organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(5-Amino-2,4-di­nitro­phen­yl)pyridinium chloride monohydrate

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

(Received 7 July 2012; accepted 10 September 2012; online 15 September 2012)

In the cation of the title hydrated salt, C11H9N4O4+·Cl·H2O, the six-membered rings are inclined to each other at 79.0 (1)° and an intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, N—H⋯Cl hydrogen bonds link two cations and two anions into centrosymmetric group, and O—H⋯Cl hydrogen bonds involving the water mol­ecules further link these groups into chains in [101]. An O—H⋯O inter­action is also present. The water mol­ecule is disordered over two sets of sites in a 0.555 (13):0.445 (13) ratio

Related literature

For applications of N-substituted pyridinium salts, see: Sliwa (1996[Sliwa, W. (1996). In N-Substituted Salts of Pyridine and Related Compounds, Synthesis, Properties, Applications. Czestochowa, Poland: Academic Press.]); Ali et al. (2005[Ali, M. R., Nishikata, A. & Tsuru, T. (2005). Ind. J. Chem. Technol. 12, 648-653.]); Chelossi et al. (2006[Chelossi, E., Mancini, I., Sepcic, K., Turk, T. & Faimali, M. (2006). Biomol. Eng. 23, 317-323.]); Azzouz et al. (2008[Azzouz, R., Fruit, C., Bischoff, L. & Marsais, F. (2008). J. Org. Chem. 73, 1154-1157.]). For related structures, see: Shmidt et al. (2005[Shmidt, A., Mordhorst, N. & Nieger, M. (2005). Nat. Prod. Res. 19, 541-546.]); Wojtas et al. (2006[Wojtas, L., Pawlica, D. & Stadnicka, K. (2006). J. Mol. Struct. 785, 14-20.]); Manickkam & Kalaivani (2011[Manickkam, V. & Kalaivani, D. (2011). Acta Cryst. E67, o3475.]); Chernyshev et al. (2011[Chernyshev, V. M., Tarasova, E. V., Chernysheva, A. V. & Rybakov, V. B. (2011). Acta Cryst. E67, o466-o467.]); Sridevi & Kalaivani (2012[Sridevi, G. & Kalaivani, D. (2012). Acta Cryst. E68, o1044.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9N4O4+·Cl·H2O

  • Mr = 314.69

  • Monoclinic, P 21 /c

  • a = 5.4312 (4) Å

  • b = 21.493 (2) Å

  • c = 11.3892 (9) Å

  • β = 92.362 (3)°

  • V = 1328.33 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.871, Tmax = 0.939

  • 14754 measured reflections

  • 3125 independent reflections

  • 2288 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.112

  • S = 1.03

  • 3125 reflections

  • 224 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O4 0.86 (2) 2.09 (2) 2.671 (2) 124 (2)
N4—H4B⋯Cl1 0.87 (2) 2.35 (2) 3.2162 (19) 171 (2)
N4—H4A⋯Cl1i 0.86 (2) 2.56 (2) 3.2268 (16) 135 (2)
O5—H5B⋯Cl1 0.90 (2) 2.34 (3) 3.187 (3) 158 (5)
O5—H5A⋯Cl1ii 0.93 (2) 2.51 (2) 3.429 (9) 169 (5)
O5′—H5D⋯O5iii 0.91 (2) 1.94 (3) 2.815 (16) 160 (5)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-Substitued pyridinium salts are widely used in organic synthesis (Azzouz et al., 2008), medicinal field (Chelossi et al., 2006), electrodeposition (Ali et al., 2005) and dye preparations (Sliwa, 1996). As a continuation of our studies of new substituted pyridinium barbiturates (Manickkam & Kalaivani, 2011; Sridevi & Kalaivani, 2012), we report the crystal structure of the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related compounds (Shmidt et al., 2005; Wojtas et al., 2006; Chernyshev et al., 2011). In the cation, the pyridine ring is twisted notably from the dinitrophenyl ring and the dihedral angle between their planes is 78.93 (5)°. The two nitro groups, O1—N2—O2 and O3—N3—O4, deviate from the benzene ring at 7.97 (10)° and 4.18 (17)°, respectively. Intermolecular N—H···Cl and O—H···Cl hydrogen bonds (Table 1) consolidate the crystal packing. The overall molecular packing forming a herring bone arrangement when view down c axis is shown in Fig. 2.

Related literature top

For applications of N-substituted pyridinium salts, see: Sliwa (1996); Ali et al. (2005); Chelossi et al. (2006); Azzouz et al. (2008). For related structures, see: Shmidt et al. (2005); Wojtas et al. (2006); Manickkam & Kalaivani (2011); Chernyshev et al. (2011); Sridevi & Kalaivani (2012).

Experimental top

Analytical grade 1,3-dichloro-4,6-dinitrobenzene (DCDNB) and barbituric acid were used as supplied by Aldrich company. Pyridine was distilled under reduced pressure and the fraction boiling over at its boiling point was used for the preparation of the title molecular salt.DCDNB (2.01 g, 0.01 mol) in 15 ml absolute ethanol was mixed with barbituric acid (1.28 g, 0.01 mol) in 30 ml of absolute ethanol. Pyridine (3.16 g, 0.04 mol)was added to the above mixture which was heated to 40°C and shaken well for 5–6 hrs. The solution was kept as such at room temperature for 48 hrs. On standing dark violet colour crystals separate out.After filtering out these violet crystals, the filterate was kept as such at room temperature (25°C).From the filtrate, one of the by-products of the reaction between DCDNB, barbituric acid and pyridine, separates as pale greenish yellow crystals after 3 months. These crystals were powdered well, and washed with copious amount of ethanol and dry ether, recrystallized from absolute alcohol and subjected to single-crystal X-ray analysis. Yield: 40–50%; m.p.: 508 K.

Refinement top

C-bound H atoms were positioned geometrically (C—H 0.93 Å), and refined as riding, with Uiso(H) = 1.2 Ueq(C). N- and O-bound H atoms were located on a difference map, and refined with restraints N—H = 0.88 (2) Å, O—H = 0.92 (2) Å.

Structure description top

N-Substitued pyridinium salts are widely used in organic synthesis (Azzouz et al., 2008), medicinal field (Chelossi et al., 2006), electrodeposition (Ali et al., 2005) and dye preparations (Sliwa, 1996). As a continuation of our studies of new substituted pyridinium barbiturates (Manickkam & Kalaivani, 2011; Sridevi & Kalaivani, 2012), we report the crystal structure of the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related compounds (Shmidt et al., 2005; Wojtas et al., 2006; Chernyshev et al., 2011). In the cation, the pyridine ring is twisted notably from the dinitrophenyl ring and the dihedral angle between their planes is 78.93 (5)°. The two nitro groups, O1—N2—O2 and O3—N3—O4, deviate from the benzene ring at 7.97 (10)° and 4.18 (17)°, respectively. Intermolecular N—H···Cl and O—H···Cl hydrogen bonds (Table 1) consolidate the crystal packing. The overall molecular packing forming a herring bone arrangement when view down c axis is shown in Fig. 2.

For applications of N-substituted pyridinium salts, see: Sliwa (1996); Ali et al. (2005); Chelossi et al. (2006); Azzouz et al. (2008). For related structures, see: Shmidt et al. (2005); Wojtas et al. (2006); Manickkam & Kalaivani (2011); Chernyshev et al. (2011); Sridevi & Kalaivani (2012).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of the title compound showing the atomic labelling and 40% probability displacement ellipsoids. Dashed lines denote hydrogen bonds. Only major component of the disordered water molecule is shown.
[Figure 2] Fig. 2. A portion of the crystal packing viewed down the c axis and showing the herring bone arrangement of the molecules. Only major components of the disordered water molecules are shown. H atoms were omitted for clarity.
1-(5-Amino-2,4-dinitrophenyl)pyridinium chloride monohydrate top
Crystal data top
C11H9N4O4+·Cl·H2OF(000) = 648
Mr = 314.69Dx = 1.574 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4581 reflections
a = 5.4312 (4) Åθ = 2.6–25.4°
b = 21.493 (2) ŵ = 0.32 mm1
c = 11.3892 (9) ÅT = 293 K
β = 92.362 (3)°Block, red
V = 1328.33 (19) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3125 independent reflections
Radiation source: fine-focus sealed tube2288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and φ scanθmax = 27.9°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 76
Tmin = 0.871, Tmax = 0.939k = 2828
14754 measured reflectionsl = 1114
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.2604P]
where P = (Fo2 + 2Fc2)/3
3125 reflections(Δ/σ)max = 0.001
224 parametersΔρmax = 0.20 e Å3
9 restraintsΔρmin = 0.27 e Å3
Crystal data top
C11H9N4O4+·Cl·H2OV = 1328.33 (19) Å3
Mr = 314.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.4312 (4) ŵ = 0.32 mm1
b = 21.493 (2) ÅT = 293 K
c = 11.3892 (9) Å0.30 × 0.25 × 0.20 mm
β = 92.362 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3125 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2288 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.939Rint = 0.031
14754 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0389 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
3125 reflectionsΔρmin = 0.27 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3483 (3)0.66419 (8)0.10183 (14)0.0449 (4)
H10.47800.68780.13360.054*
C20.3105 (3)0.66065 (9)0.01760 (15)0.0531 (4)
H20.41490.68140.06710.064*
C30.1174 (4)0.62626 (9)0.06342 (15)0.0563 (5)
H30.08710.62420.14430.068*
C40.0302 (4)0.59508 (11)0.01082 (17)0.0663 (6)
H40.16070.57120.01940.080*
C50.0137 (3)0.59893 (10)0.12967 (16)0.0613 (5)
H50.08550.57730.18030.074*
C60.2469 (3)0.63860 (8)0.29921 (13)0.0403 (4)
C70.1136 (3)0.67842 (8)0.37070 (14)0.0414 (4)
C80.1804 (3)0.68200 (8)0.48832 (14)0.0441 (4)
H80.09150.70760.53700.053*
C90.3760 (3)0.64842 (8)0.53520 (13)0.0432 (4)
C100.5080 (3)0.60594 (8)0.46686 (13)0.0439 (4)
C110.4326 (3)0.60318 (8)0.34576 (14)0.0446 (4)
H110.51380.57610.29690.054*
N20.0913 (3)0.71602 (7)0.32853 (13)0.0493 (4)
N10.1997 (2)0.63388 (6)0.17294 (11)0.0404 (3)
N30.4403 (3)0.65911 (7)0.65862 (12)0.0517 (4)
O10.1404 (2)0.71820 (7)0.22235 (12)0.0628 (4)
O20.2092 (3)0.74376 (8)0.40064 (13)0.0787 (5)
O30.3182 (3)0.69609 (7)0.71230 (11)0.0676 (4)
O40.6154 (3)0.63139 (8)0.70329 (11)0.0740 (4)
N40.6928 (3)0.57003 (8)0.50422 (14)0.0560 (4)
O50.3996 (12)0.4960 (2)0.1460 (6)0.0653 (17)0.555 (13)
O5'0.4978 (12)0.5075 (2)0.0942 (7)0.0622 (16)0.445 (13)
Cl10.88637 (9)0.47657 (2)0.30769 (4)0.06455 (18)
H5A0.274 (7)0.487 (3)0.196 (5)0.15 (2)*0.555 (13)
H5B0.556 (4)0.494 (4)0.174 (5)0.15 (2)*0.555 (13)
H5C0.520 (14)0.481 (3)0.156 (4)0.08 (3)*0.445 (13)
H5D0.554 (9)0.499 (3)0.022 (2)0.064 (16)*0.445 (13)
H4A0.747 (3)0.5711 (10)0.5766 (14)0.063 (6)*
H4B0.759 (4)0.5437 (9)0.4563 (18)0.071 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0445 (9)0.0485 (9)0.0413 (8)0.0051 (7)0.0018 (7)0.0032 (7)
C20.0619 (11)0.0584 (11)0.0389 (9)0.0033 (8)0.0029 (8)0.0053 (8)
C30.0658 (12)0.0667 (12)0.0356 (8)0.0059 (9)0.0056 (8)0.0004 (8)
C40.0556 (11)0.0906 (15)0.0512 (11)0.0181 (10)0.0147 (9)0.0037 (10)
C50.0503 (10)0.0871 (15)0.0460 (9)0.0243 (10)0.0043 (8)0.0058 (9)
C60.0384 (8)0.0504 (9)0.0318 (7)0.0074 (7)0.0034 (6)0.0046 (6)
C70.0376 (8)0.0440 (9)0.0423 (8)0.0045 (6)0.0038 (6)0.0045 (7)
C80.0464 (9)0.0448 (9)0.0412 (8)0.0039 (7)0.0016 (7)0.0002 (7)
C90.0481 (9)0.0496 (9)0.0315 (7)0.0067 (7)0.0022 (6)0.0051 (7)
C100.0417 (8)0.0514 (9)0.0380 (8)0.0035 (7)0.0038 (7)0.0073 (7)
C110.0418 (8)0.0567 (10)0.0353 (8)0.0023 (7)0.0001 (6)0.0029 (7)
N20.0442 (8)0.0472 (8)0.0556 (9)0.0020 (6)0.0096 (7)0.0005 (7)
N10.0377 (6)0.0501 (8)0.0328 (6)0.0028 (6)0.0047 (5)0.0041 (5)
N30.0631 (9)0.0549 (9)0.0365 (7)0.0051 (7)0.0052 (7)0.0035 (7)
O10.0581 (8)0.0727 (9)0.0557 (8)0.0073 (6)0.0222 (6)0.0006 (7)
O20.0757 (10)0.0902 (11)0.0696 (9)0.0342 (8)0.0052 (8)0.0106 (8)
O30.0897 (10)0.0747 (9)0.0384 (7)0.0102 (8)0.0017 (7)0.0052 (6)
O40.0846 (10)0.0864 (11)0.0486 (8)0.0167 (8)0.0252 (7)0.0053 (7)
N40.0577 (9)0.0683 (11)0.0409 (8)0.0125 (8)0.0111 (7)0.0022 (8)
O50.066 (3)0.075 (2)0.054 (3)0.0075 (19)0.014 (2)0.0065 (17)
O5'0.057 (3)0.079 (2)0.050 (3)0.0092 (19)0.001 (2)0.002 (2)
Cl10.0775 (3)0.0563 (3)0.0576 (3)0.0081 (2)0.0250 (2)0.0010 (2)
Geometric parameters (Å, º) top
C1—N11.336 (2)C8—H80.9300
C1—C21.369 (2)C9—C101.414 (2)
C1—H10.9300C9—N31.4528 (19)
C2—C31.369 (3)C10—N41.323 (2)
C2—H20.9300C10—C111.424 (2)
C3—C41.365 (3)C11—H110.9300
C3—H30.9300N2—O21.2176 (19)
C4—C51.367 (3)N2—O11.2285 (18)
C4—H40.9300N3—O41.2158 (19)
C5—N11.336 (2)N3—O31.216 (2)
C5—H50.9300N4—H4A0.864 (15)
C6—C111.354 (2)N4—H4B0.874 (16)
C6—C71.403 (2)O5—H5A0.930 (19)
C6—N11.4540 (19)O5—H5B0.90 (2)
C7—C81.375 (2)O5'—H5C0.916 (19)
C7—N21.442 (2)O5'—H5D0.913 (19)
C8—C91.374 (2)
N1—C1—C2120.36 (15)C8—C9—C10121.78 (14)
N1—C1—H1119.8C8—C9—N3116.37 (15)
C2—C1—H1119.8C10—C9—N3121.85 (14)
C3—C2—C1119.33 (16)N4—C10—C9126.50 (15)
C3—C2—H2120.3N4—C10—C11118.14 (16)
C1—C2—H2120.3C9—C10—C11115.35 (14)
C4—C3—C2119.29 (16)C6—C11—C10122.40 (16)
C4—C3—H3120.4C6—C11—H11118.8
C2—C3—H3120.4C10—C11—H11118.8
C3—C4—C5120.05 (18)O2—N2—O1123.14 (15)
C3—C4—H4120.0O2—N2—C7118.02 (14)
C5—C4—H4120.0O1—N2—C7118.83 (15)
N1—C5—C4119.83 (17)C1—N1—C5121.11 (14)
N1—C5—H5120.1C1—N1—C6118.62 (13)
C4—C5—H5120.1C5—N1—C6120.26 (13)
C11—C6—C7120.64 (14)O4—N3—O3122.92 (14)
C11—C6—N1116.52 (14)O4—N3—C9118.69 (15)
C7—C6—N1122.83 (14)O3—N3—C9118.39 (15)
C8—C7—C6118.53 (14)C10—N4—H4A121.1 (14)
C8—C7—N2117.52 (15)C10—N4—H4B120.2 (15)
C6—C7—N2123.95 (14)H4A—N4—H4B119 (2)
C9—C8—C7121.18 (15)H5A—O5—H5B119 (3)
C9—C8—H8119.4H5A—O5—H5C119 (5)
C7—C8—H8119.4H5C—O5'—H5D122 (4)
N1—C1—C2—C30.7 (3)N4—C10—C11—C6179.34 (16)
C1—C2—C3—C41.4 (3)C9—C10—C11—C60.2 (2)
C2—C3—C4—C50.7 (3)C8—C7—N2—O27.3 (2)
C3—C4—C5—N10.8 (3)C6—C7—N2—O2172.42 (16)
C11—C6—C7—C81.9 (2)C8—C7—N2—O1173.29 (15)
N1—C6—C7—C8176.69 (14)C6—C7—N2—O16.9 (2)
C11—C6—C7—N2177.90 (15)C2—C1—N1—C50.9 (3)
N1—C6—C7—N23.5 (2)C2—C1—N1—C6179.68 (16)
C6—C7—C8—C91.2 (2)C4—C5—N1—C11.6 (3)
N2—C7—C8—C9178.98 (14)C4—C5—N1—C6179.61 (18)
C7—C8—C9—C103.9 (2)C11—C6—N1—C178.17 (19)
C7—C8—C9—N3175.86 (15)C7—C6—N1—C1100.44 (18)
C8—C9—C10—N4177.62 (17)C11—C6—N1—C5100.64 (19)
N3—C9—C10—N42.6 (3)C7—C6—N1—C580.8 (2)
C8—C9—C10—C113.3 (2)C8—C9—N3—O4178.50 (16)
N3—C9—C10—C11176.45 (14)C10—C9—N3—O41.3 (2)
C7—C6—C11—C102.4 (2)C8—C9—N3—O30.6 (2)
N1—C6—C11—C10176.28 (14)C10—C9—N3—O3179.63 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O40.86 (2)2.09 (2)2.671 (2)124 (2)
N4—H4B···Cl10.87 (2)2.35 (2)3.2162 (19)171 (2)
N4—H4A···Cl1i0.86 (2)2.56 (2)3.2268 (16)135 (2)
O5—H5B···Cl10.90 (2)2.34 (3)3.187 (3)158 (5)
O5—H5A···Cl1ii0.93 (2)2.51 (2)3.429 (9)169 (5)
O5—H5D···O5iii0.91 (2)1.94 (3)2.815 (16)160 (5)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H9N4O4+·Cl·H2O
Mr314.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.4312 (4), 21.493 (2), 11.3892 (9)
β (°) 92.362 (3)
V3)1328.33 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.871, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
14754, 3125, 2288
Rint0.031
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.112, 1.03
No. of reflections3125
No. of parameters224
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.27

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O40.864 (15)2.088 (19)2.671 (2)124.3 (17)
N4—H4B···Cl10.874 (16)2.349 (17)3.2162 (19)171 (2)
N4—H4A···Cl1i0.864 (15)2.556 (18)3.2268 (16)135.2 (17)
O5—H5B···Cl10.90 (2)2.34 (3)3.187 (3)158 (5)
O5—H5A···Cl1ii0.930 (19)2.51 (2)3.429 (9)169 (5)
O5'—H5D···O5iii0.913 (19)1.94 (3)2.815 (16)160 (5)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z.
 

Acknowledgements

The authors are thankful to SAIF, IIT Madras, for the data collection.

References

First citationAli, M. R., Nishikata, A. & Tsuru, T. (2005). Ind. J. Chem. Technol. 12, 648–653.  CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAzzouz, R., Fruit, C., Bischoff, L. & Marsais, F. (2008). J. Org. Chem. 73, 1154–1157.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChelossi, E., Mancini, I., Sepcic, K., Turk, T. & Faimali, M. (2006). Biomol. Eng. 23, 317–323.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChernyshev, V. M., Tarasova, E. V., Chernysheva, A. V. & Rybakov, V. B. (2011). Acta Cryst. E67, o466–o467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationManickkam, V. & Kalaivani, D. (2011). Acta Cryst. E67, o3475.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShmidt, A., Mordhorst, N. & Nieger, M. (2005). Nat. Prod. Res. 19, 541–546.  Web of Science PubMed Google Scholar
First citationSliwa, W. (1996). In N-Substituted Salts of Pyridine and Related Compounds, Synthesis, Properties, Applications. Czestochowa, Poland: Academic Press.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridevi, G. & Kalaivani, D. (2012). Acta Cryst. E68, o1044.  CSD CrossRef IUCr Journals Google Scholar
First citationWojtas, L., Pawlica, D. & Stadnicka, K. (2006). J. Mol. Struct. 785, 14–20.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds