metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­chloridomercury(II)]-μ-{N-[(E)-pyridin-2-yl­methyl­­idene-κN]pyridin-3-amine-κ2N1:N3}]

aDepartment of Chemistry, Islamic Azad University University, Karaj, Iran, and bDepartment of Chemistry, Alzahra University, Tehran, Iran
*Correspondence e-mail: Mahmoudi_Ali@yahoo.com

(Received 23 July 2012; accepted 14 August 2012; online 5 September 2012)

In the title coordination polymer, [HgCl2(C11H9N3)]n, the HgII ion is coordinated by three N atoms from two N-[(E)-pyridin-2-yl­methyl­idene]pyridin-3-amine (L) ligands and two chloride anions in a distorted trigonal–bipyramidal geometry. The two pyridine rings in L form a dihedral angle of 50.0 (2)°. L ligands bridge adjacent HgCl2 units into polymeric chains propagating in [010]. The crystal packing is further stabilized by weak inter­molecular C—H⋯Cl hydrogen bonds and ππ inter­actions between the pyridine rings, with a centroid–centroid separation of 3.529 (9) Å.

Related literature

For related structures and applications of coordination polymers, see: Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Fei et al. (2000[Fei, B. L., Sun, W. Y., Yu, K. B. & Tang, W. X. (2000). J. Chem. Soc. Dalton Trans. pp. 805-811.]). For the synthesis of the ligand and the index of trigonality, see: Dehghanpour et al. (2012[Dehghanpour, S., Asadizadeh, S. & Assoud, J. (2012). Z. Anorg. Allg. Chem. 638, 861-867.]).

[Scheme 1]

Experimental

Crystal data
  • [HgCl2(C11H9N3)]

  • Mr = 454.70

  • Monoclinic, P 21 /n

  • a = 7.5645 (5) Å

  • b = 13.1057 (9) Å

  • c = 12.7017 (5) Å

  • β = 96.077 (4)°

  • V = 1252.15 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 12.70 mm−1

  • T = 150 K

  • 0.15 × 0.08 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.566, Tmax = 0.889

  • 8560 measured reflections

  • 2837 independent reflections

  • 2164 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.09

  • 2837 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 2.45 e Å−3

  • Δρmin = −3.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯Cl2i 0.95 2.82 3.700 (8) 154
C6—H6A⋯Cl2i 0.95 2.79 3.666 (7) 154
C10—H10A⋯Cl2ii 0.95 2.83 3.545 (8) 132
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A edited by C. W. Carter & R. M. Sweet pp. 307-326. New York: Academic press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many studies has recently been focused on coordination polymers due to their useful properties applicable to catalysis, chirality, conductivity, luminescence (Moulton & Zaworotko, 2001). Nitrogen heterocyclic ligands have been employed in the design and synthesis of many novel coordination polymers (Fei et al., 2000). Herewith we report the synthesis and crystal structure of a novel Hg(II) complex based on pyridin-3-ylpyridin-2-ylmethyleneamine (PyPy).

The asymmetric unit of the title polymeric complex, consisting of one Hg(II) ion, one PyPy ligand and two chloride anions, is shown in Fig. 1. The coordination geometry around Hg(II) is a distorted trigonal–bipyramidal geometry, with the Hg (II) ion being surrounded by two Cl, two N atoms from one PyPy ligand and one N atom from adjacent PyPy ligand. The structural index τ, (Dehghanpour et al., 2012) which is a measure of trigonal distortion, is 0.59 for the title structure indicating a distorted trigonal–bipyramidal environment of Hg(II).

The interplanar angles between the chelate ring (N1—C5—C6—N2) and pyridine ring (N1—C1—C2—C3—C4—C5) is 0.92 (3)° and interplanar angles between the two pyridine rings in the ligand (N1—C1—C2—C3—C4—C5 ring and N3—C11—C7—C8—C9—C10 ring) is 50.0 (2)°. Each PyPy ligand has been chelate HgCl2 unit (via N, N' atoms) and also bridge to another HgCl2 unit (with N" atom), resulting into a chain propagated in [010].

These chains interact via ππ interactions between adjacent pyridine ringe (N3/C7—C11) related by inversion center, and the distance between their centroids is equal to 3.529 (9) Å. The C—H···Cl interactions (Table 1) are also observed in the crystal structure.

Related literature top

For related structures and applications of coordination polymers, see: Moulton & Zaworotko (2001); Fei et al. (2000). For the synthesis of the ligand and the index of trigonality, see: Dehghanpour et al. (2012).

Experimental top

The title complex was prepared by the reaction of HgCl2 (27.1 mg, 0.1 mmol) and pyridin-3-ylpyridin-2-ylmethyleneamine (18.3 mg, 0.1 mmol) in 25 ml of acetonitrile at room temperature. The solution was allowed to stand at room temperature and yellow crystals of the title compound suitable for X-ray analysis precipitated within few days.

Refinement top

H atoms were placed in calculated positions with C—H = 0.95 Å, and included in the refinement in a riding-motion approximation, with Uiso(H)= 1.2Ueq(C).

Structure description top

Many studies has recently been focused on coordination polymers due to their useful properties applicable to catalysis, chirality, conductivity, luminescence (Moulton & Zaworotko, 2001). Nitrogen heterocyclic ligands have been employed in the design and synthesis of many novel coordination polymers (Fei et al., 2000). Herewith we report the synthesis and crystal structure of a novel Hg(II) complex based on pyridin-3-ylpyridin-2-ylmethyleneamine (PyPy).

The asymmetric unit of the title polymeric complex, consisting of one Hg(II) ion, one PyPy ligand and two chloride anions, is shown in Fig. 1. The coordination geometry around Hg(II) is a distorted trigonal–bipyramidal geometry, with the Hg (II) ion being surrounded by two Cl, two N atoms from one PyPy ligand and one N atom from adjacent PyPy ligand. The structural index τ, (Dehghanpour et al., 2012) which is a measure of trigonal distortion, is 0.59 for the title structure indicating a distorted trigonal–bipyramidal environment of Hg(II).

The interplanar angles between the chelate ring (N1—C5—C6—N2) and pyridine ring (N1—C1—C2—C3—C4—C5) is 0.92 (3)° and interplanar angles between the two pyridine rings in the ligand (N1—C1—C2—C3—C4—C5 ring and N3—C11—C7—C8—C9—C10 ring) is 50.0 (2)°. Each PyPy ligand has been chelate HgCl2 unit (via N, N' atoms) and also bridge to another HgCl2 unit (with N" atom), resulting into a chain propagated in [010].

These chains interact via ππ interactions between adjacent pyridine ringe (N3/C7—C11) related by inversion center, and the distance between their centroids is equal to 3.529 (9) Å. The C—H···Cl interactions (Table 1) are also observed in the crystal structure.

For related structures and applications of coordination polymers, see: Moulton & Zaworotko (2001); Fei et al. (2000). For the synthesis of the ligand and the index of trigonality, see: Dehghanpour et al. (2012).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title complex, with displacement ellipsoids drawn at the 50% probability level [symmetry codes: (a) 1/2 - x, -1/2 + y, 1/2 - z; (b) 1/2 - x, -1/2 + y, 1/2 - z].
catena-Poly[[dichloridomercury(II)]-µ-{N-[(E)-pyridin-2- ylmethylidene-κN]pyridin-3-amine-κ2N1:N3}] top
Crystal data top
[HgCl2(C11H9N3)]F(000) = 840
Mr = 454.70Dx = 2.412 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8560 reflections
a = 7.5645 (5) Åθ = 3.0–27.5°
b = 13.1057 (9) ŵ = 12.70 mm1
c = 12.7017 (5) ÅT = 150 K
β = 96.077 (4)°Plate, yellow
V = 1252.15 (13) Å30.15 × 0.08 × 0.02 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2837 independent reflections
Radiation source: fine-focus sealed tube2164 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.0°
φ scans and ω scans with κ offsetsh = 99
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1516
Tmin = 0.566, Tmax = 0.889l = 1616
8560 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0613P)2]
where P = (Fo2 + 2Fc2)/3
2837 reflections(Δ/σ)max = 0.002
154 parametersΔρmax = 2.45 e Å3
0 restraintsΔρmin = 3.10 e Å3
Crystal data top
[HgCl2(C11H9N3)]V = 1252.15 (13) Å3
Mr = 454.70Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5645 (5) ŵ = 12.70 mm1
b = 13.1057 (9) ÅT = 150 K
c = 12.7017 (5) Å0.15 × 0.08 × 0.02 mm
β = 96.077 (4)°
Data collection top
Nonius KappaCCD
diffractometer
2837 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2164 reflections with I > 2σ(I)
Tmin = 0.566, Tmax = 0.889Rint = 0.059
8560 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.09Δρmax = 2.45 e Å3
2837 reflectionsΔρmin = 3.10 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.26173 (3)0.14916 (2)0.252995 (19)0.02692 (14)
Cl10.0045 (3)0.16859 (19)0.13060 (18)0.0509 (6)
Cl20.5101 (2)0.27229 (14)0.25673 (14)0.0296 (4)
N10.2620 (7)0.0445 (4)0.4086 (4)0.0249 (13)
N20.1391 (8)0.2435 (5)0.4036 (4)0.0295 (14)
N30.0833 (8)0.5128 (4)0.3314 (4)0.0261 (13)
C10.3228 (9)0.0520 (6)0.4171 (5)0.0275 (16)
H1A0.36730.08210.35720.033*
C20.3237 (10)0.1096 (6)0.5084 (6)0.0316 (18)
H2A0.37020.17700.51130.038*
C30.2552 (9)0.0670 (6)0.5963 (5)0.0293 (16)
H3A0.25010.10550.65920.035*
C40.1954 (9)0.0319 (6)0.5895 (6)0.0272 (16)
H4A0.15130.06360.64870.033*
C50.1999 (9)0.0854 (6)0.4950 (5)0.0257 (16)
C60.1330 (9)0.1915 (6)0.4877 (5)0.0284 (16)
H6A0.08490.22130.54670.034*
C70.0619 (11)0.3439 (5)0.3945 (6)0.0299 (17)
C80.1065 (10)0.3615 (6)0.4214 (6)0.0308 (17)
H8A0.17010.30910.45270.037*
C90.1826 (10)0.4570 (6)0.4022 (6)0.0319 (18)
H9A0.29950.47140.41910.038*
C100.0815 (9)0.5309 (6)0.3574 (5)0.0254 (16)
H10A0.13110.59690.34470.030*
C110.1534 (10)0.4210 (6)0.3503 (5)0.0284 (16)
H11A0.27030.40800.33280.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.02627 (19)0.0269 (2)0.0285 (2)0.00027 (12)0.00688 (13)0.00040 (11)
Cl10.0333 (12)0.0627 (16)0.0536 (14)0.0076 (10)0.0097 (9)0.0062 (11)
Cl20.0272 (9)0.0266 (10)0.0357 (9)0.0027 (7)0.0071 (7)0.0009 (8)
N10.020 (3)0.028 (4)0.027 (3)0.006 (3)0.006 (2)0.001 (3)
N20.027 (3)0.035 (4)0.026 (3)0.008 (3)0.001 (2)0.001 (3)
N30.030 (3)0.022 (3)0.027 (3)0.003 (3)0.007 (2)0.003 (3)
C10.022 (4)0.030 (4)0.031 (4)0.000 (3)0.006 (3)0.008 (3)
C20.020 (4)0.032 (5)0.041 (4)0.001 (3)0.005 (3)0.004 (3)
C30.027 (4)0.033 (4)0.028 (4)0.000 (3)0.001 (3)0.001 (3)
C40.023 (4)0.033 (5)0.026 (4)0.003 (3)0.002 (3)0.002 (3)
C50.019 (4)0.029 (4)0.029 (4)0.001 (3)0.002 (3)0.001 (3)
C60.019 (4)0.038 (5)0.029 (4)0.001 (3)0.003 (3)0.002 (4)
C70.038 (4)0.027 (4)0.025 (4)0.004 (3)0.007 (3)0.003 (3)
C80.031 (4)0.033 (5)0.028 (4)0.006 (3)0.005 (3)0.002 (3)
C90.023 (4)0.042 (5)0.031 (4)0.001 (3)0.006 (3)0.001 (4)
C100.028 (4)0.029 (4)0.018 (3)0.004 (3)0.004 (3)0.002 (3)
C110.031 (4)0.025 (4)0.030 (4)0.004 (3)0.011 (3)0.000 (3)
Geometric parameters (Å, º) top
Hg1—N12.406 (5)C2—H2A0.9500
Hg1—Cl12.424 (2)C3—C41.373 (11)
Hg1—N3i2.445 (6)C3—H3A0.9500
Hg1—Cl22.4732 (17)C4—C51.393 (10)
Hg1—N22.535 (6)C4—H4A0.9500
N1—C11.347 (9)C5—C61.480 (11)
N1—C51.349 (8)C6—H6A0.9500
N2—C61.272 (9)C7—C81.373 (11)
N2—C71.438 (9)C7—C111.378 (10)
N3—C111.327 (9)C8—C91.388 (11)
N3—C101.345 (8)C8—H8A0.9500
N3—Hg1ii2.445 (6)C9—C101.393 (10)
C1—C21.384 (10)C9—H9A0.9500
C1—H1A0.9500C10—H10A0.9500
C2—C31.395 (10)C11—H11A0.9500
N1—Hg1—Cl1121.03 (14)C4—C3—H3A120.8
N1—Hg1—N3i89.13 (19)C2—C3—H3A120.8
Cl1—Hg1—N3i101.53 (15)C3—C4—C5119.4 (7)
N1—Hg1—Cl2114.93 (14)C3—C4—H4A120.3
Cl1—Hg1—Cl2121.44 (7)C5—C4—H4A120.3
N3i—Hg1—Cl294.98 (14)N1—C5—C4122.9 (7)
N1—Hg1—N268.1 (2)N1—C5—C6118.0 (6)
Cl1—Hg1—N295.00 (15)C4—C5—C6119.1 (6)
N3i—Hg1—N2156.61 (19)N2—C6—C5120.9 (6)
Cl2—Hg1—N290.30 (14)N2—C6—H6A119.6
C1—N1—C5117.0 (6)C5—C6—H6A119.6
C1—N1—Hg1124.9 (4)C8—C7—C11119.8 (7)
C5—N1—Hg1118.2 (5)C8—C7—N2120.9 (7)
C6—N2—C7120.5 (6)C11—C7—N2119.1 (6)
C6—N2—Hg1114.9 (5)C7—C8—C9119.2 (7)
C7—N2—Hg1124.3 (4)C7—C8—H8A120.4
C11—N3—C10118.6 (6)C9—C8—H8A120.4
C11—N3—Hg1ii122.8 (5)C8—C9—C10117.6 (7)
C10—N3—Hg1ii118.6 (5)C8—C9—H9A121.2
N1—C1—C2123.4 (6)C10—C9—H9A121.2
N1—C1—H1A118.3N3—C10—C9122.8 (7)
C2—C1—H1A118.3N3—C10—H10A118.6
C1—C2—C3118.9 (7)C9—C10—H10A118.6
C1—C2—H2A120.6N3—C11—C7122.1 (7)
C3—C2—H2A120.6N3—C11—H11A119.0
C4—C3—C2118.4 (7)C7—C11—H11A119.0
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···Cl2iii0.952.823.700 (8)154
C6—H6A···Cl2iii0.952.793.666 (7)154
C10—H10A···Cl2ii0.952.833.545 (8)132
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[HgCl2(C11H9N3)]
Mr454.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)7.5645 (5), 13.1057 (9), 12.7017 (5)
β (°) 96.077 (4)
V3)1252.15 (13)
Z4
Radiation typeMo Kα
µ (mm1)12.70
Crystal size (mm)0.15 × 0.08 × 0.02
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.566, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
8560, 2837, 2164
Rint0.059
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.09
No. of reflections2837
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.45, 3.10

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···Cl2i0.952.823.700 (8)154
C6—H6A···Cl2i0.952.793.666 (7)154
C10—H10A···Cl2ii0.952.833.545 (8)132
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Islamic Azad University University Research Councils for partial support of this work.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDehghanpour, S., Asadizadeh, S. & Assoud, J. (2012). Z. Anorg. Allg. Chem. 638, 861–867.  Web of Science CSD CrossRef CAS Google Scholar
First citationFei, B. L., Sun, W. Y., Yu, K. B. & Tang, W. X. (2000). J. Chem. Soc. Dalton Trans. pp. 805–811.  Web of Science CSD CrossRef Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A edited by C. W. Carter & R. M. Sweet pp. 307–326. New York: Academic press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds