organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(2-Methyl­piperidin-1-yl)(phen­yl)meth­yl]naphthalen-2-ol

aSchool of Chemical Engineering, Yunnan Radio and TV University, Kunming 650023, People's Republic of China
*Correspondence e-mail: huangyao308sys@yahoo.com.cn

(Received 11 June 2012; accepted 9 September 2012; online 15 September 2012)

In the title compound, C23H25NO, an intra­molecular O—H⋯N hydrogen bond defines the mol­ecular conformation; the naphthol mean plane and the benzene ring form a dihedral angle of 75.8 (2)°. The piperidine ring adopts a chair conformation. The crystal packing exhibits no short inter­molecular contacts.

Related literature

For the crystal structures of related compounds, see: Wang & Zhao (2009[Wang, W. X. & Zhao, H. (2009). Acta Cryst. E65, o1277.]); Lu et al. (2002[Lu, J., Xu, X. N., Wang, C. D., Hu, Y. F. & Hu, H. W. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2900-2903.]). For background to Betti-type reactions, see: Pu & Yu (2001[Pu, L. & Yu, H. B. (2001). Chem. Rev. 101, 757-824.]).

[Scheme 1]

Experimental

Crystal data
  • C23H25NO

  • Mr = 331.44

  • Orthorhombic, P n a 21

  • a = 10.249 (2) Å

  • b = 13.182 (3) Å

  • c = 13.435 (3) Å

  • V = 1815.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.34 × 0.32 × 0.26 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.097, Tmax = 0.099

  • 18098 measured reflections

  • 2170 independent reflections

  • 1718 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.162

  • S = 1.13

  • 2170 reflections

  • 228 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.85 2.581 (4) 148

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The so-called Betti base derivatives, which can be synthesized by many ways (Pu & Yu, 2001), are important for coordination chemistry. Herein we present the title compound, (I), obtained by solvent free, one-pot, three-component domino reaction of naphthalen-2-ol, benzaldehyde and 2-methylpiperidine.

In (I) (Fig. 1), the bond lengths and angles are within the expected ranges corresponding to those observed in the related compounds (Wang & Zhao 2009; Lu et al. 2002). The dihedral angle between the naphthalene ring system and the benzene ring is 75.8 (2)°. The piperidine ring adopts a chair conformation, An intramolecular O—H···N hydrogen bond (Table 1) stabilize the molecular conformation. The crystal packing exhibits no short intermolecular contacts.

Related literature top

For the crystal structures of related compounds, see: Wang & Zhao (2009); Lu et al. (2002). For background to Betti-type reactions, see: Pu & Yu (2001).

Experimental top

A dry 50 ml flask was charged with benzaldehyde (10 mmol), naphthalen-2-ol (10 mmol) and 2-methylpiperidine (10 mmol). The mixture was stirred at 100°C for 5 h and then ethanol (15 ml) was added. After refluxing for 30 minutes, the mixed solution was filtered and crystals of the title compound suitable for X-ray analysis was obtained by slow evaporation.

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93–0.98 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C, O) for methyl and hydroxy H atoms.

In the absence of any significant anomalous scatterers in the molecule, the 1975 Friedel pairs were merged before the final refinement.

Structure description top

The so-called Betti base derivatives, which can be synthesized by many ways (Pu & Yu, 2001), are important for coordination chemistry. Herein we present the title compound, (I), obtained by solvent free, one-pot, three-component domino reaction of naphthalen-2-ol, benzaldehyde and 2-methylpiperidine.

In (I) (Fig. 1), the bond lengths and angles are within the expected ranges corresponding to those observed in the related compounds (Wang & Zhao 2009; Lu et al. 2002). The dihedral angle between the naphthalene ring system and the benzene ring is 75.8 (2)°. The piperidine ring adopts a chair conformation, An intramolecular O—H···N hydrogen bond (Table 1) stabilize the molecular conformation. The crystal packing exhibits no short intermolecular contacts.

For the crystal structures of related compounds, see: Wang & Zhao (2009); Lu et al. (2002). For background to Betti-type reactions, see: Pu & Yu (2001).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Intramolecular hydrogen bond is shown as dashed line.
1-[(2-Methylpiperidin-1-yl)(phenyl)methyl]naphthalen-2-ol top
Crystal data top
C23H25NOF(000) = 712
Mr = 331.44Dx = 1.213 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2170 reflections
a = 10.249 (2) Åθ = 2.2–27.5°
b = 13.182 (3) ŵ = 0.07 mm1
c = 13.435 (3) ÅT = 293 K
V = 1815.1 (6) Å3Block, pale yellow
Z = 40.34 × 0.32 × 0.26 mm
Data collection top
Rigaku SCXmini
diffractometer
2170 independent reflections
Radiation source: fine-focus sealed tube1718 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.2°
CCD_Profile_fitting scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1717
Tmin = 0.097, Tmax = 0.099l = 1717
18098 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0945P)2 + 0.0807P]
where P = (Fo2 + 2Fc2)/3
2170 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C23H25NOV = 1815.1 (6) Å3
Mr = 331.44Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 10.249 (2) ŵ = 0.07 mm1
b = 13.182 (3) ÅT = 293 K
c = 13.435 (3) Å0.34 × 0.32 × 0.26 mm
Data collection top
Rigaku SCXmini
diffractometer
2170 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1718 reflections with I > 2σ(I)
Tmin = 0.097, Tmax = 0.099Rint = 0.058
18098 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.162H-atom parameters constrained
S = 1.13Δρmax = 0.32 e Å3
2170 reflectionsΔρmin = 0.20 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6335 (3)0.5998 (2)0.4126 (3)0.0416 (7)
H10.59350.63380.46980.050*
C20.7644 (3)0.5578 (2)0.4460 (2)0.0385 (7)
C30.8185 (3)0.4734 (2)0.4004 (2)0.0419 (7)
C40.9413 (4)0.4362 (3)0.4301 (3)0.0506 (9)
H40.97700.38050.39750.061*
C51.0082 (4)0.4805 (3)0.5052 (3)0.0530 (9)
H51.08860.45410.52430.064*
C60.9578 (3)0.5657 (3)0.5550 (2)0.0432 (8)
C70.8359 (3)0.6068 (2)0.5242 (2)0.0377 (7)
C80.7907 (4)0.6945 (3)0.5741 (3)0.0471 (8)
H80.71210.72390.55490.057*
C90.8611 (4)0.7370 (3)0.6504 (3)0.0570 (10)
H90.82930.79450.68240.068*
C100.9793 (4)0.6952 (3)0.6805 (3)0.0597 (10)
H101.02600.72460.73240.072*
C111.0262 (4)0.6118 (3)0.6343 (3)0.0564 (10)
H111.10510.58420.65520.068*
C120.6500 (3)0.6787 (2)0.3296 (3)0.0440 (8)
C130.5835 (4)0.7694 (3)0.3331 (4)0.0680 (12)
H130.52750.78240.38600.082*
C140.5983 (5)0.8419 (3)0.2589 (5)0.0799 (14)
H140.55130.90220.26200.096*
C150.6808 (5)0.8253 (3)0.1821 (4)0.0728 (13)
H150.69120.87440.13300.087*
C160.7491 (5)0.7361 (4)0.1767 (4)0.0680 (12)
H160.80500.72420.12350.082*
C170.7347 (4)0.6639 (3)0.2505 (3)0.0535 (9)
H170.78280.60420.24700.064*
C180.4314 (4)0.5414 (3)0.3252 (4)0.0650 (12)
H18A0.45710.58310.26910.078*
H18B0.37180.58030.36620.078*
C190.3633 (5)0.4449 (3)0.2877 (5)0.0781 (15)
H19A0.28380.46350.25310.094*
H19B0.41990.41050.24070.094*
C200.3305 (5)0.3737 (4)0.3718 (4)0.0833 (16)
H20A0.26290.40350.41300.100*
H20B0.29740.31050.34490.100*
C210.4491 (5)0.3531 (4)0.4338 (4)0.0765 (14)
H21A0.51180.31520.39450.092*
H21B0.42460.31150.49040.092*
C220.5127 (5)0.4498 (4)0.4711 (3)0.0703 (13)
H220.59410.43120.50470.084*
C230.4262 (8)0.5059 (6)0.5467 (5)0.120 (3)
H23A0.34990.53150.51370.180*
H23B0.47410.56130.57520.180*
H23C0.40050.45980.59850.180*
N10.5467 (3)0.5133 (2)0.3834 (2)0.0442 (7)
O10.7570 (3)0.4224 (2)0.3269 (2)0.0563 (7)
H1A0.67930.43730.32700.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0343 (16)0.0435 (17)0.0469 (18)0.0004 (12)0.0041 (13)0.0160 (14)
C20.0350 (16)0.0405 (16)0.0401 (17)0.0022 (12)0.0054 (13)0.0026 (13)
C30.0427 (17)0.0414 (16)0.0415 (18)0.0026 (13)0.0056 (14)0.0064 (14)
C40.049 (2)0.0487 (19)0.054 (2)0.0105 (15)0.0051 (16)0.0041 (16)
C50.0392 (18)0.061 (2)0.059 (2)0.0085 (16)0.0010 (16)0.0044 (18)
C60.0407 (17)0.0453 (18)0.0435 (18)0.0080 (13)0.0016 (14)0.0085 (13)
C70.0391 (16)0.0371 (14)0.0368 (15)0.0072 (12)0.0023 (13)0.0022 (12)
C80.048 (2)0.0457 (19)0.0472 (19)0.0036 (14)0.0029 (16)0.0080 (15)
C90.072 (3)0.0490 (19)0.050 (2)0.0160 (18)0.0031 (19)0.0113 (17)
C100.073 (3)0.059 (2)0.047 (2)0.0227 (19)0.019 (2)0.0014 (18)
C110.054 (2)0.063 (2)0.052 (2)0.0093 (18)0.0151 (18)0.0111 (18)
C120.0361 (17)0.0417 (16)0.0543 (19)0.0002 (12)0.0070 (15)0.0090 (15)
C130.053 (2)0.055 (2)0.095 (3)0.0091 (18)0.003 (2)0.003 (2)
C140.067 (3)0.049 (2)0.123 (4)0.009 (2)0.012 (3)0.015 (3)
C150.071 (3)0.063 (3)0.085 (3)0.009 (2)0.029 (3)0.020 (2)
C160.079 (3)0.072 (3)0.053 (2)0.002 (2)0.002 (2)0.008 (2)
C170.062 (2)0.049 (2)0.049 (2)0.0051 (16)0.0020 (17)0.0045 (16)
C180.040 (2)0.056 (2)0.099 (3)0.0055 (16)0.021 (2)0.028 (2)
C190.054 (3)0.066 (3)0.114 (4)0.004 (2)0.023 (3)0.030 (3)
C200.060 (3)0.077 (3)0.114 (4)0.027 (2)0.029 (3)0.038 (3)
C210.082 (3)0.071 (3)0.076 (3)0.031 (2)0.021 (3)0.013 (2)
C220.080 (3)0.073 (3)0.057 (2)0.034 (2)0.014 (2)0.007 (2)
C230.135 (6)0.143 (6)0.082 (4)0.052 (5)0.034 (4)0.037 (4)
N10.0385 (14)0.0450 (15)0.0491 (16)0.0056 (11)0.0005 (12)0.0121 (12)
O10.0545 (16)0.0564 (15)0.0581 (16)0.0022 (11)0.0002 (13)0.0246 (13)
Geometric parameters (Å, º) top
C1—N11.498 (4)C14—H140.9300
C1—C21.519 (5)C15—C161.370 (7)
C1—C121.534 (5)C15—H150.9300
C1—H10.9800C16—C171.382 (6)
C2—C31.387 (4)C16—H160.9300
C2—C71.434 (5)C17—H170.9300
C3—O11.350 (4)C18—N11.464 (5)
C3—C41.408 (5)C18—C191.535 (5)
C4—C51.353 (6)C18—H18A0.9700
C4—H40.9300C18—H18B0.9700
C5—C61.406 (5)C19—C201.506 (8)
C5—H50.9300C19—H19A0.9700
C6—C111.414 (5)C19—H19B0.9700
C6—C71.422 (5)C20—C211.499 (8)
C7—C81.415 (5)C20—H20A0.9700
C8—C91.373 (5)C20—H20B0.9700
C8—H80.9300C21—C221.517 (6)
C9—C101.392 (6)C21—H21A0.9700
C9—H90.9300C21—H21B0.9700
C10—C111.350 (6)C22—N11.486 (5)
C10—H100.9300C22—C231.538 (8)
C11—H110.9300C22—H220.9800
C12—C131.378 (5)C23—H23A0.9600
C12—C171.387 (5)C23—H23B0.9600
C13—C141.389 (8)C23—H23C0.9600
C13—H130.9300O1—H1A0.8200
C14—C151.351 (8)
N1—C1—C2109.0 (3)C16—C15—H15120.0
N1—C1—C12113.0 (3)C15—C16—C17119.9 (5)
C2—C1—C12111.4 (3)C15—C16—H16120.0
N1—C1—H1107.7C17—C16—H16120.0
C2—C1—H1107.7C16—C17—C12121.3 (4)
C12—C1—H1107.7C16—C17—H17119.3
C3—C2—C7118.7 (3)C12—C17—H17119.3
C3—C2—C1120.9 (3)N1—C18—C19109.4 (3)
C7—C2—C1120.3 (3)N1—C18—H18A109.8
O1—C3—C2122.4 (3)C19—C18—H18A109.8
O1—C3—C4116.8 (3)N1—C18—H18B109.8
C2—C3—C4120.8 (3)C19—C18—H18B109.8
C5—C4—C3121.0 (3)H18A—C18—H18B108.2
C5—C4—H4119.5C20—C19—C18111.8 (4)
C3—C4—H4119.5C20—C19—H19A109.2
C4—C5—C6120.9 (3)C18—C19—H19A109.2
C4—C5—H5119.6C20—C19—H19B109.2
C6—C5—H5119.6C18—C19—H19B109.2
C5—C6—C11121.3 (3)H19A—C19—H19B107.9
C5—C6—C7119.3 (3)C21—C20—C19110.4 (4)
C11—C6—C7119.4 (3)C21—C20—H20A109.6
C8—C7—C6117.5 (3)C19—C20—H20A109.6
C8—C7—C2123.1 (3)C21—C20—H20B109.6
C6—C7—C2119.4 (3)C19—C20—H20B109.6
C9—C8—C7121.0 (4)H20A—C20—H20B108.1
C9—C8—H8119.5C20—C21—C22112.3 (4)
C7—C8—H8119.5C20—C21—H21A109.1
C8—C9—C10120.9 (4)C22—C21—H21A109.1
C8—C9—H9119.6C20—C21—H21B109.1
C10—C9—H9119.6C22—C21—H21B109.1
C11—C10—C9119.9 (4)H21A—C21—H21B107.9
C11—C10—H10120.0N1—C22—C21108.2 (3)
C9—C10—H10120.0N1—C22—C23112.8 (5)
C10—C11—C6121.3 (4)C21—C22—C23112.0 (4)
C10—C11—H11119.3N1—C22—H22107.9
C6—C11—H11119.3C21—C22—H22107.9
C13—C12—C17117.2 (4)C23—C22—H22107.9
C13—C12—C1120.7 (4)C22—C23—H23A109.5
C17—C12—C1122.1 (3)C22—C23—H23B109.5
C12—C13—C14121.3 (5)H23A—C23—H23B109.5
C12—C13—H13119.4C22—C23—H23C109.5
C14—C13—H13119.4H23A—C23—H23C109.5
C15—C14—C13120.3 (4)H23B—C23—H23C109.5
C15—C14—H14119.8C18—N1—C22112.1 (3)
C13—C14—H14119.8C18—N1—C1115.3 (3)
C14—C15—C16119.9 (4)C22—N1—C1111.1 (3)
C14—C15—H15120.0C3—O1—H1A109.5
N1—C1—C2—C336.0 (4)N1—C1—C12—C13102.8 (4)
C12—C1—C2—C389.4 (3)C2—C1—C12—C13134.1 (4)
N1—C1—C2—C7145.5 (3)N1—C1—C12—C1779.4 (4)
C12—C1—C2—C789.1 (3)C2—C1—C12—C1743.7 (4)
C7—C2—C3—O1179.4 (3)C17—C12—C13—C141.6 (6)
C1—C2—C3—O12.1 (5)C1—C12—C13—C14179.4 (4)
C7—C2—C3—C40.0 (5)C12—C13—C14—C151.1 (8)
C1—C2—C3—C4178.5 (3)C13—C14—C15—C160.7 (7)
O1—C3—C4—C5177.9 (4)C14—C15—C16—C170.8 (7)
C2—C3—C4—C51.5 (5)C15—C16—C17—C121.4 (6)
C3—C4—C5—C60.9 (6)C13—C12—C17—C161.7 (6)
C4—C5—C6—C11179.3 (4)C1—C12—C17—C16179.5 (4)
C4—C5—C6—C71.2 (5)N1—C18—C19—C2055.1 (5)
C5—C6—C7—C8178.0 (3)C18—C19—C20—C2152.4 (5)
C11—C6—C7—C81.5 (5)C19—C20—C21—C2254.4 (5)
C5—C6—C7—C22.6 (4)C20—C21—C22—N157.5 (5)
C11—C6—C7—C2177.8 (3)C20—C21—C22—C2367.4 (6)
C3—C2—C7—C8178.7 (3)C19—C18—N1—C2259.9 (5)
C1—C2—C7—C80.1 (5)C19—C18—N1—C1171.6 (4)
C3—C2—C7—C62.0 (4)C21—C22—N1—C1860.9 (5)
C1—C2—C7—C6179.5 (3)C23—C22—N1—C1863.6 (5)
C6—C7—C8—C91.1 (5)C21—C22—N1—C1168.5 (4)
C2—C7—C8—C9178.2 (3)C23—C22—N1—C167.0 (5)
C7—C8—C9—C100.3 (6)C2—C1—N1—C18164.4 (3)
C8—C9—C10—C110.1 (6)C12—C1—N1—C1840.0 (4)
C9—C10—C11—C60.3 (6)C2—C1—N1—C2266.6 (4)
C5—C6—C11—C10178.4 (4)C12—C1—N1—C22168.9 (3)
C7—C6—C11—C101.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.852.581 (4)148

Experimental details

Crystal data
Chemical formulaC23H25NO
Mr331.44
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)10.249 (2), 13.182 (3), 13.435 (3)
V3)1815.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.34 × 0.32 × 0.26
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.097, 0.099
No. of measured, independent and
observed [I > 2σ(I)] reflections
18098, 2170, 1718
Rint0.058
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.162, 1.13
No. of reflections2170
No. of parameters228
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.20

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.852.581 (4)147.5
 

Acknowledgements

This work was supported by the Yunnan Provincal Science and Technology Department Applied Basic Research Program (grant No. 2011FZ198) and the Yunnan Province Department of Education Scientific Research Fund (grant No. 2011Z009).

References

First citationLu, J., Xu, X. N., Wang, C. D., Hu, Y. F. & Hu, H. W. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2900–2903.  Web of Science CSD CrossRef Google Scholar
First citationPu, L. & Yu, H. B. (2001). Chem. Rev. 101, 757–824.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W. X. & Zhao, H. (2009). Acta Cryst. E65, o1277.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds