metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Guanidinium dioxidobis(picolinato-κ2N,O)(picolinato-κO)uranate(VI)

aA.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospekt, 119071 Moscow, Russian Federation, and bComissariat a l'Energy Atomique (CEA), Marcoule, DEN/DRCP, BP 17171 30207 Bagnols-sur-Ceze, France
*Correspondence e-mail: mishkevitch@gmail.com

(Received 2 May 2012; accepted 10 August 2012; online 5 September 2012)

In the title compound, (CH6N3)[U(C6H4NO2)3O2], the uranyl group is coordinated by two O and two N atoms from two chelating picolinate ligands, and one O atom from a third picolinate ligand. The coordination environment of the UVI atom (N2O5) is distorted penta­gonal–bipyramidal. In the crystal, all amino groups are involved in the formation of N—H⋯O and N—H⋯N hydrogen bonds, which link cations and anions into layers parallel to the ac plane.

Related literature

For the disordered crystal structure of a related complex without guanidinium in which the uranyl ion is chelated by two picolinato ligands and coordinated via the O atom of a picolinic acid mol­ecule, see: Grechishnikova et al. (2007[Grechishnikova, E. V., Peresypkina, E. V., Virovets, A. V., Mikhailov, Yu. N. & Serezhkina, L. B. (2007). Russ. J. Coord. Chem. 33, 458-465.]).

[Scheme 1]

Experimental

Crystal data
  • (CH6N3)[U(C6H4NO2)3O2]

  • Mr = 696.42

  • Orthorhombic, P b c a

  • a = 16.3842 (4) Å

  • b = 13.1678 (3) Å

  • c = 21.2743 (4) Å

  • V = 4589.80 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 7.13 mm−1

  • T = 293 K

  • 0.18 × 0.06 × 0.04 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.360, Tmax = 0.764

  • 77357 measured reflections

  • 6604 independent reflections

  • 3818 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.075

  • S = 1.01

  • 6604 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 1.07 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11A⋯O4i 0.86 2.02 2.859 (6) 166
N11—H11B⋯O6ii 0.86 2.12 2.918 (6) 154
N12—H12A⋯O3i 0.86 2.18 3.033 (6) 169
N12—H12B⋯N3 0.86 2.24 3.042 (7) 156
N13—H13B⋯O8 0.86 2.10 2.847 (6) 146
N13—H13C⋯O6ii 0.86 2.35 3.083 (6) 144
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title structure contains complex anions, in which dioxidocations UO22+ are surrounded by two bidentate-chelating picolinate anions, coordinated by N and O atoms with the formation of 5-membered cycles, and one monodentate picolinate anion, coordinated by an O atom of the carboxylic group (Fig. 1). The guanidinium cation is located in the outer sphere. The UO2 groups are almost linear and symmetric. Coordination polyhedra of U atoms are distorted pentagonal bipyramids. The main distortions of coordination polyhedra are the differences between O—U—O and O—U—N angles in the equatorial plane. The U—O distances for O atoms of monodentate picolinate ligands are shorter, compared to U—O distances for bidentate ligands. The U—N distances are longer than U—O ones. Guanidinium cations act as proton donors for 6 H-bonds (2 bonds from each amino group) (Table 1) with O atoms of carboxylic groups and N atoms of organic anions. Each cation is connected to three complex anions forming layers parallel to the (010) plane (Fig. 2). This compound is the first anionic picolinate complex of uranyl and the first example of monodentate coordination of picolinate anion to an actinide cation.

Related literature top

For the disordered crystal structure of a related complex without guanidinium in which the uranyl ion is chelated by two picolinato ligands and coordinated via the O atom of a picolinic acid molecule, see: Grechishnikova et al. (2007).

Experimental top

The solid UO3.H2O was dissolved in 0.5 M aqueous solution of picolinic acid at 1:2 molar ratio. Then an equimolar quantity of guanidinium picolinate solution was added. This solution had been prepared by the neutralization of 1 M aqueous solution of guanidinium carbonate by an equimolar quantity of solid picolinic acid.

Light-yellow crystals were obtained by heating the reaction mixture up to 120 °C in a sealed glass tube.

Refinement top

The H atoms were placed in calculated positions with displacement parameters constrained to 1.2 times the Uiso of their parent atoms.

The largest electron density peak on the final difference Fourier-synthesis is 1.066 e Å-3 (0.93 Å from U1), the deepest hole is -0.707 e Å-3 (1.16 Å from O7).

Structure description top

The title structure contains complex anions, in which dioxidocations UO22+ are surrounded by two bidentate-chelating picolinate anions, coordinated by N and O atoms with the formation of 5-membered cycles, and one monodentate picolinate anion, coordinated by an O atom of the carboxylic group (Fig. 1). The guanidinium cation is located in the outer sphere. The UO2 groups are almost linear and symmetric. Coordination polyhedra of U atoms are distorted pentagonal bipyramids. The main distortions of coordination polyhedra are the differences between O—U—O and O—U—N angles in the equatorial plane. The U—O distances for O atoms of monodentate picolinate ligands are shorter, compared to U—O distances for bidentate ligands. The U—N distances are longer than U—O ones. Guanidinium cations act as proton donors for 6 H-bonds (2 bonds from each amino group) (Table 1) with O atoms of carboxylic groups and N atoms of organic anions. Each cation is connected to three complex anions forming layers parallel to the (010) plane (Fig. 2). This compound is the first anionic picolinate complex of uranyl and the first example of monodentate coordination of picolinate anion to an actinide cation.

For the disordered crystal structure of a related complex without guanidinium in which the uranyl ion is chelated by two picolinato ligands and coordinated via the O atom of a picolinic acid molecule, see: Grechishnikova et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. Dashed lines indicate the hydrogen bonds.
[Figure 2] Fig. 2. A portion of the crystal packing. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented by circles of arbitrary size. H atoms of anions omitted for clarity. Dashed lines indicate the hydrogen bonds.
Guanidinium dioxidobis(picolinato-κ2N,O)(picolinato-κO)uranate(VI) top
Crystal data top
(CH6N3)[U(C6H4NO2)3O2]F(000) = 2640
Mr = 696.42Dx = 2.016 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9491 reflections
a = 16.3842 (4) Åθ = 6.2–24.9°
b = 13.1678 (3) ŵ = 7.13 mm1
c = 21.2743 (4) ÅT = 293 K
V = 4589.80 (18) Å3Fragment, light-yellow
Z = 80.18 × 0.06 × 0.04 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6604 independent reflections
Radiation source: fine-focus sealed tube3818 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
ω and φ scansθmax = 30.0°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 2323
Tmin = 0.360, Tmax = 0.764k = 1818
77357 measured reflectionsl = 2729
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0317P)2]
where P = (Fo2 + 2Fc2)/3
6604 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 1.07 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
(CH6N3)[U(C6H4NO2)3O2]V = 4589.80 (18) Å3
Mr = 696.42Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.3842 (4) ŵ = 7.13 mm1
b = 13.1678 (3) ÅT = 293 K
c = 21.2743 (4) Å0.18 × 0.06 × 0.04 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6604 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3818 reflections with I > 2σ(I)
Tmin = 0.360, Tmax = 0.764Rint = 0.093
77357 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.01Δρmax = 1.07 e Å3
6604 reflectionsΔρmin = 0.71 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.418415 (10)0.592900 (13)0.227356 (7)0.03351 (6)
O10.4611 (2)0.7128 (3)0.24392 (16)0.0495 (9)
O20.3762 (2)0.4717 (3)0.21274 (15)0.0496 (9)
O30.3164 (2)0.6513 (3)0.15747 (14)0.0466 (9)
O40.1888 (2)0.6949 (3)0.13249 (18)0.0660 (12)
O50.4135 (2)0.5504 (3)0.33518 (15)0.0560 (10)
O60.4548 (3)0.4710 (4)0.42111 (17)0.0715 (13)
O70.4928 (2)0.5876 (3)0.13743 (17)0.0580 (10)
O80.6048 (2)0.5233 (4)0.09453 (17)0.0659 (12)
N10.2885 (2)0.6762 (3)0.27861 (17)0.0365 (9)
N20.5468 (2)0.5021 (3)0.27319 (18)0.0381 (9)
N30.5676 (3)0.6053 (3)0.0183 (2)0.0532 (12)
C110.2433 (3)0.6807 (3)0.1704 (2)0.0399 (12)
C120.2272 (3)0.7013 (3)0.2395 (2)0.0366 (11)
C130.1551 (3)0.7450 (4)0.2593 (3)0.0471 (13)
H13A0.11380.75960.23070.057*
C140.1456 (4)0.7664 (4)0.3215 (3)0.0584 (15)
H14A0.09760.79580.33600.070*
C150.2082 (4)0.7438 (5)0.3626 (3)0.0621 (16)
H15A0.20320.75850.40520.075*
C160.2786 (3)0.6989 (4)0.3393 (2)0.0479 (13)
H16A0.32070.68390.36720.057*
C210.4669 (3)0.4998 (4)0.3676 (2)0.0474 (13)
C220.5445 (3)0.4778 (4)0.3340 (2)0.0391 (11)
C230.6114 (4)0.4354 (4)0.3651 (3)0.0503 (14)
H23A0.60840.41920.40760.060*
C240.6818 (3)0.4182 (4)0.3318 (3)0.0548 (15)
H24A0.72790.39290.35190.066*
C250.6833 (3)0.4389 (4)0.2682 (3)0.0493 (13)
H25A0.72950.42510.24430.059*
C260.6142 (3)0.4808 (4)0.2410 (3)0.0459 (13)
H26A0.61510.49460.19810.055*
C310.5434 (3)0.5758 (4)0.0917 (2)0.0445 (13)
C320.5242 (3)0.6342 (4)0.0327 (2)0.0389 (11)
C330.4686 (4)0.7118 (5)0.0309 (3)0.0601 (16)
H33A0.43920.72870.06680.072*
C340.4562 (4)0.7646 (5)0.0237 (3)0.0735 (19)
H34A0.42000.81880.02500.088*
C350.4985 (4)0.7357 (5)0.0765 (3)0.0681 (18)
H35A0.49080.76880.11460.082*
C360.5523 (4)0.6569 (5)0.0712 (2)0.0592 (16)
H36A0.58050.63760.10720.071*
N110.8357 (3)0.4011 (4)0.0134 (2)0.0632 (14)
H11A0.83570.36570.04740.076*
H11B0.87910.40440.00930.076*
N120.7021 (3)0.4469 (4)0.0293 (2)0.0658 (14)
H12A0.70030.41220.06350.079*
H12B0.65960.47960.01690.079*
N130.7708 (3)0.5039 (4)0.0568 (2)0.0719 (16)
H13B0.72780.53620.06880.086*
H13C0.81460.50660.07900.086*
C10.7694 (3)0.4500 (4)0.0039 (3)0.0514 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.02556 (9)0.04300 (10)0.03197 (8)0.00403 (9)0.00182 (8)0.00058 (8)
O10.039 (2)0.054 (2)0.056 (2)0.0013 (19)0.0014 (16)0.0038 (18)
O20.042 (2)0.047 (2)0.059 (2)0.0028 (18)0.0024 (17)0.0004 (17)
O30.038 (2)0.065 (2)0.0370 (18)0.0144 (19)0.0010 (15)0.0033 (16)
O40.055 (3)0.082 (3)0.060 (2)0.029 (2)0.028 (2)0.015 (2)
O50.045 (2)0.082 (3)0.0405 (19)0.016 (2)0.0066 (17)0.0084 (18)
O60.067 (3)0.104 (4)0.043 (2)0.015 (3)0.008 (2)0.026 (2)
O70.053 (2)0.077 (3)0.0440 (19)0.014 (2)0.0162 (18)0.0023 (19)
O80.050 (3)0.096 (3)0.051 (2)0.029 (2)0.0112 (19)0.008 (2)
N10.028 (2)0.041 (2)0.040 (2)0.0035 (17)0.0023 (18)0.0013 (18)
N20.029 (2)0.044 (2)0.042 (2)0.0005 (18)0.000 (2)0.0056 (19)
N30.054 (3)0.060 (3)0.045 (2)0.007 (2)0.012 (2)0.003 (2)
C110.038 (3)0.036 (3)0.046 (3)0.001 (2)0.008 (2)0.005 (2)
C120.030 (3)0.028 (2)0.051 (3)0.000 (2)0.002 (2)0.002 (2)
C130.032 (3)0.037 (3)0.072 (4)0.003 (2)0.003 (3)0.001 (2)
C140.049 (4)0.048 (3)0.079 (4)0.012 (3)0.024 (3)0.000 (3)
C150.069 (4)0.064 (4)0.054 (3)0.016 (3)0.018 (3)0.001 (3)
C160.048 (3)0.058 (4)0.038 (3)0.008 (3)0.004 (2)0.004 (2)
C210.048 (3)0.056 (4)0.038 (3)0.003 (3)0.001 (2)0.002 (2)
C220.036 (3)0.038 (3)0.043 (3)0.001 (2)0.005 (2)0.001 (2)
C230.055 (4)0.045 (3)0.051 (3)0.006 (3)0.008 (3)0.006 (2)
C240.038 (3)0.047 (3)0.079 (4)0.009 (3)0.013 (3)0.000 (3)
C250.033 (3)0.045 (3)0.070 (4)0.006 (2)0.005 (3)0.001 (3)
C260.034 (3)0.048 (3)0.055 (3)0.006 (3)0.003 (2)0.002 (2)
C310.042 (3)0.052 (4)0.040 (3)0.004 (3)0.009 (2)0.002 (2)
C320.035 (3)0.045 (3)0.036 (3)0.005 (2)0.005 (2)0.004 (2)
C330.062 (4)0.069 (4)0.049 (3)0.015 (3)0.011 (3)0.001 (3)
C340.075 (5)0.071 (5)0.074 (4)0.025 (4)0.006 (4)0.006 (4)
C350.081 (5)0.073 (5)0.050 (4)0.000 (4)0.002 (3)0.012 (3)
C360.067 (4)0.070 (4)0.041 (3)0.014 (4)0.015 (3)0.003 (3)
N110.048 (3)0.089 (4)0.053 (3)0.017 (3)0.000 (2)0.012 (3)
N120.045 (3)0.093 (4)0.059 (3)0.012 (3)0.007 (2)0.030 (3)
N130.039 (3)0.111 (4)0.065 (3)0.018 (3)0.004 (2)0.033 (3)
C10.045 (4)0.062 (4)0.048 (3)0.001 (3)0.003 (3)0.005 (3)
Geometric parameters (Å, º) top
U1—O11.762 (4)C21—C221.486 (7)
U1—O21.766 (4)C22—C231.397 (7)
U1—O32.366 (3)C23—C241.371 (8)
U1—O52.362 (3)C23—H23A0.9300
U1—O72.269 (3)C24—C251.381 (8)
U1—N12.631 (4)C24—H24A0.9300
U1—N22.609 (4)C25—C261.386 (7)
O3—C111.288 (5)C25—H25A0.9300
O4—C111.218 (5)C26—H26A0.9300
O5—C211.298 (6)C31—C321.506 (7)
O6—C211.217 (6)C32—C331.371 (7)
O7—C311.287 (6)C33—C341.369 (8)
O8—C311.221 (6)C33—H33A0.9300
N1—C161.335 (6)C34—C351.372 (9)
N1—C121.345 (6)C34—H34A0.9300
N2—C261.330 (6)C35—C361.365 (9)
N2—C221.334 (6)C35—H35A0.9300
N3—C361.340 (7)C36—H36A0.9300
N3—C321.351 (6)N11—C11.316 (7)
C11—C121.518 (7)N11—H11A0.8600
C12—C131.379 (7)N11—H11B0.8600
C13—C141.360 (8)N12—C11.310 (7)
C13—H13A0.9300N12—H12A0.8600
C14—C151.381 (8)N12—H12B0.8600
C14—H14A0.9300N13—C11.331 (7)
C15—C161.389 (7)N13—H13B0.8600
C15—H15A0.9300N13—H13C0.8600
C16—H16A0.9300
O1—U1—O2178.53 (16)O6—C21—O5123.2 (5)
O1—U1—O789.03 (15)O6—C21—C22121.9 (5)
O2—U1—O791.94 (15)O5—C21—C22114.9 (4)
O1—U1—O591.81 (15)N2—C22—C23122.1 (5)
O2—U1—O586.77 (15)N2—C22—C21116.4 (4)
O7—U1—O5146.05 (13)C23—C22—C21121.5 (5)
O1—U1—O396.59 (15)C24—C23—C22118.8 (5)
O2—U1—O384.64 (14)C24—C23—H23A120.6
O7—U1—O381.95 (12)C22—C23—H23A120.6
O5—U1—O3131.53 (12)C23—C24—C25119.3 (5)
O1—U1—N290.92 (14)C23—C24—H24A120.4
O2—U1—N288.11 (14)C25—C24—H24A120.4
O7—U1—N282.41 (13)C24—C25—C26118.2 (5)
O5—U1—N263.64 (12)C24—C25—H25A120.9
O3—U1—N2162.51 (12)C26—C25—H25A120.9
O1—U1—N182.23 (14)N2—C26—C25123.1 (5)
O2—U1—N197.65 (14)N2—C26—H26A118.4
O7—U1—N1142.81 (12)C25—C26—H26A118.4
O5—U1—N170.66 (12)O8—C31—O7124.1 (5)
O3—U1—N163.45 (12)O8—C31—C32120.1 (5)
N2—U1—N1133.52 (12)O7—C31—C32115.7 (5)
C11—O3—U1128.3 (3)N3—C32—C33122.6 (5)
C21—O5—U1127.9 (3)N3—C32—C31114.6 (5)
C31—O7—U1170.5 (4)C33—C32—C31122.9 (5)
C16—N1—C12116.9 (4)C34—C33—C32120.0 (5)
C16—N1—U1126.3 (3)C34—C33—H33A120.0
C12—N1—U1116.8 (3)C32—C33—H33A120.0
C26—N2—C22118.2 (4)C33—C34—C35118.6 (6)
C26—N2—U1125.0 (3)C33—C34—H34A120.7
C22—N2—U1116.7 (3)C35—C34—H34A120.7
C36—N3—C32115.6 (5)C36—C35—C34117.9 (6)
O4—C11—O3125.8 (5)C36—C35—H35A121.0
O4—C11—C12119.1 (5)C34—C35—H35A121.0
O3—C11—C12115.0 (4)N3—C36—C35125.2 (5)
N1—C12—C13123.6 (5)N3—C36—H36A117.4
N1—C12—C11115.1 (4)C35—C36—H36A117.4
C13—C12—C11121.3 (5)C1—N11—H11A120.0
C14—C13—C12118.8 (5)C1—N11—H11B120.0
C14—C13—H13A120.6H11A—N11—H11B120.0
C12—C13—H13A120.6C1—N12—H12A120.0
C13—C14—C15119.1 (5)C1—N12—H12B120.0
C13—C14—H14A120.4H12A—N12—H12B120.0
C15—C14—H14A120.4C1—N13—H13B120.0
C14—C15—C16118.8 (5)C1—N13—H13C120.0
C14—C15—H15A120.6H13B—N13—H13C120.0
C16—C15—H15A120.6N12—C1—N11121.9 (5)
N1—C16—C15122.8 (5)N12—C1—N13119.1 (5)
N1—C16—H16A118.6N11—C1—N13118.9 (5)
C15—C16—H16A118.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O4i0.862.022.859 (6)166
N11—H11B···O6ii0.862.122.918 (6)154
N12—H12A···O3i0.862.183.033 (6)169
N12—H12B···N30.862.243.042 (7)156
N13—H13B···O80.862.102.847 (6)146
N13—H13C···O6ii0.862.353.083 (6)144
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula(CH6N3)[U(C6H4NO2)3O2]
Mr696.42
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)16.3842 (4), 13.1678 (3), 21.2743 (4)
V3)4589.80 (18)
Z8
Radiation typeMo Kα
µ (mm1)7.13
Crystal size (mm)0.18 × 0.06 × 0.04
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.360, 0.764
No. of measured, independent and
observed [I > 2σ(I)] reflections
77357, 6604, 3818
Rint0.093
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.075, 1.01
No. of reflections6604
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 0.71

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O4i0.862.022.859 (6)165.5
N11—H11B···O6ii0.862.122.918 (6)153.6
N12—H12A···O3i0.862.183.033 (6)169.2
N12—H12B···N30.862.243.042 (7)155.6
N13—H13B···O80.862.102.847 (6)145.5
N13—H13C···O6ii0.862.353.083 (6)144.0
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y, z+1/2.
 

Acknowledgements

The authors thank the CEA (RSTB/RBPCH, France) for financial support.

References

First citationBruker (1998). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrechishnikova, E. V., Peresypkina, E. V., Virovets, A. V., Mikhailov, Yu. N. & Serezhkina, L. B. (2007). Russ. J. Coord. Chem. 33, 458–465.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds