organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(3RS,4RS)-1-Benzyl-4-methyl­piperi­din-3-yl]-1,6-di­hydro­imidazo[4,5-d]pyrrolo­[2,3-b]pyridine hemihydrate

aEberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and bInstitute of Organic Chemistry, University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 17 September 2012; accepted 20 September 2012; online 29 September 2012)

The benzyl residue in the title compound, C21H23N5·0.5H2O, is oriented at a dihedral angle of 83.8 (3)° towards the 1,6-dihydro­imidazo[4,5-d]pyrrolo­[2,3-b]pyridine system. The piperidine ring adopts a chair conformation with the cis substituents displaying a torsion angle of −45.91 (16)°. In the crystal, mol­ecules are accumulated as racemic dimers by two inter­molecular hydrogen bonds between the pyrrolo­pyridine systems. Another hydrogen bond is formed between the imidazole ring and the cocrystallized water mol­ecule, which is located on a twofold rotation axis.

Related literature

For biological details on Janus protein tyrosine kinases, see: Kulagowski et al. (2012[Kulagowski, J. J. et al. (2012). J. Med. Chem. 55, 5901-5921.]). For synthetic details, see: Bajwa et al. (2006[Bajwa, J. S., Chen, G. P., Prasad, K., Repi, O. & Blacklock, T. J. (2006). Tetrahedron Lett. 47, 6425-6427.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23N5·0.5H2O

  • Mr = 354.45

  • Monoclinic, C 2/c

  • a = 17.3606 (19) Å

  • b = 10.0422 (10) Å

  • c = 22.995 (2) Å

  • β = 100.965 (3)°

  • V = 3935.8 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.50 × 0.27 × 0.20 mm

Data collection
  • Bruker APEXII diffractometer

  • 22115 measured reflections

  • 4571 independent reflections

  • 3504 reflections with I > 2σ(I)

  • Rint = 0.040

  • Standard reflections: ?

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.109

  • S = 1.03

  • 4571 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯N6i 0.98 2.02 2.9757 (18) 165
O1W—H1W⋯N3 0.93 2.13 3.0148 (16) 161
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Imidazopyrrolopyridine derivates were identified as novel tricyclic JAK inhibitors. The Janus protein tyrosine kinases (JAK1, JAK2, JAK3 and TYK2) regulate the signal transduction of numerous cytokines, presenting a key role in immune and inflamatory processes (Kulagowski et al., 2012).

The planar imidazopyrrolopyridine system is oriented at a dihedral angle of 83.8 (3)° and shows a distance of 6.89 (8) Å with respect to the benzyl group (Fig. 1). The equatorial methyl and the axial tricyclic substituent of the piperidine ring show a torsion angle of 45.9 (1)°. The crystal structure is characterized by two types of intermolecular hydrogen bonds. The water molecule connects two by 2-fold axis related pyrrolopyridine systems (O1W–H1W···N3 2.13 Å) while the N8—H8···N6 hydrogen bond build centrosymmetric dimers (Tabl. 1).

Related literature top

For biological details on Janus protein tyrosine kinases, see: Kulagowski et al. (2012). For synthetic details, see: Bajwa et al. (2006).

Experimental top

The title compound was prepared by deprotection of a N-tosylated precursor (Bajwa et al., 2006). 1-(1-benzyl-4-methylpiperidin-3-yl)-6-tosyl-1,6-dihydro-imidazo[4,5-d]pyrrolo[2,3-b]pyridine (0.164 g, 0.329 mmol) and caesium carbonate (0.986 g, 0.321 mmol) were dissolved in a mixture of dry THF (2 ml) and dry MeOH (1 ml) under argon atmosphere. The mixture was stirred for 3.5 h at room temperature and the reaction monitored by HPLC. When the reaction was complete, saturated NaHCO3 solution was added and the mixture was extracted with ethylacetate. The organic phase was dried with anhydrous Na2SO4 and concentrated in vacuo. The precipitated product was obtained as crystalline solid by filtration (0.091 g, 80%). Crystals of the title compound were obtained by slow evaporation of methanol at room temperature.

Refinement top

Hydrogen atoms attached to carbon and nitrogen atoms were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.99–1.00 Å (sp3 C-atom). The position of the water H atom was taken from a difference map. All H atoms were refined using a riding model with isotropic displacement parameters set at 1.2–1.5 times of the Ueq of the parent atom.

Structure description top

Imidazopyrrolopyridine derivates were identified as novel tricyclic JAK inhibitors. The Janus protein tyrosine kinases (JAK1, JAK2, JAK3 and TYK2) regulate the signal transduction of numerous cytokines, presenting a key role in immune and inflamatory processes (Kulagowski et al., 2012).

The planar imidazopyrrolopyridine system is oriented at a dihedral angle of 83.8 (3)° and shows a distance of 6.89 (8) Å with respect to the benzyl group (Fig. 1). The equatorial methyl and the axial tricyclic substituent of the piperidine ring show a torsion angle of 45.9 (1)°. The crystal structure is characterized by two types of intermolecular hydrogen bonds. The water molecule connects two by 2-fold axis related pyrrolopyridine systems (O1W–H1W···N3 2.13 Å) while the N8—H8···N6 hydrogen bond build centrosymmetric dimers (Tabl. 1).

For biological details on Janus protein tyrosine kinases, see: Kulagowski et al. (2012). For synthetic details, see: Bajwa et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. Hydrogen bond is represented as dashed lines.
1-[(3RS,4RS)-1-Benzyl-4-methylpiperidin-3-yl]- 1,6-dihydroimidazo[4,5-d]pyrrolo[2,3-b]pyridine hemihydrate top
Crystal data top
C21H23N5·0.5H2OF(000) = 1512
Mr = 354.45Dx = 1.196 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4892 reflections
a = 17.3606 (19) Åθ = 2.4–26.7°
b = 10.0422 (10) ŵ = 0.08 mm1
c = 22.995 (2) ÅT = 173 K
β = 100.965 (3)°Block, colourless
V = 3935.8 (7) Å30.50 × 0.27 × 0.20 mm
Z = 8
Data collection top
Bruker APEXII
diffractometer
3504 reflections with I > 2σ(I)
Radiation source: sealed TubeRint = 0.040
Graphite monochromatorθmax = 27.7°, θmin = 1.8°
CCD scanh = 2122
22115 measured reflectionsk = 1312
4571 independent reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0401P)2 + 2.9543P]
where P = (Fo2 + 2Fc2)/3
4571 reflections(Δ/σ)max < 0.001
240 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C21H23N5·0.5H2OV = 3935.8 (7) Å3
Mr = 354.45Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.3606 (19) ŵ = 0.08 mm1
b = 10.0422 (10) ÅT = 173 K
c = 22.995 (2) Å0.50 × 0.27 × 0.20 mm
β = 100.965 (3)°
Data collection top
Bruker APEXII
diffractometer
3504 reflections with I > 2σ(I)
22115 measured reflectionsRint = 0.040
4571 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
4571 reflectionsΔρmin = 0.30 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.23581 (6)0.09700 (11)0.24008 (5)0.0258 (3)
C20.30258 (8)0.02507 (14)0.26224 (7)0.0293 (3)
H20.31480.00590.30200.035*
N30.34774 (7)0.00328 (13)0.22344 (5)0.0310 (3)
C40.30842 (8)0.06430 (14)0.17183 (6)0.0288 (3)
C50.33093 (9)0.07650 (15)0.11641 (7)0.0338 (3)
H50.37830.03560.11080.041*
N60.28808 (8)0.14347 (13)0.07164 (6)0.0362 (3)
C70.22083 (9)0.19640 (14)0.08238 (7)0.0319 (3)
N80.16809 (8)0.26560 (13)0.04086 (6)0.0373 (3)
H80.17450.28580.00040.056*
C90.10645 (10)0.30373 (15)0.06626 (7)0.0375 (4)
H90.06250.35330.04660.045*
C100.11658 (9)0.26095 (15)0.12371 (7)0.0328 (3)
H100.08200.27460.15060.039*
C110.18991 (8)0.19139 (14)0.13518 (6)0.0285 (3)
C120.23855 (8)0.12243 (13)0.18146 (6)0.0261 (3)
C130.17177 (8)0.13850 (14)0.27023 (6)0.0257 (3)
H130.14250.21130.24580.031*
C140.11248 (8)0.02574 (14)0.27341 (6)0.0284 (3)
H140.06410.06830.28260.034*
C150.14310 (8)0.06998 (14)0.32409 (7)0.0323 (3)
H15A0.10070.13230.32910.039*
H15B0.18670.12300.31390.039*
C160.17175 (8)0.00276 (15)0.38202 (7)0.0320 (3)
H16A0.12780.05240.39360.038*
H16B0.19150.06230.41370.038*
N170.23465 (7)0.09550 (12)0.37510 (5)0.0275 (3)
C180.20358 (8)0.19706 (14)0.33118 (6)0.0273 (3)
H18A0.24570.26140.32790.033*
H18B0.16100.24630.34500.033*
C190.08819 (9)0.04706 (17)0.21443 (7)0.0379 (4)
H19A0.06850.01750.18320.057*
H19B0.04680.11160.21760.057*
H19C0.13370.09380.20470.057*
C200.26827 (9)0.15779 (16)0.43189 (6)0.0331 (3)
H20A0.27860.08810.46290.040*
H20B0.22960.22070.44290.040*
C210.34369 (8)0.23169 (14)0.43017 (6)0.0278 (3)
C220.35253 (9)0.36471 (15)0.44601 (6)0.0312 (3)
H220.30980.41160.45670.037*
C230.42287 (9)0.43037 (16)0.44643 (7)0.0373 (4)
H230.42830.52130.45780.045*
C240.48489 (9)0.36375 (18)0.43038 (7)0.0412 (4)
H240.53330.40840.43120.049*
C250.47669 (10)0.23215 (19)0.41312 (8)0.0445 (4)
H250.51910.18660.40130.053*
C260.40644 (9)0.16630 (16)0.41310 (7)0.0381 (4)
H260.40110.07560.40130.046*
O1W0.50000.1491 (2)0.25000.0825 (8)
H1W0.45690.09820.23360.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0244 (6)0.0261 (6)0.0264 (6)0.0000 (5)0.0040 (5)0.0001 (5)
C20.0261 (7)0.0294 (7)0.0314 (7)0.0011 (6)0.0028 (6)0.0000 (6)
N30.0260 (6)0.0326 (7)0.0344 (7)0.0007 (5)0.0059 (5)0.0011 (5)
C40.0275 (7)0.0262 (7)0.0330 (8)0.0046 (6)0.0066 (6)0.0010 (6)
C50.0321 (8)0.0326 (8)0.0389 (8)0.0052 (6)0.0122 (6)0.0010 (7)
N60.0409 (7)0.0353 (7)0.0346 (7)0.0064 (6)0.0126 (6)0.0017 (6)
C70.0394 (8)0.0260 (7)0.0304 (8)0.0073 (6)0.0068 (6)0.0007 (6)
N80.0489 (8)0.0342 (7)0.0283 (7)0.0014 (6)0.0063 (6)0.0048 (6)
C90.0451 (9)0.0298 (8)0.0353 (8)0.0034 (7)0.0020 (7)0.0020 (7)
C100.0387 (8)0.0282 (7)0.0304 (8)0.0016 (6)0.0040 (6)0.0004 (6)
C110.0330 (7)0.0233 (7)0.0288 (7)0.0052 (6)0.0046 (6)0.0014 (6)
C120.0290 (7)0.0220 (6)0.0274 (7)0.0062 (5)0.0056 (5)0.0018 (6)
C130.0252 (7)0.0242 (7)0.0274 (7)0.0035 (5)0.0042 (5)0.0005 (6)
C140.0215 (7)0.0316 (7)0.0320 (8)0.0001 (5)0.0048 (6)0.0044 (6)
C150.0279 (7)0.0256 (7)0.0424 (9)0.0045 (6)0.0044 (6)0.0001 (6)
C160.0308 (7)0.0300 (7)0.0346 (8)0.0056 (6)0.0048 (6)0.0059 (6)
N170.0298 (6)0.0267 (6)0.0251 (6)0.0058 (5)0.0027 (5)0.0018 (5)
C180.0308 (7)0.0233 (7)0.0281 (7)0.0009 (6)0.0060 (6)0.0008 (6)
C190.0304 (8)0.0443 (9)0.0393 (9)0.0065 (7)0.0069 (6)0.0123 (7)
C200.0352 (8)0.0391 (8)0.0251 (7)0.0084 (6)0.0062 (6)0.0003 (6)
C210.0301 (7)0.0305 (7)0.0214 (7)0.0027 (6)0.0013 (5)0.0016 (6)
C220.0343 (8)0.0326 (8)0.0262 (7)0.0000 (6)0.0045 (6)0.0008 (6)
C230.0451 (9)0.0312 (8)0.0327 (8)0.0095 (7)0.0003 (7)0.0007 (7)
C240.0325 (8)0.0513 (10)0.0379 (9)0.0133 (7)0.0018 (7)0.0072 (8)
C250.0306 (8)0.0537 (11)0.0496 (10)0.0062 (7)0.0087 (7)0.0011 (8)
C260.0371 (8)0.0315 (8)0.0447 (9)0.0015 (6)0.0052 (7)0.0030 (7)
O1W0.0391 (11)0.0429 (11)0.158 (2)0.0000.0001 (12)0.000
Geometric parameters (Å, º) top
N1—C21.3786 (18)C15—H15A0.9900
N1—C121.3815 (18)C15—H15B0.9900
N1—C131.4777 (17)C16—N171.4667 (17)
C2—N31.3132 (18)C16—H16A0.9900
C2—H20.9500C16—H16B0.9900
N3—C41.3936 (19)N17—C181.4642 (18)
C4—C121.401 (2)N17—C201.4654 (18)
C4—C51.407 (2)C18—H18A0.9900
C5—N61.332 (2)C18—H18B0.9900
C5—H50.9500C19—H19A0.9800
N6—C71.348 (2)C19—H19B0.9800
C7—N81.378 (2)C19—H19C0.9800
C7—C111.419 (2)C20—C211.512 (2)
N8—C91.368 (2)C20—H20A0.9900
N8—H80.9793C20—H20B0.9900
C9—C101.368 (2)C21—C221.385 (2)
C9—H90.9500C21—C261.391 (2)
C10—C111.432 (2)C22—C231.386 (2)
C10—H100.9500C22—H220.9500
C11—C121.408 (2)C23—C241.376 (2)
C13—C181.5234 (19)C23—H230.9500
C13—C141.5414 (19)C24—C251.379 (3)
C13—H131.0000C24—H240.9500
C14—C151.526 (2)C25—C261.387 (2)
C14—C191.528 (2)C25—H250.9500
C14—H141.0000C26—H260.9500
C15—C161.518 (2)O1W—H1W0.9253
C2—N1—C12105.96 (11)C14—C15—H15B109.2
C2—N1—C13128.98 (12)H15A—C15—H15B107.9
C12—N1—C13125.05 (11)N17—C16—C15109.69 (12)
N3—C2—N1113.88 (13)N17—C16—H16A109.7
N3—C2—H2123.1C15—C16—H16A109.7
N1—C2—H2123.1N17—C16—H16B109.7
C2—N3—C4104.26 (12)C15—C16—H16B109.7
N3—C4—C12110.30 (12)H16A—C16—H16B108.2
N3—C4—C5129.35 (13)C18—N17—C20110.45 (11)
C12—C4—C5120.31 (13)C18—N17—C16109.44 (11)
N6—C5—C4122.23 (14)C20—N17—C16110.67 (11)
N6—C5—H5118.9N17—C18—C13112.78 (11)
C4—C5—H5118.9N17—C18—H18A109.0
C5—N6—C7115.68 (13)C13—C18—H18A109.0
N6—C7—N8123.80 (13)N17—C18—H18B109.0
N6—C7—C11128.67 (14)C13—C18—H18B109.0
N8—C7—C11107.52 (13)H18A—C18—H18B107.8
C9—N8—C7108.42 (13)C14—C19—H19A109.5
C9—N8—H8126.0C14—C19—H19B109.5
C7—N8—H8125.6H19A—C19—H19B109.5
N8—C9—C10110.92 (14)C14—C19—H19C109.5
N8—C9—H9124.5H19A—C19—H19C109.5
C10—C9—H9124.5H19B—C19—H19C109.5
C9—C10—C11106.11 (14)N17—C20—C21112.72 (11)
C9—C10—H10126.9N17—C20—H20A109.0
C11—C10—H10126.9C21—C20—H20A109.0
C12—C11—C7113.22 (13)N17—C20—H20B109.0
C12—C11—C10139.75 (14)C21—C20—H20B109.0
C7—C11—C10107.03 (13)H20A—C20—H20B107.8
N1—C12—C4105.59 (12)C22—C21—C26118.41 (14)
N1—C12—C11134.53 (13)C22—C21—C20121.30 (13)
C4—C12—C11119.86 (13)C26—C21—C20120.28 (13)
N1—C13—C18111.55 (11)C21—C22—C23120.92 (14)
N1—C13—C14112.57 (11)C21—C22—H22119.5
C18—C13—C14111.61 (11)C23—C22—H22119.5
N1—C13—H13106.9C24—C23—C22120.00 (15)
C18—C13—H13106.9C24—C23—H23120.0
C14—C13—H13106.9C22—C23—H23120.0
C15—C14—C19111.95 (12)C23—C24—C25119.98 (15)
C15—C14—C13111.12 (11)C23—C24—H24120.0
C19—C14—C13112.55 (12)C25—C24—H24120.0
C15—C14—H14106.9C24—C25—C26119.96 (16)
C19—C14—H14106.9C24—C25—H25120.0
C13—C14—H14106.9C26—C25—H25120.0
C16—C15—C14112.05 (12)C25—C26—C21120.70 (15)
C16—C15—H15A109.2C25—C26—H26119.6
C14—C15—H15A109.2C21—C26—H26119.6
C16—C15—H15B109.2
C12—N1—C2—N30.50 (16)C10—C11—C12—C4178.39 (16)
C13—N1—C2—N3179.23 (12)C2—N1—C13—C1846.14 (18)
N1—C2—N3—C40.21 (16)C12—N1—C13—C18135.35 (13)
C2—N3—C4—C120.15 (15)C2—N1—C13—C1480.23 (17)
C2—N3—C4—C5177.61 (15)C12—N1—C13—C1498.28 (15)
N3—C4—C5—N6176.99 (14)N1—C13—C14—C1580.55 (14)
C12—C4—C5—N60.6 (2)C18—C13—C14—C1545.79 (15)
C4—C5—N6—C71.4 (2)N1—C13—C14—C1945.91 (16)
C5—N6—C7—N8178.11 (14)C18—C13—C14—C19172.24 (12)
C5—N6—C7—C110.6 (2)C19—C14—C15—C16176.63 (12)
N6—C7—N8—C9179.33 (14)C13—C14—C15—C1649.84 (15)
C11—C7—N8—C90.35 (16)C14—C15—C16—N1758.88 (15)
C7—N8—C9—C100.34 (18)C15—C16—N17—C1863.33 (15)
N8—C9—C10—C110.18 (18)C15—C16—N17—C20174.72 (12)
N6—C7—C11—C120.9 (2)C20—N17—C18—C13176.90 (11)
N8—C7—C11—C12179.84 (12)C16—N17—C18—C1361.02 (14)
N6—C7—C11—C10179.16 (14)N1—C13—C18—N1774.69 (14)
N8—C7—C11—C100.24 (16)C14—C13—C18—N1752.20 (15)
C9—C10—C11—C12179.93 (17)C18—N17—C20—C2170.56 (15)
C9—C10—C11—C70.04 (16)C16—N17—C20—C21168.08 (12)
C2—N1—C12—C40.54 (14)N17—C20—C21—C22124.87 (14)
C13—N1—C12—C4179.34 (12)N17—C20—C21—C2655.85 (18)
C2—N1—C12—C11178.93 (15)C26—C21—C22—C231.7 (2)
C13—N1—C12—C112.3 (2)C20—C21—C22—C23177.56 (13)
N3—C4—C12—N10.44 (15)C21—C22—C23—C240.7 (2)
C5—C4—C12—N1177.55 (12)C22—C23—C24—C250.9 (2)
N3—C4—C12—C11179.12 (12)C23—C24—C25—C261.3 (3)
C5—C4—C12—C111.1 (2)C24—C25—C26—C210.2 (3)
C7—C11—C12—N1176.48 (14)C22—C21—C26—C251.3 (2)
C10—C11—C12—N13.4 (3)C20—C21—C26—C25178.01 (14)
C7—C11—C12—C41.73 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···N6i0.982.022.9757 (18)165
O1W—H1W···N30.932.133.0148 (16)161
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC21H23N5·0.5H2O
Mr354.45
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)17.3606 (19), 10.0422 (10), 22.995 (2)
β (°) 100.965 (3)
V3)3935.8 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.27 × 0.20
Data collection
DiffractometerBruker APEXII
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22115, 4571, 3504
Rint0.040
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.109, 1.03
No. of reflections4571
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.30

Computer programs: APEX2 (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···N6i0.982.022.9757 (18)165
O1W—H1W···N30.932.133.0148 (16)161
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank Maria Leticia Barbosa, Matthias Gehringer and Peter Keck for suggestions and comments.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBajwa, J. S., Chen, G. P., Prasad, K., Repi, O. & Blacklock, T. J. (2006). Tetrahedron Lett. 47, 6425–6427.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKulagowski, J. J. et al. (2012). J. Med. Chem. 55, 5901–5921.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds