Å0.55 × 0.32 × 0.30 mm
β = 124.803 (3)°
Data collection top
Stoe IPDS 2T
diffractometer
5273 reflections with I > 2σ(I)
32401 measured reflectionsRint = 0.049
6211 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.03Δρmax = 0.32 e Å3
6211 reflectionsΔρmin = 0.40 e Å3
336 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.36895 (4)0.36468 (12)0.43728 (5)0.0298 (2)
C20.37391 (5)0.34971 (14)0.38137 (6)0.0310 (2)
H20.40550.31370.38470.037*
C30.32669 (5)0.39448 (14)0.32195 (6)0.0300 (2)
H30.31920.39400.27650.036*
C40.28973 (5)0.44294 (13)0.33962 (6)0.0261 (2)
C50.23605 (5)0.50601 (12)0.30208 (6)0.0263 (2)
C60.21875 (5)0.54658 (13)0.34591 (6)0.0292 (2)
C70.25185 (5)0.52100 (15)0.41836 (6)0.0330 (3)
H70.23750.54990.44420.040*
N80.30113 (4)0.46032 (12)0.45339 (5)0.0330 (2)
C90.31769 (5)0.42474 (13)0.41213 (6)0.0273 (2)
S100.420371 (12)0.33155 (3)0.521638 (15)0.03107 (9)
O110.46345 (4)0.27462 (11)0.51761 (5)0.0388 (2)
O120.39824 (4)0.24718 (11)0.55130 (5)0.0416 (2)
C130.43840 (5)0.50589 (14)0.55916 (6)0.0299 (2)
C140.46497 (5)0.60144 (14)0.54113 (6)0.0323 (3)
H140.47280.57280.50840.039*
C150.47988 (5)0.73842 (15)0.57134 (7)0.0352 (3)
H150.49800.80440.55920.042*
C160.46866 (5)0.78136 (16)0.61955 (7)0.0383 (3)
C170.44216 (6)0.68377 (17)0.63658 (7)0.0414 (3)
H170.43460.71200.66950.050*
C180.42645 (5)0.54577 (16)0.60664 (7)0.0373 (3)
H180.40790.48010.61830.045*
C190.48486 (8)0.93192 (19)0.65147 (10)0.0573 (4)
H19A0.45320.97890.64710.086*
H19B0.49670.99080.62710.086*
H19C0.51530.92400.70100.086*
N200.16570 (5)0.61010 (12)0.31848 (6)0.0345 (2)
O210.13535 (4)0.64328 (11)0.25557 (5)0.0413 (2)
O220.15099 (5)0.62928 (15)0.35750 (6)0.0555 (3)
N230.20496 (4)0.52638 (12)0.23263 (5)0.0304 (2)
H230.17350.56770.21690.036*
C240.21171 (5)0.45266 (13)0.18239 (6)0.0273 (2)
H240.23460.36290.20500.033*
C250.24124 (5)0.55058 (13)0.16051 (6)0.0297 (2)
H25A0.21780.63610.13430.036*
H25B0.27620.58700.20250.036*
N260.25288 (4)0.46765 (12)0.11666 (5)0.0312 (2)
C270.20055 (5)0.42158 (17)0.05248 (6)0.0379 (3)
H27A0.20840.36380.02320.045*
H27B0.17930.50930.02560.045*
C280.16618 (5)0.33024 (16)0.06856 (7)0.0360 (3)
H28A0.18540.23640.08960.043*
H28B0.13040.30770.02430.043*
C290.15545 (5)0.40571 (14)0.11824 (6)0.0319 (2)
H290.13280.49530.09480.038*
C300.12401 (6)0.30586 (18)0.13668 (8)0.0464 (3)
H30A0.08840.27940.09390.070*
H30B0.11790.35710.16860.070*
H30C0.14560.21700.15930.070*
C310.28426 (6)0.55550 (18)0.09791 (7)0.0415 (3)
H31A0.26250.64380.07240.050*
H31B0.28900.49790.06570.050*
C320.34032 (5)0.60269 (15)0.15957 (6)0.0319 (3)
C330.37477 (6)0.50706 (15)0.21396 (7)0.0359 (3)
H330.36230.41090.21340.043*
C340.42697 (6)0.54990 (18)0.26888 (8)0.0429 (3)
H340.44990.48360.30590.051*
C350.44582 (6)0.68891 (19)0.26995 (8)0.0478 (4)
H350.48160.71870.30770.057*
C360.41230 (6)0.78400 (17)0.21587 (8)0.0460 (3)
H360.42530.87930.21610.055*
C370.35990 (6)0.74160 (15)0.16128 (7)0.0375 (3)
H370.33710.80850.12450.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0277 (5)0.0355 (5)0.0262 (5)0.0006 (4)0.0153 (4)0.0020 (4)
C20.0302 (6)0.0359 (6)0.0299 (6)0.0009 (5)0.0190 (5)0.0035 (5)
C30.0314 (6)0.0334 (6)0.0287 (5)0.0011 (5)0.0192 (5)0.0019 (5)
C40.0277 (5)0.0265 (5)0.0263 (5)0.0018 (4)0.0167 (4)0.0022 (4)
C50.0287 (5)0.0242 (5)0.0281 (5)0.0019 (4)0.0174 (5)0.0025 (4)
C60.0297 (6)0.0305 (6)0.0326 (6)0.0007 (5)0.0208 (5)0.0018 (5)
C70.0363 (6)0.0389 (7)0.0323 (6)0.0007 (5)0.0246 (5)0.0033 (5)
N80.0347 (5)0.0402 (6)0.0288 (5)0.0006 (4)0.0207 (4)0.0028 (4)
C90.0274 (5)0.0291 (5)0.0269 (5)0.0019 (4)0.0164 (5)0.0024 (4)
S100.03026 (15)0.03396 (16)0.02658 (14)0.00234 (11)0.01480 (12)0.00130 (11)
O110.0339 (5)0.0434 (5)0.0348 (5)0.0094 (4)0.0170 (4)0.0007 (4)
O120.0481 (5)0.0412 (5)0.0368 (5)0.0024 (4)0.0251 (4)0.0049 (4)
C130.0250 (5)0.0368 (6)0.0252 (5)0.0020 (5)0.0128 (4)0.0014 (5)
C140.0310 (6)0.0379 (6)0.0312 (6)0.0038 (5)0.0195 (5)0.0014 (5)
C150.0298 (6)0.0368 (7)0.0376 (6)0.0029 (5)0.0184 (5)0.0011 (5)
C160.0307 (6)0.0403 (7)0.0361 (6)0.0050 (5)0.0144 (5)0.0054 (5)
C170.0389 (7)0.0526 (8)0.0371 (7)0.0029 (6)0.0243 (6)0.0091 (6)
C180.0338 (6)0.0488 (8)0.0344 (6)0.0013 (5)0.0225 (5)0.0032 (6)
C190.0619 (10)0.0455 (9)0.0609 (10)0.0006 (8)0.0329 (9)0.0153 (8)
N200.0362 (5)0.0352 (6)0.0396 (6)0.0046 (4)0.0262 (5)0.0003 (4)
O210.0359 (5)0.0473 (6)0.0398 (5)0.0108 (4)0.0212 (4)0.0028 (4)
O220.0555 (6)0.0758 (8)0.0550 (6)0.0241 (6)0.0431 (6)0.0102 (6)
N230.0298 (5)0.0347 (5)0.0275 (5)0.0063 (4)0.0168 (4)0.0003 (4)
C240.0280 (5)0.0295 (6)0.0237 (5)0.0025 (4)0.0143 (4)0.0010 (4)
C250.0305 (6)0.0300 (6)0.0270 (5)0.0001 (5)0.0154 (5)0.0012 (4)
N260.0302 (5)0.0391 (6)0.0256 (5)0.0045 (4)0.0167 (4)0.0047 (4)
C270.0342 (6)0.0523 (8)0.0241 (5)0.0049 (6)0.0148 (5)0.0061 (5)
C280.0301 (6)0.0438 (7)0.0293 (6)0.0065 (5)0.0141 (5)0.0096 (5)
C290.0277 (6)0.0364 (6)0.0295 (5)0.0004 (5)0.0151 (5)0.0022 (5)
C300.0423 (7)0.0535 (9)0.0483 (8)0.0141 (7)0.0288 (7)0.0095 (7)
C310.0380 (7)0.0584 (9)0.0299 (6)0.0081 (6)0.0204 (6)0.0000 (6)
C320.0321 (6)0.0387 (7)0.0314 (6)0.0006 (5)0.0220 (5)0.0010 (5)
C330.0380 (6)0.0351 (6)0.0399 (6)0.0015 (5)0.0254 (6)0.0015 (5)
C340.0346 (7)0.0518 (8)0.0407 (7)0.0045 (6)0.0206 (6)0.0081 (6)
C350.0359 (7)0.0583 (9)0.0445 (8)0.0103 (7)0.0202 (6)0.0053 (7)
C360.0487 (8)0.0378 (7)0.0555 (9)0.0102 (6)0.0320 (7)0.0051 (6)
C370.0420 (7)0.0349 (6)0.0422 (7)0.0036 (5)0.0280 (6)0.0038 (5)
Geometric parameters (Å, º) top
N1—C91.3862 (15)N23—C241.4595 (14)
N1—C21.3983 (14)N23—H230.8659
N1—S101.6892 (10)C24—C251.5258 (16)
C2—C31.3505 (17)C24—C291.5305 (16)
C2—H20.9500C24—H241.0000
C3—C41.4383 (15)C25—N261.4616 (15)
C3—H30.9500C25—H25A0.9900
C4—C91.4042 (15)C25—H25B0.9900
C4—C51.4233 (16)N26—C311.4682 (16)
C5—N231.3417 (15)N26—C271.4706 (15)
C5—C61.4269 (15)C27—C281.5166 (19)
C6—C71.4058 (17)C27—H27A0.9900
C6—N201.4335 (15)C27—H27B0.9900
C7—N81.3170 (17)C28—C291.5279 (17)
C7—H70.9500C28—H28A0.9900
N8—C91.3436 (14)C28—H28B0.9900
S10—O121.4192 (10)C29—C301.5275 (19)
S10—O111.4257 (10)C29—H291.0000
S10—C131.7479 (13)C30—H30A0.9800
C13—C181.3879 (16)C30—H30B0.9800
C13—C141.3892 (18)C30—H30C0.9800
C14—C151.3794 (19)C31—C321.5081 (18)
C14—H140.9500C31—H31A0.9900
C15—C161.3964 (18)C31—H31B0.9900
C15—H150.9500C32—C371.3860 (19)
C16—C171.385 (2)C32—C331.3902 (18)
C16—C191.506 (2)C33—C341.384 (2)
C17—C181.387 (2)C33—H330.9500
C17—H170.9500C34—C351.381 (2)
C18—H180.9500C34—H340.9500
C19—H19A0.9800C35—C361.378 (2)
C19—H19B0.9800C35—H350.9500
C19—H19C0.9800C36—C371.384 (2)
N20—O221.2234 (14)C36—H360.9500
N20—O211.2427 (15)C37—H370.9500
C9—N1—C2108.32 (10)N23—C24—C29110.13 (9)
C9—N1—S10127.01 (8)C25—C24—C29110.27 (9)
C2—N1—S10124.35 (8)N23—C24—H24108.4
C3—C2—N1109.26 (10)C25—C24—H24108.4
C3—C2—H2125.4C29—C24—H24108.4
N1—C2—H2125.4N26—C25—C24109.66 (10)
C2—C3—C4107.90 (10)N26—C25—H25A109.7
C2—C3—H3126.0C24—C25—H25A109.7
C4—C3—H3126.0N26—C25—H25B109.7
C9—C4—C5118.10 (10)C24—C25—H25B109.7
C9—C4—C3106.68 (10)H25A—C25—H25B108.2
C5—C4—C3135.16 (10)C25—N26—C31111.37 (10)
N23—C5—C4123.54 (10)C25—N26—C27109.26 (10)
N23—C5—C6123.33 (11)C31—N26—C27109.19 (10)
C4—C5—C6113.13 (10)N26—C27—C28111.64 (10)
C7—C6—C5121.94 (11)N26—C27—H27A109.3
C7—C6—N20115.86 (10)C28—C27—H27A109.3
C5—C6—N20122.15 (11)N26—C27—H27B109.3
N8—C7—C6125.37 (11)C28—C27—H27B109.3
N8—C7—H7117.3H27A—C27—H27B108.0
C6—C7—H7117.3C27—C28—C29113.32 (11)
C7—N8—C9112.50 (10)C27—C28—H28A108.9
N8—C9—N1123.25 (10)C29—C28—H28A108.9
N8—C9—C4128.92 (11)C27—C28—H28B108.9
N1—C9—C4107.80 (10)C29—C28—H28B108.9
O12—S10—O11120.63 (6)H28A—C28—H28B107.7
O12—S10—N1107.84 (6)C30—C29—C28111.43 (11)
O11—S10—N1103.40 (5)C30—C29—C24112.80 (11)
O12—S10—C13110.18 (6)C28—C29—C24106.73 (10)
O11—S10—C13109.71 (6)C30—C29—H29108.6
N1—S10—C13103.51 (6)C28—C29—H29108.6
C18—C13—C14121.34 (12)C24—C29—H29108.6
C18—C13—S10119.65 (10)C29—C30—H30A109.5
C14—C13—S10119.01 (9)C29—C30—H30B109.5
C15—C14—C13119.13 (12)H30A—C30—H30B109.5
C15—C14—H14120.4C29—C30—H30C109.5
C13—C14—H14120.4H30A—C30—H30C109.5
C14—C15—C16120.83 (13)H30B—C30—H30C109.5
C14—C15—H15119.6N26—C31—C32114.09 (10)
C16—C15—H15119.6N26—C31—H31A108.7
C17—C16—C15118.77 (13)C32—C31—H31A108.7
C17—C16—C19121.24 (13)N26—C31—H31B108.7
C15—C16—C19119.98 (14)C32—C31—H31B108.7
C16—C17—C18121.52 (12)H31A—C31—H31B107.6
C16—C17—H17119.2C37—C32—C33118.27 (12)
C18—C17—H17119.2C37—C32—C31120.14 (12)
C17—C18—C13118.40 (13)C33—C32—C31121.51 (12)
C17—C18—H18120.8C34—C33—C32120.95 (13)
C13—C18—H18120.8C34—C33—H33119.5
C16—C19—H19A109.5C32—C33—H33119.5
C16—C19—H19B109.5C35—C34—C33120.09 (14)
H19A—C19—H19B109.5C35—C34—H34120.0
C16—C19—H19C109.5C33—C34—H34120.0
H19A—C19—H19C109.5C36—C35—C34119.47 (14)
H19B—C19—H19C109.5C36—C35—H35120.3
O22—N20—O21121.26 (11)C34—C35—H35120.3
O22—N20—C6119.17 (11)C35—C36—C37120.42 (14)
O21—N20—C6119.57 (10)C35—C36—H36119.8
C5—N23—C24126.22 (10)C37—C36—H36119.8
C5—N23—H23113.6C36—C37—C32120.79 (13)
C24—N23—H23117.8C36—C37—H37119.6
N23—C24—C25111.27 (10)C32—C37—H37119.6
C9—N1—C2—C31.84 (14)C14—C15—C16—C170.04 (19)
S10—N1—C2—C3175.67 (9)C14—C15—C16—C19179.48 (13)
N1—C2—C3—C41.00 (14)C15—C16—C17—C180.3 (2)
C2—C3—C4—C90.19 (14)C19—C16—C17—C18179.08 (14)
C2—C3—C4—C5177.15 (13)C16—C17—C18—C130.7 (2)
C9—C4—C5—N23178.74 (11)C14—C13—C18—C170.62 (19)
C3—C4—C5—N234.6 (2)S10—C13—C18—C17178.80 (10)
C9—C4—C5—C61.73 (15)C7—C6—N20—O224.61 (18)
C3—C4—C5—C6174.97 (13)C5—C6—N20—O22172.83 (13)
N23—C5—C6—C7178.66 (12)C7—C6—N20—O21176.09 (12)
C4—C5—C6—C71.81 (17)C5—C6—N20—O216.46 (18)
N23—C5—C6—N201.37 (18)C4—C5—N23—C2419.43 (19)
C4—C5—C6—N20179.10 (11)C6—C5—N23—C24161.08 (11)
C5—C6—C7—N80.7 (2)C5—N23—C24—C25100.89 (13)
N20—C6—C7—N8178.17 (12)C5—N23—C24—C29136.51 (12)
C6—C7—N8—C90.48 (19)N23—C24—C25—N26173.52 (9)
C7—N8—C9—N1177.44 (11)C29—C24—C25—N2663.96 (12)
C7—N8—C9—C40.51 (19)C24—C25—N26—C31176.61 (10)
C2—N1—C9—N8176.39 (11)C24—C25—N26—C2762.69 (12)
S10—N1—C9—N82.77 (18)C25—N26—C27—C2857.92 (14)
C2—N1—C9—C41.92 (13)C31—N26—C27—C28179.95 (12)
S10—N1—C9—C4175.54 (9)N26—C27—C28—C2954.63 (15)
C5—C4—C9—N80.68 (19)C27—C28—C29—C30176.25 (11)
C3—C4—C9—N8176.89 (12)C27—C28—C29—C2452.70 (14)
C5—C4—C9—N1178.87 (10)N23—C24—C29—C3057.42 (14)
C3—C4—C9—N11.30 (13)C25—C24—C29—C30179.40 (11)
C9—N1—S10—O1252.95 (12)N23—C24—C29—C28179.88 (10)
C2—N1—S10—O12134.39 (11)C25—C24—C29—C2856.70 (13)
C9—N1—S10—O11178.24 (11)C25—N26—C31—C3262.29 (15)
C2—N1—S10—O115.58 (12)C27—N26—C31—C32176.96 (12)
C9—N1—S10—C1363.80 (12)N26—C31—C32—C37140.70 (13)
C2—N1—S10—C13108.86 (11)N26—C31—C32—C3342.81 (18)
O12—S10—C13—C184.55 (12)C37—C32—C33—C340.88 (19)
O11—S10—C13—C18139.64 (10)C31—C32—C33—C34177.43 (12)
N1—S10—C13—C18110.54 (10)C32—C33—C34—C350.7 (2)
O12—S10—C13—C14174.88 (9)C33—C34—C35—C360.2 (2)
O11—S10—C13—C1439.80 (11)C34—C35—C36—C370.8 (2)
N1—S10—C13—C1470.03 (10)C35—C36—C37—C320.6 (2)
C18—C13—C14—C150.25 (18)C33—C32—C37—C360.25 (19)
S10—C13—C14—C15179.18 (9)C31—C32—C37—C36176.85 (12)
C13—C14—C15—C160.09 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N23—H23···O210.871.932.6274 (14)137

Experimental details

Crystal data
Chemical formulaC27H29N5O4S
Mr519.61
Crystal system, space groupMonoclinic, C2/c
Temperature (K)193
a, b, c (Å)29.5164 (12), 9.1388 (2), 23.3008 (9)
β (°) 124.803 (3)
V3)5160.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.55 × 0.32 × 0.30
Data collection
DiffractometerStoe IPDS 2T
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
32401, 6211, 5273
Rint0.049
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.101, 1.03
No. of reflections6211
No. of parameters336
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.40

Computer programs: X-AREA (Stoe & Cie, 2010), X-RED (Stoe & Cie, 2010), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N23—H23···O210.871.932.6274 (14)137
 

Acknowledgements

The authors would like to thank Maria Leticia Barbosa, Matthias Gehringer and Peter Keck for suggestions and comments.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHoffmann-La Roche (2011). World Patent WO 2011/086053 A1.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2010). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds