organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-2-[1-(2-Hy­dr­oxy-4-meth­­oxy­phenyl)ethyl­­idene]-N-phenyl­hydrazine­carbox­amide monohydrate

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: eesans@yahoo.com

(Received 8 September 2012; accepted 16 September 2012; online 22 September 2012)

The title compound, C16H17N3O3·H2O, exists in the E conformation with respect to the azomethine C=N double bond. While the phenyl ring is almost coplanar with the central hydrazinecarboxamide group [dihedral angle = 14.18 (11)°], it is twisted slightly with respect to the other aromatic ring in the mol­ecule, with a dihedral angle of 22.88 (13)°. The packing is dominated by O—H⋯O, N—H⋯O and C—H⋯O hydrogen-bond inter­actions, forming a three-dimensional supra­molecular structure which is augmented by two types of C—H⋯π inter­actions. An intramolecular O—H⋯N interaction is also present in the molecule.

Related literature

For the application of hydrazinecarboxamides as enzyme inhibitors and as a source of self-complementary bidirectional hydrogen-bonding motifs, see: Lam et al. (1994[Lam, P. Y. S., Jadhav, P. K., Eyermann, C. J., Hodge, C. N., Ru, Y., Bacheler, L. T., Meek, J. L., Otto, M. J., Rayner, M. M., Wong, Y. N., Chang, C. H., Weber, P. C., Jackson, D. A., Sharpe, T. R. & Viitanen, E. S. (1994). Science, 263, 380-384.]); Chorev & Goodman (1993[Chorev, M. & Goodman, M. (1993). Acc. Chem. Res. 26, 266-273.]); Zhao et al. (1990[Zhao, X., Chang, Y. L., Fowler, F. W. & Lauher, J. W. (1990). J. Am. Chem. Soc. 112, 6627-6634.]). For the synthesis of related compounds, see: Sreekanth et al. (2004[Sreekanth, A., Kala, U. L., Nayar, C. R. & Kurup, M. R. P. (2004). Polyhedron, 23, 41-47.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Sithambaresan & Kurup (2011[Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o2972.]); Siji et al. (2010[Siji, V. L., Sudarsanakumar, M. R. & Suma, S. (2010). Polyhedron, 29, 2035-2040.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N3O3·H2O

  • Mr = 317.34

  • Monoclinic, P 21 /c

  • a = 12.4020 (18) Å

  • b = 13.7808 (19) Å

  • c = 9.3919 (10) Å

  • β = 96.813 (7)°

  • V = 1593.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.50 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.976

  • 12097 measured reflections

  • 2809 independent reflections

  • 1807 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.172

  • S = 1.02

  • 2809 reflections

  • 230 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2′⋯N1 0.88 (1) 1.71 (2) 2.526 (2) 154 (3)
N2—H2N⋯O1Si 0.88 (1) 2.08 (1) 2.900 (3) 154 (2)
N3—H3⋯O1Si 0.88 (1) 2.11 (2) 2.918 (3) 153 (3)
O1S—H1A⋯O2 0.86 (2) 2.12 (2) 2.925 (3) 156 (3)
O1S—H1B⋯O3ii 0.84 (2) 1.90 (2) 2.730 (3) 174 (3)
C8—H8C⋯O3iii 0.96 2.51 3.457 (3) 167
C11—H11⋯O3 0.93 2.31 2.881 (3) 119
C13—H13⋯O1iv 0.93 2.60 3.489 (3) 160
C8—H8ACg1v 0.96 2.92 3.543 (3) 123
C16—H16CCg1vi 0.96 2.79 3.645 (4) 148
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x+1, y, z-1; (v) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (vi) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Hydrazinecarboxamides have gained considerable importance in recent years in the design of enzyme inhibitors (Lam et al., 1994), as replacement for the amide (–CO–NH–) bond in peptidomimetics (Chorev & Goodman, 1993) and as sources of self-complementary bidirectional hydrogen bonding motif in supramolecular chemistry (Zhao et al., 1990). As a continuous work on the hydrazinecarboxamide compounds, a new hydrazinecarboxamide compound, (2E)-2-[1-(2-hydroxy-4-methoxyphenyl)ethylidene]-N-phenylhydrazinecarboxamide monohydrate, was prepared and structurally characterized. The ORTEP view of the title compound is shown in Fig. 1.

The compound crystallizes in monoclinic space group P21/c. The molecule adopts an E configuration with respect to C7N1 bond (Sithambaresan & Kurup, 2011; Siji et al., 2010) and it exists in amido form with C9O3 bond length of 1.212 (3) Å which is very close to a formal CO bond length [1.21 Å] (Allen et al., 1987). The phenyl ring is almost coplanar with the central hydrazinecarboxamide moiety with maximum deviation of -0.060 (3) Å for the C1 atom. The two aromatic rings are twisted with dihedral angle of 22.88 (13)°.

While the intramolecular O—H···N and C—H···O hydrogen bonds increase the rigidity of the molecule, intermolecular O—H···O, N—H···O, C—H···O hydrogen bonding interactions (Table 1) links the adjacent molecules directly and through water molecule forming an infinite three-dimensional supramolecular structure in the lattice (Fig. 2). Phenylhydrazinecarboxamide molecules also interact through two types of C—H···π interactions (Fig. 3) with the H···π distances of 2.92 and 2.79 Å and very weak ππ interactions with a shortest centroid–centroid distance of 5.0552 (18) Å. The parallel arrangement of the molecules along b axis is shown in Fig. 4.

Related literature top

For the application of hydrazinecarboxamides as enzyme inhibitors and as a source of self-complementary bidirectional hydrogen-bonding motifs, see: Lam et al. (1994); Chorev & Goodman (1993); Zhao et al. (1990). For the synthesis of related compounds, see: Sreekanth et al. (2004). For standard bond-length data, see: Allen et al. (1987). For related structures, see: Sithambaresan & Kurup (2011); Siji et al. (2010).

Experimental top

The title compound was prepared by adapting a reported procedure (Sreekanth et al., 2004). To a warm ethanolic solution of N-phenylsemicarbazide (0.302 g, 2 mmol), an ethanolic solution of 1-(2-hydroxy-4-methoxyphenyl)ethanone (0.332 g, 2 mmol) was added and the resulting solution was refluxed for 3 h after adding three drops of glacial acetic acid. On cooling the solution colorless crystals were separated out. Single crystals suitable for X-ray diffraction studies were obtained by slow evaporation from its ethanolic solution.

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances 0.93–0.96 Å. H atoms were assigned as Uiso = 1.2Ueq. H1A and H1B atoms of O1S were located from difference maps and restrained using DFIX and DANG instructions with O—H = 0.86 (2) and H···H = 1.36 (2) Å respectively. N2—H2N, N3—H3 and O2—H2' atoms were located from difference maps and restrained using DFIX instructions with bond distance of 0.88 (1) Å.

Structure description top

Hydrazinecarboxamides have gained considerable importance in recent years in the design of enzyme inhibitors (Lam et al., 1994), as replacement for the amide (–CO–NH–) bond in peptidomimetics (Chorev & Goodman, 1993) and as sources of self-complementary bidirectional hydrogen bonding motif in supramolecular chemistry (Zhao et al., 1990). As a continuous work on the hydrazinecarboxamide compounds, a new hydrazinecarboxamide compound, (2E)-2-[1-(2-hydroxy-4-methoxyphenyl)ethylidene]-N-phenylhydrazinecarboxamide monohydrate, was prepared and structurally characterized. The ORTEP view of the title compound is shown in Fig. 1.

The compound crystallizes in monoclinic space group P21/c. The molecule adopts an E configuration with respect to C7N1 bond (Sithambaresan & Kurup, 2011; Siji et al., 2010) and it exists in amido form with C9O3 bond length of 1.212 (3) Å which is very close to a formal CO bond length [1.21 Å] (Allen et al., 1987). The phenyl ring is almost coplanar with the central hydrazinecarboxamide moiety with maximum deviation of -0.060 (3) Å for the C1 atom. The two aromatic rings are twisted with dihedral angle of 22.88 (13)°.

While the intramolecular O—H···N and C—H···O hydrogen bonds increase the rigidity of the molecule, intermolecular O—H···O, N—H···O, C—H···O hydrogen bonding interactions (Table 1) links the adjacent molecules directly and through water molecule forming an infinite three-dimensional supramolecular structure in the lattice (Fig. 2). Phenylhydrazinecarboxamide molecules also interact through two types of C—H···π interactions (Fig. 3) with the H···π distances of 2.92 and 2.79 Å and very weak ππ interactions with a shortest centroid–centroid distance of 5.0552 (18) Å. The parallel arrangement of the molecules along b axis is shown in Fig. 4.

For the application of hydrazinecarboxamides as enzyme inhibitors and as a source of self-complementary bidirectional hydrogen-bonding motifs, see: Lam et al. (1994); Chorev & Goodman (1993); Zhao et al. (1990). For the synthesis of related compounds, see: Sreekanth et al. (2004). For standard bond-length data, see: Allen et al. (1987). For related structures, see: Sithambaresan & Kurup (2011); Siji et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of the compound, drawn with 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. Graphical representation showing three-dimensional supramolecular hydrogen bonding network in the crystal structure of C16H17N3O3.H2O.
[Figure 3] Fig. 3. C—H···π interactions present in the compound C16H17N3O3.H2O.
[Figure 4] Fig. 4. Packing diagram of the compound showing the parallel arrangement of the molecules along b axis.
(2E)-2-[1-(2-Hydroxy-4-methoxyphenyl)ethylidene]-N-phenylhydrazinecarboxamide monohydrate top
Crystal data top
C16H17N3O3·H2OF(000) = 672
Mr = 317.34Dx = 1.322 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2335 reflections
a = 12.4020 (18) Åθ = 2.6–28.5°
b = 13.7808 (19) ŵ = 0.10 mm1
c = 9.3919 (10) ÅT = 296 K
β = 96.813 (7)°Block, light yellow
V = 1593.8 (4) Å30.50 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2809 independent reflections
Radiation source: fine-focus sealed tube1807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 2.6°
ω and φ scansh = 1414
Absorption correction: multi-scan
(SADABS (Bruker, 2004)
k = 1516
Tmin = 0.966, Tmax = 0.976l = 1111
12097 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.2072P]
where P = (Fo2 + 2Fc2)/3
2809 reflections(Δ/σ)max = 0.002
230 parametersΔρmax = 0.22 e Å3
6 restraintsΔρmin = 0.19 e Å3
Crystal data top
C16H17N3O3·H2OV = 1593.8 (4) Å3
Mr = 317.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4020 (18) ŵ = 0.10 mm1
b = 13.7808 (19) ÅT = 296 K
c = 9.3919 (10) Å0.50 × 0.30 × 0.25 mm
β = 96.813 (7)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2809 independent reflections
Absorption correction: multi-scan
(SADABS (Bruker, 2004)
1807 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.976Rint = 0.083
12097 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0536 restraints
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.22 e Å3
2809 reflectionsΔρmin = 0.19 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00919 (16)0.45528 (15)0.7326 (2)0.0873 (6)
O20.28586 (14)0.46101 (12)0.42646 (18)0.0649 (5)
O30.48111 (13)0.39835 (12)0.18956 (17)0.0673 (5)
O1S0.46607 (17)0.43758 (13)0.6547 (2)0.0782 (6)
N10.34225 (14)0.30092 (14)0.32720 (19)0.0550 (5)
N20.41511 (16)0.25435 (15)0.2542 (2)0.0579 (5)
N30.55055 (16)0.25697 (15)0.1149 (2)0.0595 (5)
C10.1243 (2)0.26313 (19)0.5438 (3)0.0665 (7)
H10.11490.19640.53410.080*
C20.0592 (2)0.3136 (2)0.6243 (3)0.0721 (7)
H20.00570.28140.66740.087*
C30.07267 (18)0.41231 (19)0.6422 (3)0.0632 (6)
C40.14813 (18)0.46014 (18)0.5735 (2)0.0605 (6)
H40.15600.52700.58310.073*
C50.21263 (16)0.40877 (17)0.4898 (2)0.0525 (6)
C60.20481 (17)0.30831 (17)0.4753 (2)0.0527 (6)
C70.27824 (18)0.25124 (17)0.3976 (2)0.0549 (6)
C80.2817 (2)0.14371 (19)0.4067 (3)0.0725 (7)
H8A0.29110.11720.31450.109*
H8B0.21490.12020.43630.109*
H8C0.34130.12420.47540.109*
C90.48365 (17)0.31043 (17)0.1865 (2)0.0528 (5)
C100.63021 (18)0.29082 (16)0.0333 (2)0.0544 (6)
C110.6348 (2)0.38417 (19)0.0166 (3)0.0703 (7)
H110.58390.42970.00530.084*
C120.7142 (2)0.4102 (2)0.0987 (3)0.0797 (8)
H120.71670.47350.13230.096*
C130.7897 (2)0.3447 (2)0.1319 (3)0.0858 (9)
H130.84390.36280.18700.103*
C140.7843 (3)0.2526 (3)0.0828 (4)0.0974 (11)
H140.83550.20740.10460.117*
C150.7047 (2)0.2249 (2)0.0017 (3)0.0787 (8)
H150.70160.16110.02950.094*
C160.0259 (3)0.5537 (2)0.7664 (3)0.0955 (10)
H16A0.10010.56360.80550.143*
H16B0.02110.57280.83570.143*
H16C0.01000.59200.68120.143*
H1A0.424 (3)0.459 (3)0.583 (3)0.141 (16)*
H1B0.486 (3)0.4887 (17)0.698 (3)0.109 (12)*
H30.548 (2)0.1938 (8)0.126 (3)0.089 (9)*
H2'0.318 (2)0.4169 (16)0.378 (3)0.094 (10)*
H2N0.4174 (19)0.1907 (8)0.245 (2)0.063 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0817 (13)0.0877 (15)0.1018 (14)0.0039 (10)0.0499 (10)0.0000 (11)
O20.0673 (11)0.0548 (11)0.0776 (11)0.0040 (8)0.0296 (8)0.0036 (8)
O30.0756 (11)0.0487 (10)0.0802 (12)0.0015 (8)0.0203 (8)0.0082 (8)
O1S0.0866 (13)0.0528 (11)0.0914 (14)0.0062 (10)0.0048 (11)0.0055 (10)
N10.0542 (11)0.0577 (13)0.0540 (11)0.0038 (9)0.0097 (8)0.0022 (8)
N20.0619 (12)0.0503 (13)0.0637 (12)0.0046 (9)0.0178 (9)0.0037 (9)
N30.0641 (12)0.0469 (12)0.0710 (13)0.0047 (9)0.0225 (10)0.0005 (9)
C10.0627 (15)0.0601 (16)0.0788 (17)0.0095 (12)0.0176 (13)0.0023 (12)
C20.0637 (15)0.0726 (19)0.0847 (18)0.0111 (13)0.0283 (13)0.0069 (14)
C30.0536 (14)0.0717 (18)0.0668 (15)0.0032 (12)0.0176 (11)0.0055 (12)
C40.0558 (13)0.0601 (15)0.0673 (15)0.0026 (11)0.0138 (11)0.0012 (11)
C50.0459 (12)0.0585 (15)0.0536 (13)0.0029 (10)0.0077 (9)0.0074 (10)
C60.0494 (12)0.0576 (15)0.0505 (12)0.0026 (10)0.0037 (9)0.0044 (10)
C70.0519 (13)0.0595 (15)0.0518 (13)0.0010 (10)0.0001 (10)0.0014 (10)
C80.0812 (18)0.0603 (16)0.0766 (17)0.0002 (13)0.0116 (13)0.0021 (12)
C90.0521 (13)0.0493 (14)0.0560 (14)0.0013 (10)0.0023 (10)0.0033 (10)
C100.0536 (13)0.0552 (15)0.0548 (13)0.0017 (10)0.0076 (10)0.0023 (10)
C110.0765 (17)0.0573 (16)0.0808 (17)0.0057 (13)0.0251 (13)0.0006 (13)
C120.097 (2)0.0648 (18)0.0831 (19)0.0106 (15)0.0328 (15)0.0019 (13)
C130.0797 (19)0.095 (2)0.089 (2)0.0092 (16)0.0368 (15)0.0005 (17)
C140.093 (2)0.089 (2)0.120 (3)0.0294 (17)0.0550 (19)0.0167 (18)
C150.0864 (19)0.0643 (18)0.091 (2)0.0191 (14)0.0335 (15)0.0115 (14)
C160.100 (2)0.091 (3)0.103 (2)0.0114 (18)0.0410 (18)0.0163 (18)
Geometric parameters (Å, º) top
O1—C31.360 (3)C4—H40.9300
O1—C161.403 (3)C5—C61.393 (3)
O2—C51.351 (3)C6—C71.462 (3)
O2—H2'0.881 (10)C7—C81.485 (3)
O3—C91.212 (3)C8—H8A0.9600
O1S—H1A0.857 (18)C8—H8B0.9600
O1S—H1B0.837 (18)C8—H8C0.9600
N1—C71.289 (3)C10—C151.363 (3)
N1—N21.358 (3)C10—C111.373 (3)
N2—C91.361 (3)C11—C121.368 (3)
N2—H2N0.882 (10)C11—H110.9300
N3—C91.348 (3)C12—C131.363 (4)
N3—C101.400 (3)C12—H120.9300
N3—H30.878 (10)C13—C141.354 (4)
C1—C21.360 (4)C13—H130.9300
C1—C61.397 (3)C14—C151.370 (4)
C1—H10.9300C14—H140.9300
C2—C31.379 (4)C15—H150.9300
C2—H20.9300C16—H16A0.9600
C3—C41.368 (3)C16—H16B0.9600
C4—C51.381 (3)C16—H16C0.9600
C3—O1—C16118.8 (2)C7—C8—H8B109.5
C5—O2—H2'103 (2)H8A—C8—H8B109.5
H1A—O1S—H1B102 (3)C7—C8—H8C109.5
C7—N1—N2119.7 (2)H8A—C8—H8C109.5
N1—N2—C9117.21 (19)H8B—C8—H8C109.5
N1—N2—H2N123.3 (16)O3—C9—N3125.3 (2)
C9—N2—H2N119.4 (16)O3—C9—N2122.5 (2)
C9—N3—C10127.4 (2)N3—C9—N2112.2 (2)
C9—N3—H3117 (2)C15—C10—C11119.0 (2)
C10—N3—H3115 (2)C15—C10—N3116.9 (2)
C2—C1—C6122.1 (2)C11—C10—N3124.0 (2)
C2—C1—H1118.9C12—C11—C10120.0 (2)
C6—C1—H1118.9C12—C11—H11120.0
C1—C2—C3120.0 (2)C10—C11—H11120.0
C1—C2—H2120.0C13—C12—C11121.0 (3)
C3—C2—H2120.0C13—C12—H12119.5
O1—C3—C4124.3 (2)C11—C12—H12119.5
O1—C3—C2115.8 (2)C14—C13—C12118.6 (3)
C4—C3—C2119.9 (2)C14—C13—H13120.7
C3—C4—C5119.8 (2)C12—C13—H13120.7
C3—C4—H4120.1C13—C14—C15121.2 (3)
C5—C4—H4120.1C13—C14—H14119.4
O2—C5—C4116.3 (2)C15—C14—H14119.4
O2—C5—C6121.9 (2)C10—C15—C14120.1 (3)
C4—C5—C6121.8 (2)C10—C15—H15119.9
C5—C6—C1116.3 (2)C14—C15—H15119.9
C5—C6—C7122.9 (2)O1—C16—H16A109.5
C1—C6—C7120.8 (2)O1—C16—H16B109.5
N1—C7—C6115.4 (2)H16A—C16—H16B109.5
N1—C7—C8123.0 (2)O1—C16—H16C109.5
C6—C7—C8121.6 (2)H16A—C16—H16C109.5
C7—C8—H8A109.5H16B—C16—H16C109.5
C7—N1—N2—C9177.41 (18)C5—C6—C7—N18.6 (3)
C6—C1—C2—C31.0 (4)C1—C6—C7—N1173.59 (19)
C16—O1—C3—C44.5 (4)C5—C6—C7—C8168.3 (2)
C16—O1—C3—C2174.0 (2)C1—C6—C7—C89.5 (3)
C1—C2—C3—O1175.5 (2)C10—N3—C9—O31.1 (4)
C1—C2—C3—C43.0 (4)C10—N3—C9—N2179.5 (2)
O1—C3—C4—C5176.5 (2)N1—N2—C9—O30.1 (3)
C2—C3—C4—C51.8 (4)N1—N2—C9—N3178.56 (18)
C3—C4—C5—O2179.4 (2)C9—N3—C10—C15165.1 (2)
C3—C4—C5—C61.4 (3)C9—N3—C10—C1117.3 (4)
O2—C5—C6—C1178.8 (2)C15—C10—C11—C120.8 (4)
C4—C5—C6—C13.3 (3)N3—C10—C11—C12178.4 (2)
O2—C5—C6—C73.4 (3)C10—C11—C12—C130.2 (4)
C4—C5—C6—C7174.6 (2)C11—C12—C13—C140.5 (5)
C2—C1—C6—C52.1 (3)C12—C13—C14—C150.1 (5)
C2—C1—C6—C7175.8 (2)C11—C10—C15—C141.5 (4)
N2—N1—C7—C6178.56 (17)N3—C10—C15—C14179.2 (3)
N2—N1—C7—C81.7 (3)C13—C14—C15—C101.2 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.88 (1)1.71 (2)2.526 (2)154 (3)
N2—H2N···O1Si0.88 (1)2.08 (1)2.900 (3)154 (2)
N3—H3···O1Si0.88 (1)2.11 (2)2.918 (3)153 (3)
O1S—H1A···O20.86 (2)2.12 (2)2.925 (3)156 (3)
O1S—H1B···O3ii0.84 (2)1.90 (2)2.730 (3)174 (3)
C8—H8C···O3iii0.962.513.457 (3)167
C11—H11···O30.932.312.881 (3)119
C13—H13···O1iv0.932.603.489 (3)160
C8—H8A···Cg1v0.962.923.543 (3)123
C16—H16C···Cg1vi0.962.793.645 (4)148
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z1; (v) x, y1/2, z3/2; (vi) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H17N3O3·H2O
Mr317.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.4020 (18), 13.7808 (19), 9.3919 (10)
β (°) 96.813 (7)
V3)1593.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS (Bruker, 2004)
Tmin, Tmax0.966, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
12097, 2809, 1807
Rint0.083
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.172, 1.02
No. of reflections2809
No. of parameters230
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2010), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2'···N10.881 (10)1.706 (16)2.526 (2)154 (3)
N2—H2N···O1Si0.882 (10)2.082 (14)2.900 (3)154 (2)
N3—H3···O1Si0.878 (10)2.110 (16)2.918 (3)153 (3)
O1S—H1A···O20.857 (18)2.12 (2)2.925 (3)156 (3)
O1S—H1B···O3ii0.837 (18)1.896 (18)2.730 (3)174 (3)
C8—H8C···O3iii0.962.513.457 (3)167.1
C11—H11···O30.932.312.881 (3)119.3
C13—H13···O1iv0.932.603.489 (3)160.0
C8—H8A···Cg1v0.962.923.543 (3)123
C16—H16C···Cg1vi0.962.793.645 (4)148
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z1; (v) x, y1/2, z3/2; (vi) x, y+1, z+1.
 

Acknowledgements

CFA is grateful to the University Grants Commission, New Delhi, India, for the award of a Teacher Fellowship. The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi 22, India, for the single-crystal X-ray diffraction measurements.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChorev, M. & Goodman, M. (1993). Acc. Chem. Res. 26, 266–273.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLam, P. Y. S., Jadhav, P. K., Eyermann, C. J., Hodge, C. N., Ru, Y., Bacheler, L. T., Meek, J. L., Otto, M. J., Rayner, M. M., Wong, Y. N., Chang, C. H., Weber, P. C., Jackson, D. A., Sharpe, T. R. & Viitanen, E. S. (1994). Science, 263, 380–384.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiji, V. L., Sudarsanakumar, M. R. & Suma, S. (2010). Polyhedron, 29, 2035–2040.  Web of Science CSD CrossRef CAS Google Scholar
First citationSithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o2972.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSreekanth, A., Kala, U. L., Nayar, C. R. & Kurup, M. R. P. (2004). Polyhedron, 23, 41–47.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, X., Chang, Y. L., Fowler, F. W. & Lauher, J. W. (1990). J. Am. Chem. Soc. 112, 6627–6634.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds