organic compounds
Methyl (3R*,3′S*)-1′,1′′-dimethyl-2,2′′-dioxodispiro[indoline-3,2′-pyrrolidine-3′,3′′-indoline]-4′-carboxylate
aDepartment of Physics, S.M.K. Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, bIndustrial Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: a_sp59@yahoo.in
In the title compound, C22H21N3O4, the central pyrrolidine ring adopts an with the N atom in the flap position. The indoline ring systems are almost perpendicular to the mean plane of the pyrrolidine ring, making dihedral angles of 86.4 (8) and 83.1 (8)°. The acetate group attached to the pyrrolidine ring assumes an extended conformation. In thecrystal, N—H⋯O hydrogen bonds result in the formation of a C(7) chain running along [100]. The crystal packing also features π–π interactions [centroid–centroid distance = 3.2032 (11) Å].
Related literature
For the biological activity of spiro-pyrrolidine derivatives, see: Obniska et al. (2003); Peddi et al. (2004); Kaminski & Obniska (2008); Stylianakis et al. (2003); Waldmann (1995); Suzuki et al. (1994); Huryn et al. (1991). For a related structure, see: Wei et al. (2011). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536812037440/bx2423sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812037440/bx2423Isup2.hkl
To a mixture of 1eq of (E)-methyl 2-(1-methyl-2-oxoindolin-3-ylidene) acetate, 1eq of isatin and 1.5eq of sarcosine were dissolved in acetonitrile. This rection mixture refluxed at 80°C for 8 h. Completion of reaction monitor by thin layer
The reaction mixture was extracted with ethyl acetate and water. The product was dried and purified by using ethyl acetate and hexane (1:9) as an elutent to afford pure Dispiro oxindole. (Yield:90%). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.
Spiro-pyrrolidine derivatives are unique tetracyclic 5-HT(2 A) receptor antagonist (Obniska et al., 2003; Peddi et al., 2004). These derivatives possess anticonvulsant (Kaminski & Obniska, 2008) and anti-influenza virus (Stylianakis et al., 2003) activities. Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled
(Suzuki et al., 1994; Huryn et al., 1991). In view of these importance and continuation of our work on the analyis of spiro-pyrrolidine derivatives, the of the title compound has been carried out and the results are presented here.X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometry of pyrrolidine and indoline group systems are comparable with the related structure (Wei et al., 2011). The sum of the angles at N1 [336.2 (1)°] and N3 [358.8 (1)°] of the pyrrolidine rings are in accordance with sp3 and sp2 hybridizations. The indoline ring systems [N2/C4/C8—C14 and N3/C3/C15—C21] makes the dihedral angles of 86.4 (8) ° and 83.1 (8)° with respect to the mean plane of the pyrrolidine ring system, it clearly shows the indoline rings attached to the pyrrolidine ring system are almost perpendicular to each other. The acetate group assumes an extended conformation as can be seen from torsion angle C2—C6—O2—C7 = 175.1 (2) °.
The pyrrolidine rings [N1/C1—C4] adopts φ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters, Δ, (Nardelli et al., 1983) as follows: q2 = 0.4044 (2) Å, φ = 354.1 (3)° and Δs(N1) = 4.22 (2)°. In the crystal the molecules are linked by intermolecular N2—H2A···O4 (-1/2 - x,-1/2 + y,3/2 - z) hydrogen bonds result in the formation of infinite C(7) chain running along a axis. The crystal packing is further stabilized by π–π stacking interaction between Cg2 and Cg3 rings at x,y,z. The centroid–centroid distance between these two rings is 3.2032 (11) Å]. Cg2 and Cg3 are the centroid of the N2/C4/C12/C13/C14 and N3/C3/C19/C20/C21 rings.
with the puckering parameters q2 andFor the biological activity of spiro-pyrrolidine derivatives, see: Obniska et al. (2003); Peddi et al. (2004); Kaminski & Obniska (2008); Stylianakis et al. (2003); Waldmann (1995); Suzuki et al. (1994); Huryn et al. (1991). For a related structure, see: Wei et al. (2011). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C22H21N3O4 | F(000) = 824 |
Mr = 391.42 | Dx = 1.326 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3691 reflections |
a = 9.8244 (4) Å | θ = 2.1–25.7° |
b = 12.7193 (5) Å | µ = 0.09 mm−1 |
c = 15.7630 (6) Å | T = 293 K |
β = 95.474 (2)° | Block, colourless |
V = 1960.75 (13) Å3 | 0.25 × 0.22 × 0.19 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 3691 independent reflections |
Radiation source: fine-focus sealed tube | 2716 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ω and φ scans | θmax = 25.7°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −11→11 |
Tmin = 0.978, Tmax = 0.983 | k = −15→15 |
17984 measured reflections | l = −19→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0457P)2 + 0.6361P] where P = (Fo2 + 2Fc2)/3 |
3691 reflections | (Δ/σ)max < 0.001 |
265 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C22H21N3O4 | V = 1960.75 (13) Å3 |
Mr = 391.42 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.8244 (4) Å | µ = 0.09 mm−1 |
b = 12.7193 (5) Å | T = 293 K |
c = 15.7630 (6) Å | 0.25 × 0.22 × 0.19 mm |
β = 95.474 (2)° |
Bruker APEXII CCD area-detector diffractometer | 3691 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2716 reflections with I > 2σ(I) |
Tmin = 0.978, Tmax = 0.983 | Rint = 0.034 |
17984 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.21 e Å−3 |
3691 reflections | Δρmin = −0.18 e Å−3 |
265 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.1007 (2) | −0.03758 (15) | 0.60269 (11) | 0.0486 (5) | |
H1A | −0.0871 | 0.0299 | 0.5761 | 0.058* | |
H1B | −0.1229 | −0.0896 | 0.5586 | 0.058* | |
C2 | 0.02541 (18) | −0.06977 (13) | 0.65991 (11) | 0.0382 (4) | |
H2 | 0.0738 | −0.0054 | 0.6791 | 0.046* | |
C3 | −0.03026 (17) | −0.12230 (12) | 0.74001 (10) | 0.0320 (4) | |
C4 | −0.18972 (17) | −0.12132 (12) | 0.71699 (10) | 0.0335 (4) | |
C5 | −0.3439 (2) | −0.01745 (19) | 0.61685 (14) | 0.0640 (6) | |
H5A | −0.3650 | −0.0755 | 0.5789 | 0.096* | |
H5B | −0.3472 | 0.0468 | 0.5848 | 0.096* | |
H5C | −0.4096 | −0.0146 | 0.6582 | 0.096* | |
C6 | 0.1228 (2) | −0.13630 (15) | 0.61579 (13) | 0.0488 (5) | |
C7 | 0.3381 (3) | −0.2173 (2) | 0.6299 (2) | 0.1044 (10) | |
H7A | 0.3031 | −0.2878 | 0.6288 | 0.157* | |
H7B | 0.4230 | −0.2146 | 0.6654 | 0.157* | |
H7C | 0.3531 | −0.1961 | 0.5730 | 0.157* | |
C8 | −0.30396 (19) | −0.03885 (14) | 0.84650 (11) | 0.0446 (5) | |
H8 | −0.2595 | 0.0255 | 0.8446 | 0.053* | |
C9 | −0.3969 (2) | −0.05603 (16) | 0.90536 (12) | 0.0519 (5) | |
H9 | −0.4152 | −0.0026 | 0.9429 | 0.062* | |
C10 | −0.4627 (2) | −0.15059 (17) | 0.90921 (13) | 0.0588 (6) | |
H10 | −0.5229 | −0.1614 | 0.9504 | 0.071* | |
C11 | −0.4404 (2) | −0.23012 (16) | 0.85248 (14) | 0.0596 (6) | |
H11 | −0.4859 | −0.2941 | 0.8540 | 0.071* | |
C12 | −0.34875 (19) | −0.21128 (13) | 0.79372 (12) | 0.0425 (4) | |
C13 | −0.27769 (17) | −0.11765 (12) | 0.79085 (10) | 0.0348 (4) | |
C14 | −0.23636 (18) | −0.22843 (13) | 0.67501 (11) | 0.0388 (4) | |
C15 | 0.04532 (19) | −0.32158 (13) | 0.73222 (12) | 0.0412 (4) | |
H15 | 0.0074 | −0.3327 | 0.6766 | 0.049* | |
C16 | 0.1163 (2) | −0.40147 (14) | 0.77744 (13) | 0.0497 (5) | |
H16 | 0.1263 | −0.4664 | 0.7516 | 0.060* | |
C17 | 0.1718 (2) | −0.38606 (15) | 0.85940 (13) | 0.0531 (5) | |
H17 | 0.2176 | −0.4411 | 0.8887 | 0.064* | |
C18 | 0.1611 (2) | −0.29021 (15) | 0.89939 (13) | 0.0509 (5) | |
H18 | 0.1992 | −0.2793 | 0.9550 | 0.061* | |
C19 | 0.09178 (18) | −0.21159 (13) | 0.85362 (11) | 0.0381 (4) | |
C20 | 0.03200 (17) | −0.22564 (12) | 0.77117 (10) | 0.0330 (4) | |
C21 | 0.00958 (17) | −0.04954 (13) | 0.81677 (11) | 0.0353 (4) | |
C22 | 0.1426 (3) | −0.06320 (19) | 0.95731 (14) | 0.0729 (7) | |
H22A | 0.1281 | 0.0114 | 0.9576 | 0.109* | |
H22B | 0.2389 | −0.0775 | 0.9601 | 0.109* | |
H22C | 0.1056 | −0.0941 | 1.0057 | 0.109* | |
N1 | −0.20775 (16) | −0.03125 (11) | 0.66017 (9) | 0.0420 (4) | |
N2 | −0.31930 (16) | −0.27579 (12) | 0.72636 (10) | 0.0502 (4) | |
H2A | −0.3505 | −0.3386 | 0.7185 | 0.060* | |
N3 | 0.07510 (16) | −0.10775 (11) | 0.87955 (9) | 0.0424 (4) | |
O1 | 0.1005 (2) | −0.17271 (15) | 0.54647 (10) | 0.0875 (6) | |
O2 | 0.24061 (15) | −0.14729 (11) | 0.66334 (10) | 0.0639 (4) | |
O3 | −0.20458 (14) | −0.26255 (10) | 0.60748 (8) | 0.0524 (4) | |
O4 | −0.00852 (13) | 0.04480 (9) | 0.82033 (8) | 0.0467 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0598 (13) | 0.0488 (11) | 0.0373 (10) | 0.0048 (9) | 0.0044 (9) | 0.0115 (8) |
C2 | 0.0463 (11) | 0.0311 (9) | 0.0376 (10) | −0.0019 (7) | 0.0053 (8) | 0.0030 (7) |
C3 | 0.0364 (9) | 0.0272 (8) | 0.0316 (9) | 0.0002 (7) | −0.0011 (7) | 0.0005 (7) |
C4 | 0.0381 (10) | 0.0287 (8) | 0.0322 (9) | 0.0003 (7) | −0.0030 (7) | 0.0000 (7) |
C5 | 0.0575 (14) | 0.0739 (15) | 0.0581 (13) | 0.0212 (11) | −0.0077 (11) | 0.0133 (11) |
C6 | 0.0589 (14) | 0.0418 (10) | 0.0472 (12) | −0.0001 (9) | 0.0133 (10) | 0.0041 (9) |
C7 | 0.0647 (17) | 0.100 (2) | 0.153 (3) | 0.0295 (16) | 0.0350 (19) | 0.003 (2) |
C8 | 0.0471 (11) | 0.0401 (10) | 0.0467 (11) | −0.0054 (8) | 0.0052 (9) | −0.0079 (8) |
C9 | 0.0553 (13) | 0.0555 (12) | 0.0463 (11) | 0.0004 (10) | 0.0114 (10) | −0.0108 (9) |
C10 | 0.0611 (14) | 0.0611 (13) | 0.0573 (13) | 0.0019 (11) | 0.0223 (11) | 0.0040 (10) |
C11 | 0.0616 (14) | 0.0442 (11) | 0.0761 (15) | −0.0083 (10) | 0.0230 (12) | 0.0033 (10) |
C12 | 0.0453 (11) | 0.0330 (9) | 0.0490 (11) | 0.0002 (8) | 0.0039 (9) | −0.0017 (8) |
C13 | 0.0363 (9) | 0.0324 (8) | 0.0347 (9) | 0.0006 (7) | −0.0022 (7) | −0.0002 (7) |
C14 | 0.0396 (10) | 0.0368 (9) | 0.0377 (10) | 0.0023 (8) | −0.0083 (8) | −0.0044 (8) |
C15 | 0.0454 (11) | 0.0338 (9) | 0.0438 (10) | 0.0007 (8) | 0.0014 (8) | −0.0018 (8) |
C16 | 0.0527 (12) | 0.0321 (9) | 0.0648 (13) | 0.0088 (8) | 0.0088 (10) | 0.0004 (9) |
C17 | 0.0518 (12) | 0.0457 (11) | 0.0610 (13) | 0.0157 (9) | 0.0019 (10) | 0.0157 (10) |
C18 | 0.0537 (12) | 0.0548 (12) | 0.0426 (11) | 0.0146 (10) | −0.0042 (9) | 0.0074 (9) |
C19 | 0.0402 (10) | 0.0384 (9) | 0.0354 (10) | 0.0053 (8) | 0.0016 (8) | 0.0014 (7) |
C20 | 0.0335 (9) | 0.0306 (8) | 0.0345 (9) | 0.0005 (7) | 0.0019 (7) | 0.0016 (7) |
C21 | 0.0337 (9) | 0.0328 (9) | 0.0387 (10) | −0.0011 (7) | −0.0009 (8) | −0.0043 (7) |
C22 | 0.0833 (17) | 0.0762 (15) | 0.0525 (13) | 0.0234 (13) | −0.0287 (12) | −0.0264 (11) |
N1 | 0.0463 (9) | 0.0408 (8) | 0.0379 (8) | 0.0079 (7) | −0.0011 (7) | 0.0096 (6) |
N2 | 0.0509 (10) | 0.0338 (8) | 0.0666 (11) | −0.0094 (7) | 0.0093 (8) | −0.0138 (7) |
N3 | 0.0491 (9) | 0.0421 (8) | 0.0334 (8) | 0.0079 (7) | −0.0091 (7) | −0.0070 (6) |
O1 | 0.1076 (15) | 0.1034 (14) | 0.0525 (10) | 0.0297 (11) | 0.0128 (9) | −0.0193 (9) |
O2 | 0.0449 (9) | 0.0626 (9) | 0.0854 (11) | 0.0047 (7) | 0.0118 (8) | 0.0021 (8) |
O3 | 0.0633 (9) | 0.0526 (8) | 0.0396 (7) | 0.0027 (7) | −0.0040 (6) | −0.0150 (6) |
O4 | 0.0511 (8) | 0.0309 (7) | 0.0558 (8) | 0.0023 (5) | −0.0061 (6) | −0.0089 (6) |
C1—N1 | 1.455 (2) | C9—H9 | 0.9300 |
C1—C2 | 1.517 (3) | C10—C11 | 1.381 (3) |
C1—H1A | 0.9700 | C10—H10 | 0.9300 |
C1—H1B | 0.9700 | C11—C12 | 1.373 (3) |
C2—C6 | 1.498 (3) | C11—H11 | 0.9300 |
C2—C3 | 1.572 (2) | C12—C13 | 1.383 (2) |
C2—H2 | 0.9800 | C12—N2 | 1.394 (2) |
C3—C20 | 1.512 (2) | C14—O3 | 1.217 (2) |
C3—C21 | 1.544 (2) | C14—N2 | 1.345 (2) |
C3—C4 | 1.574 (2) | C15—C20 | 1.378 (2) |
C4—N1 | 1.454 (2) | C15—C16 | 1.390 (2) |
C4—C13 | 1.516 (2) | C15—H15 | 0.9300 |
C4—C14 | 1.564 (2) | C16—C17 | 1.368 (3) |
C5—N1 | 1.454 (2) | C16—H16 | 0.9300 |
C5—H5A | 0.9600 | C17—C18 | 1.381 (3) |
C5—H5B | 0.9600 | C17—H17 | 0.9300 |
C5—H5C | 0.9600 | C18—C19 | 1.375 (2) |
C6—O1 | 1.188 (2) | C18—H18 | 0.9300 |
C6—O2 | 1.325 (2) | C19—C20 | 1.386 (2) |
C7—O2 | 1.444 (3) | C19—N3 | 1.397 (2) |
C7—H7A | 0.9600 | C21—O4 | 1.2151 (19) |
C7—H7B | 0.9600 | C21—N3 | 1.349 (2) |
C7—H7C | 0.9600 | C22—N3 | 1.452 (2) |
C8—C13 | 1.372 (2) | C22—H22A | 0.9600 |
C8—C9 | 1.380 (3) | C22—H22B | 0.9600 |
C8—H8 | 0.9300 | C22—H22C | 0.9600 |
C9—C10 | 1.369 (3) | N2—H2A | 0.8600 |
N1—C1—C2 | 104.04 (13) | C12—C11—H11 | 121.2 |
N1—C1—H1A | 110.9 | C10—C11—H11 | 121.2 |
C2—C1—H1A | 110.9 | C11—C12—C13 | 122.53 (17) |
N1—C1—H1B | 110.9 | C11—C12—N2 | 127.46 (17) |
C2—C1—H1B | 110.9 | C13—C12—N2 | 109.86 (16) |
H1A—C1—H1B | 109.0 | C8—C13—C12 | 118.78 (16) |
C6—C2—C1 | 113.46 (15) | C8—C13—C4 | 132.01 (15) |
C6—C2—C3 | 114.81 (14) | C12—C13—C4 | 108.98 (14) |
C1—C2—C3 | 105.38 (14) | O3—C14—N2 | 125.97 (16) |
C6—C2—H2 | 107.6 | O3—C14—C4 | 126.24 (16) |
C1—C2—H2 | 107.6 | N2—C14—C4 | 107.79 (14) |
C3—C2—H2 | 107.6 | C20—C15—C16 | 118.90 (17) |
C20—C3—C21 | 101.66 (13) | C20—C15—H15 | 120.6 |
C20—C3—C2 | 118.00 (14) | C16—C15—H15 | 120.6 |
C21—C3—C2 | 107.05 (13) | C17—C16—C15 | 121.00 (17) |
C20—C3—C4 | 116.40 (13) | C17—C16—H16 | 119.5 |
C21—C3—C4 | 110.38 (13) | C15—C16—H16 | 119.5 |
C2—C3—C4 | 103.08 (13) | C16—C17—C18 | 121.11 (17) |
N1—C4—C13 | 113.82 (13) | C16—C17—H17 | 119.4 |
N1—C4—C14 | 114.33 (13) | C18—C17—H17 | 119.4 |
C13—C4—C14 | 100.74 (13) | C19—C18—C17 | 117.26 (18) |
N1—C4—C3 | 102.03 (13) | C19—C18—H18 | 121.4 |
C13—C4—C3 | 116.81 (13) | C17—C18—H18 | 121.4 |
C14—C4—C3 | 109.61 (13) | C18—C19—C20 | 122.87 (16) |
N1—C5—H5A | 109.5 | C18—C19—N3 | 126.89 (17) |
N1—C5—H5B | 109.5 | C20—C19—N3 | 110.20 (14) |
H5A—C5—H5B | 109.5 | C15—C20—C19 | 118.84 (15) |
N1—C5—H5C | 109.5 | C15—C20—C3 | 132.68 (16) |
H5A—C5—H5C | 109.5 | C19—C20—C3 | 108.35 (14) |
H5B—C5—H5C | 109.5 | O4—C21—N3 | 124.74 (15) |
O1—C6—O2 | 123.6 (2) | O4—C21—C3 | 126.93 (15) |
O1—C6—C2 | 125.3 (2) | N3—C21—C3 | 108.27 (13) |
O2—C6—C2 | 111.05 (17) | N3—C22—H22A | 109.5 |
O2—C7—H7A | 109.5 | N3—C22—H22B | 109.5 |
O2—C7—H7B | 109.5 | H22A—C22—H22B | 109.5 |
H7A—C7—H7B | 109.5 | N3—C22—H22C | 109.5 |
O2—C7—H7C | 109.5 | H22A—C22—H22C | 109.5 |
H7A—C7—H7C | 109.5 | H22B—C22—H22C | 109.5 |
H7B—C7—H7C | 109.5 | C5—N1—C4 | 115.91 (15) |
C13—C8—C9 | 119.40 (17) | C5—N1—C1 | 113.71 (15) |
C13—C8—H8 | 120.3 | C4—N1—C1 | 106.69 (13) |
C9—C8—H8 | 120.3 | C14—N2—C12 | 112.12 (15) |
C10—C9—C8 | 120.93 (18) | C14—N2—H2A | 123.9 |
C10—C9—H9 | 119.5 | C12—N2—H2A | 123.9 |
C8—C9—H9 | 119.5 | C21—N3—C19 | 111.43 (14) |
C9—C10—C11 | 120.68 (19) | C21—N3—C22 | 123.54 (16) |
C9—C10—H10 | 119.7 | C19—N3—C22 | 123.99 (15) |
C11—C10—H10 | 119.7 | C6—O2—C7 | 115.6 (2) |
C12—C11—C10 | 117.60 (18) | ||
N1—C1—C2—C6 | 148.17 (15) | C15—C16—C17—C18 | −1.1 (3) |
N1—C1—C2—C3 | 21.75 (17) | C16—C17—C18—C19 | 0.4 (3) |
C6—C2—C3—C20 | 7.8 (2) | C17—C18—C19—C20 | 1.0 (3) |
C1—C2—C3—C20 | 133.43 (15) | C17—C18—C19—N3 | −176.25 (18) |
C6—C2—C3—C21 | 121.57 (16) | C16—C15—C20—C19 | 1.0 (3) |
C1—C2—C3—C21 | −112.84 (15) | C16—C15—C20—C3 | 176.17 (17) |
C6—C2—C3—C4 | −122.00 (16) | C18—C19—C20—C15 | −1.7 (3) |
C1—C2—C3—C4 | 3.59 (16) | N3—C19—C20—C15 | 175.92 (15) |
C20—C3—C4—N1 | −158.29 (13) | C18—C19—C20—C3 | −177.98 (17) |
C21—C3—C4—N1 | 86.55 (14) | N3—C19—C20—C3 | −0.31 (19) |
C2—C3—C4—N1 | −27.49 (15) | C21—C3—C20—C15 | −173.52 (18) |
C20—C3—C4—C13 | 76.93 (18) | C2—C3—C20—C15 | −56.9 (3) |
C21—C3—C4—C13 | −38.23 (18) | C4—C3—C20—C15 | 66.5 (2) |
C2—C3—C4—C13 | −152.27 (13) | C21—C3—C20—C19 | 2.00 (17) |
C20—C3—C4—C14 | −36.75 (19) | C2—C3—C20—C19 | 118.66 (16) |
C21—C3—C4—C14 | −151.91 (13) | C4—C3—C20—C19 | −117.97 (15) |
C2—C3—C4—C14 | 94.05 (14) | C20—C3—C21—O4 | 174.00 (17) |
C1—C2—C6—O1 | −8.8 (3) | C2—C3—C21—O4 | 49.6 (2) |
C3—C2—C6—O1 | 112.5 (2) | C4—C3—C21—O4 | −61.9 (2) |
C1—C2—C6—O2 | 169.32 (15) | C20—C3—C21—N3 | −3.08 (17) |
C3—C2—C6—O2 | −69.4 (2) | C2—C3—C21—N3 | −127.46 (15) |
C13—C8—C9—C10 | 0.3 (3) | C4—C3—C21—N3 | 121.04 (15) |
C8—C9—C10—C11 | −2.0 (3) | C13—C4—N1—C5 | −62.0 (2) |
C9—C10—C11—C12 | 1.2 (3) | C14—C4—N1—C5 | 53.0 (2) |
C10—C11—C12—C13 | 1.2 (3) | C3—C4—N1—C5 | 171.25 (15) |
C10—C11—C12—N2 | −174.0 (2) | C13—C4—N1—C1 | 170.24 (14) |
C9—C8—C13—C12 | 2.0 (3) | C14—C4—N1—C1 | −74.73 (18) |
C9—C8—C13—C4 | 175.81 (18) | C3—C4—N1—C1 | 43.49 (16) |
C11—C12—C13—C8 | −2.8 (3) | C2—C1—N1—C5 | −170.83 (16) |
N2—C12—C13—C8 | 173.15 (16) | C2—C1—N1—C4 | −41.80 (18) |
C11—C12—C13—C4 | −177.96 (18) | O3—C14—N2—C12 | −172.78 (17) |
N2—C12—C13—C4 | −2.0 (2) | C4—C14—N2—C12 | 6.5 (2) |
N1—C4—C13—C8 | −46.1 (3) | C11—C12—N2—C14 | 172.67 (19) |
C14—C4—C13—C8 | −168.94 (19) | C13—C12—N2—C14 | −3.0 (2) |
C3—C4—C13—C8 | 72.5 (2) | O4—C21—N3—C19 | −174.02 (17) |
N1—C4—C13—C12 | 128.17 (16) | C3—C21—N3—C19 | 3.14 (19) |
C14—C4—C13—C12 | 5.34 (17) | O4—C21—N3—C22 | −5.3 (3) |
C3—C4—C13—C12 | −113.25 (16) | C3—C21—N3—C22 | 171.91 (18) |
N1—C4—C14—O3 | 49.8 (2) | C18—C19—N3—C21 | 175.70 (18) |
C13—C4—C14—O3 | 172.23 (17) | C20—C19—N3—C21 | −1.8 (2) |
C3—C4—C14—O3 | −64.1 (2) | C18—C19—N3—C22 | 7.0 (3) |
N1—C4—C14—N2 | −129.55 (15) | C20—C19—N3—C22 | −170.56 (19) |
C13—C4—C14—N2 | −7.07 (17) | O1—C6—O2—C7 | −6.8 (3) |
C3—C4—C14—N2 | 116.63 (15) | C2—C6—O2—C7 | 175.05 (19) |
C20—C15—C16—C17 | 0.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O4i | 0.86 | 2.08 | 2.8935 (19) | 157 |
Symmetry code: (i) −x−1/2, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C22H21N3O4 |
Mr | 391.42 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 9.8244 (4), 12.7193 (5), 15.7630 (6) |
β (°) | 95.474 (2) |
V (Å3) | 1960.75 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.25 × 0.22 × 0.19 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.978, 0.983 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17984, 3691, 2716 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.110, 1.01 |
No. of reflections | 3691 |
No. of parameters | 265 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.18 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O4i | 0.86 | 2.08 | 2.8935 (19) | 157.3 |
Symmetry code: (i) −x−1/2, y−1/2, −z+3/2. |
Acknowledgements
The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection. ASP thanks the University Grants Commission, India, for a Minor research Project.
References
Bruker. (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Huryn, D. M., Trost, B. M. & Fleming, I. (1991). Comp. Org. Synth. 1, 64–74. Google Scholar
Kaminski, K. & Obniska, J. (2008). Acta Pol. Pharm. 65, 457–465. Web of Science PubMed CAS Google Scholar
Nardelli, M. (1983). Acta Cryst. C39, 1141–1142. CrossRef CAS Web of Science IUCr Journals Google Scholar
Obniska, J., Pawlowski, M., Kolaczkowski, M., Czopek, A., Duszyńska, B., Klodzińska, A., Tatarczyńska, E. & Chojnacka-Wójcik, E. (2003). Pol. J. Pharmacol. 55, 553–557. Web of Science PubMed CAS Google Scholar
Peddi, S., Roth, B. L., Glennon, R. A. & Westkaemper, R. B. (2004). Bioorg. Med. Chem. Lett. 14, 2279–2283. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699–1703. Web of Science CrossRef PubMed CAS Google Scholar
Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119–6122. CrossRef CAS Web of Science Google Scholar
Waldmann, H. (1995). Synlett, pp. 133–141. CrossRef Google Scholar
Wei, A. C., Ali, M. A., Choon, T. S., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o3125. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Spiro-pyrrolidine derivatives are unique tetracyclic 5-HT(2 A) receptor antagonist (Obniska et al., 2003; Peddi et al., 2004). These derivatives possess anticonvulsant (Kaminski & Obniska, 2008) and anti-influenza virus (Stylianakis et al., 2003) activities. Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki et al., 1994; Huryn et al., 1991). In view of these importance and continuation of our work on the crystal structure analyis of spiro-pyrrolidine derivatives, the crystal structure of the title compound has been carried out and the results are presented here.
X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometry of pyrrolidine and indoline group systems are comparable with the related structure (Wei et al., 2011). The sum of the angles at N1 [336.2 (1)°] and N3 [358.8 (1)°] of the pyrrolidine rings are in accordance with sp3 and sp2 hybridizations. The indoline ring systems [N2/C4/C8—C14 and N3/C3/C15—C21] makes the dihedral angles of 86.4 (8) ° and 83.1 (8)° with respect to the mean plane of the pyrrolidine ring system, it clearly shows the indoline rings attached to the pyrrolidine ring system are almost perpendicular to each other. The acetate group assumes an extended conformation as can be seen from torsion angle C2—C6—O2—C7 = 175.1 (2) °.
The pyrrolidine rings [N1/C1—C4] adopts envelope conformation, with the puckering parameters q2 and φ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters, Δ, (Nardelli et al., 1983) as follows: q2 = 0.4044 (2) Å, φ = 354.1 (3)° and Δs(N1) = 4.22 (2)°. In the crystal the molecules are linked by intermolecular N2—H2A···O4 (-1/2 - x,-1/2 + y,3/2 - z) hydrogen bonds result in the formation of infinite C(7) chain running along a axis. The crystal packing is further stabilized by π–π stacking interaction between Cg2 and Cg3 rings at x,y,z. The centroid–centroid distance between these two rings is 3.2032 (11) Å]. Cg2 and Cg3 are the centroid of the N2/C4/C12/C13/C14 and N3/C3/C19/C20/C21 rings.