organic compounds
2,4-Bis(4-ethoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one
aDepartment of Biomedicinal Chemistry, Inje University, Gimhae, Gyeongnam 621 749, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai 600 036, TamilNadu, India
*Correspondence e-mail: parthisivam@yahoo.co.in
The title compound, C24H29NO3, exists in a twin-chair conformation with an equatorial orientation of the 4-ethoxyphenyl groups. The benzene rings are inclined to each other at an angle of 28.0 (1)°. In the crystal, weak C—H⋯O interactions link molecules related by translation into chains along the b axis. The crystal packing exhibits π–π interactions between the benzene rings of neighbouring molecules [centroid–centroid distance = 3.692 (3) Å].
Related literature
For the synthesis and stereochemistry of 3-azabicyclo[3.3.1]nonan-9-ones, see: Park et al. (2011a). For the biological activity of 3-azabicyclo[3.3.1]nonan-9-ones, see: Barker et al. (2005); Parthiban et al. (2009, 2010a,b, 2011a). For related structures, see: Parthiban et al. (2011b); Park et al. (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536812037385/cv5330sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812037385/cv5330Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812037385/cv5330Isup3.cml
The 2,4-bis(4-ethoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one was synthesized by a modified and an optimized Mannich condensation in one-pot, using 4-ethoxybenzaldehyde (0.1 mol, 15.018 g/13.91 ml), cyclohexanone (0.05 mol, 4.90 g/5.18 ml) and ammonium acetate (0.075 mol, 5.78 g) in a 50 ml of absolute ethanol (Park et al., 2011). The mixture was gently warmed on a hot plate at 303–308 K (30–35° C) with moderate stirring till the complete consumption of the starting materials, which was monitored by TLC. At the end, the crude azabicyclic ketone was separated by filtration and gently washed with 1:5 cold ethanol-ether mixture. X-ray diffraction quality crystals of the title compound were obtained by slow evaporation from ethanol.
All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98 Å, methylene C—H = 0.97 Å, and N—H = 0.86 Å, and with Uiso(H) = 1.2-1.5Ueq(C, N).
Alkaloids with 3-azabicyclononane nucleus display broad-spectrum of biological activities ranging from antibacterial to anticancer (Barker et al., 2005; Parthiban et al., 2009, 2010a, 2010b, 2011a). Hence, the synthesis of new molecules that contain 3-azabicyclononane pharmacophore as well as their isolaton from the natural products are important in the field of medicinal chemistry. Accordingly, we synthesized the title compound by a non-laborious method to explore its stereochemistry in the solid-state.
Examination of the asymmery parameters and torsion angles of the title compound reveal that the values are similar to those observed in the analogs viz., 2,4-bis(4-ethoxyphenyl)-7-methyl-3-azabicyclo[3.3.1]nonan-9-one (Park et al., 2012) and 2,4-bis(2-ethoxyphenyl)-7-methyl -3-azabicyclo[3.3.1]nonan-9-one (Parthiban et al., 2011b). The torsion angles of the title compound C2—C8—C6—C7, C1—C2—C8—C6, C2—C8—C6—C5 and C3—C2—C8—C6 are -62.5 (2), 62.3 (2), 62.6 (2) and -62.6 (2)°, respectively, that clearly assign the chair-chair conformation to the bicycle as in the analogs. The orientations of the ethoxyphenyl groups on both sides of the secondary amino group are identified by their torsion angles. The torsion angles C8—C2—C1—C9 and C8—C6—C7—C17 are 179.34 (18) and -178.52 (18)°, respectively. This clearly conform their equatorial orientations and it is very similar to those in 7-methylated 4-ehtoxyphenyl [C3—C2—C1—C7 and its mirror image is 176.7 (5)%, center of symmetry bisects the molecule] and 2-ethoxyphenyl analogs [C8—C6—C7—C15 and C8—C2—C1—C9 are 176.83 (14) and -179.07 (14)°, respectively]. In the title compound, two benzene rings are inclined to each other with an angle of 28.0 (1)° as in 7-methylated analog (26.11 (3)°), while in 7-methylated ortho analog this angle is 12.41 (4)°.
The crystal packing is stabilized by the weak intermolecular C—H···O hydrogen bonds (Table 1) and π–π interactions.
For the synthesis and stereochemistry of 3-azabicyclo[3.3.1]nonan-9-ones, see: Park et al. (2011a). For the biological activity of 3-azabicyclo[3.3.1]nonan-9-ones, see: Barker et al. (2005); Parthiban et al. (2009, 2010a,b, 2011a). For related structures, see: Parthiban et al. (2011b); Park et al. (2012).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Anistropic displacement representation of the molecule with atoms represented with 30% probability ellipsoids. |
C24H29NO3 | F(000) = 816 |
Mr = 379.48 | Dx = 1.247 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 4030 reflections |
a = 14.0319 (11) Å | θ = 2.8–28.3° |
b = 7.3143 (6) Å | µ = 0.08 mm−1 |
c = 20.5820 (17) Å | T = 293 K |
β = 106.841 (3)° | Block, colourless |
V = 2021.8 (3) Å3 | 0.35 × 0.28 × 0.25 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 5415 independent reflections |
Radiation source: fine-focus sealed tube | 3042 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
phi and ω scans | θmax = 29.5°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −19→10 |
Tmin = 0.972, Tmax = 0.980 | k = −6→10 |
15180 measured reflections | l = −26→28 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.072 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.232 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.1095P)2 + 0.8855P] where P = (Fo2 + 2Fc2)/3 |
5415 reflections | (Δ/σ)max = 0.001 |
255 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
C24H29NO3 | V = 2021.8 (3) Å3 |
Mr = 379.48 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 14.0319 (11) Å | µ = 0.08 mm−1 |
b = 7.3143 (6) Å | T = 293 K |
c = 20.5820 (17) Å | 0.35 × 0.28 × 0.25 mm |
β = 106.841 (3)° |
Bruker APEXII CCD area-detector diffractometer | 5415 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 3042 reflections with I > 2σ(I) |
Tmin = 0.972, Tmax = 0.980 | Rint = 0.034 |
15180 measured reflections |
R[F2 > 2σ(F2)] = 0.072 | 0 restraints |
wR(F2) = 0.232 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.49 e Å−3 |
5415 reflections | Δρmin = −0.51 e Å−3 |
255 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O3 | 1.11887 (13) | 0.5928 (3) | 0.47084 (8) | 0.0489 (5) | |
O2 | 0.82074 (15) | 0.5864 (3) | −0.14064 (8) | 0.0496 (5) | |
O1 | 0.86995 (18) | −0.2221 (3) | 0.17033 (10) | 0.0645 (7) | |
N1 | 0.96262 (14) | 0.2816 (3) | 0.16513 (8) | 0.0340 (5) | |
H1N | 0.9683 | 0.3986 | 0.1645 | 0.041* | |
C20 | 1.08546 (17) | 0.5034 (4) | 0.40974 (11) | 0.0368 (5) | |
C5 | 0.80462 (19) | 0.1721 (4) | 0.23518 (11) | 0.0388 (6) | |
H5A | 0.7556 | 0.0889 | 0.2435 | 0.047* | |
H5B | 0.8242 | 0.2559 | 0.2733 | 0.047* | |
C18 | 0.98813 (17) | 0.4710 (3) | 0.29306 (11) | 0.0385 (6) | |
H18 | 0.9428 | 0.5203 | 0.2548 | 0.046* | |
C9 | 0.90291 (17) | 0.2906 (3) | 0.04047 (10) | 0.0326 (5) | |
C21 | 1.12530 (19) | 0.3309 (4) | 0.40653 (11) | 0.0424 (6) | |
H21 | 1.1720 | 0.2828 | 0.4444 | 0.051* | |
C8 | 0.86704 (19) | −0.0568 (3) | 0.16953 (12) | 0.0385 (6) | |
C3 | 0.74291 (18) | 0.1672 (4) | 0.10705 (11) | 0.0377 (5) | |
H3A | 0.7253 | 0.2478 | 0.0679 | 0.045* | |
H3B | 0.6878 | 0.0834 | 0.1027 | 0.045* | |
C6 | 0.89630 (19) | 0.0616 (3) | 0.23207 (11) | 0.0370 (5) | |
H6 | 0.9168 | −0.0175 | 0.2721 | 0.044* | |
C7 | 0.98759 (17) | 0.1764 (3) | 0.22787 (10) | 0.0342 (5) | |
H7 | 1.0412 | 0.0914 | 0.2270 | 0.041* | |
C2 | 0.83556 (18) | 0.0568 (3) | 0.10609 (11) | 0.0354 (5) | |
H2 | 0.8178 | −0.0252 | 0.0668 | 0.042* | |
C19 | 1.01727 (18) | 0.5742 (4) | 0.35234 (12) | 0.0398 (6) | |
H19 | 0.9911 | 0.6906 | 0.3535 | 0.048* | |
C14 | 0.8740 (2) | 0.4705 (4) | 0.04078 (11) | 0.0427 (6) | |
H14 | 0.8732 | 0.5238 | 0.0816 | 0.051* | |
C22 | 1.09565 (18) | 0.2309 (4) | 0.34725 (11) | 0.0403 (6) | |
H22 | 1.1236 | 0.1163 | 0.3456 | 0.048* | |
C11 | 0.8779 (2) | 0.3173 (4) | −0.08037 (11) | 0.0425 (6) | |
H11 | 0.8806 | 0.2646 | −0.1209 | 0.051* | |
C13 | 0.8459 (2) | 0.5745 (4) | −0.01813 (12) | 0.0443 (6) | |
H13 | 0.8265 | 0.6956 | −0.0166 | 0.053* | |
C10 | 0.90468 (19) | 0.2167 (4) | −0.02133 (11) | 0.0416 (6) | |
H10 | 0.9245 | 0.0959 | −0.0229 | 0.050* | |
C4 | 0.75624 (17) | 0.2812 (3) | 0.17080 (11) | 0.0360 (5) | |
H4A | 0.6918 | 0.3253 | 0.1724 | 0.043* | |
H4B | 0.7973 | 0.3866 | 0.1690 | 0.043* | |
C17 | 1.02478 (16) | 0.2975 (3) | 0.28970 (11) | 0.0332 (5) | |
C12 | 0.84721 (18) | 0.4958 (4) | −0.07936 (11) | 0.0364 (5) | |
C1 | 0.92723 (17) | 0.1728 (3) | 0.10336 (10) | 0.0337 (5) | |
H1 | 0.9806 | 0.0885 | 0.1013 | 0.040* | |
C23 | 1.0724 (2) | 0.7590 (4) | 0.47980 (14) | 0.0520 (7) | |
H23A | 1.0010 | 0.7412 | 0.4694 | 0.062* | |
H23B | 1.0846 | 0.8516 | 0.4494 | 0.062* | |
C24 | 1.1141 (2) | 0.8196 (4) | 0.55196 (14) | 0.0562 (8) | |
H24A | 1.0961 | 0.7332 | 0.5815 | 0.084* | |
H24B | 1.0877 | 0.9377 | 0.5576 | 0.084* | |
H24C | 1.1854 | 0.8269 | 0.5630 | 0.084* | |
C15 | 0.7732 (3) | 0.7581 (4) | −0.14446 (14) | 0.0554 (8) | |
H15A | 0.8209 | 0.8497 | −0.1212 | 0.067* | |
H15B | 0.7206 | 0.7515 | −0.1226 | 0.067* | |
C16 | 0.7307 (3) | 0.8097 (5) | −0.21709 (15) | 0.0712 (10) | |
H16A | 0.7821 | 0.8063 | −0.2393 | 0.107* | |
H16B | 0.7036 | 0.9309 | −0.2200 | 0.107* | |
H16C | 0.6790 | 0.7251 | −0.2388 | 0.107* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.0551 (11) | 0.0491 (11) | 0.0322 (9) | 0.0124 (9) | −0.0039 (7) | −0.0091 (8) |
O2 | 0.0672 (12) | 0.0548 (12) | 0.0289 (9) | 0.0118 (10) | 0.0172 (8) | 0.0084 (8) |
O1 | 0.1000 (18) | 0.0292 (11) | 0.0569 (13) | 0.0043 (11) | 0.0110 (11) | 0.0016 (9) |
N1 | 0.0411 (10) | 0.0356 (11) | 0.0225 (9) | −0.0035 (9) | 0.0048 (7) | 0.0003 (8) |
C20 | 0.0364 (11) | 0.0413 (14) | 0.0279 (11) | 0.0011 (10) | 0.0016 (9) | −0.0016 (10) |
C5 | 0.0483 (13) | 0.0402 (14) | 0.0304 (11) | −0.0065 (11) | 0.0153 (10) | −0.0025 (10) |
C18 | 0.0384 (12) | 0.0401 (14) | 0.0286 (11) | 0.0024 (11) | −0.0035 (9) | 0.0057 (10) |
C9 | 0.0352 (11) | 0.0384 (13) | 0.0241 (10) | −0.0015 (10) | 0.0085 (8) | −0.0017 (9) |
C21 | 0.0436 (13) | 0.0488 (16) | 0.0267 (11) | 0.0115 (12) | −0.0027 (9) | 0.0024 (10) |
C8 | 0.0485 (13) | 0.0281 (13) | 0.0377 (12) | 0.0037 (11) | 0.0105 (10) | 0.0002 (10) |
C3 | 0.0375 (11) | 0.0411 (14) | 0.0305 (11) | −0.0038 (11) | 0.0034 (9) | −0.0014 (10) |
C6 | 0.0495 (13) | 0.0306 (12) | 0.0278 (11) | 0.0006 (11) | 0.0065 (9) | 0.0054 (9) |
C7 | 0.0375 (11) | 0.0366 (13) | 0.0257 (10) | 0.0074 (10) | 0.0046 (8) | 0.0019 (9) |
C2 | 0.0476 (13) | 0.0306 (12) | 0.0254 (10) | −0.0010 (10) | 0.0066 (9) | −0.0062 (9) |
C19 | 0.0410 (12) | 0.0341 (13) | 0.0375 (12) | 0.0066 (11) | 0.0004 (10) | 0.0015 (10) |
C14 | 0.0645 (16) | 0.0398 (15) | 0.0251 (11) | −0.0022 (12) | 0.0152 (10) | −0.0057 (10) |
C22 | 0.0450 (13) | 0.0411 (14) | 0.0292 (11) | 0.0153 (11) | 0.0017 (10) | 0.0009 (10) |
C11 | 0.0538 (14) | 0.0512 (16) | 0.0235 (11) | 0.0093 (13) | 0.0128 (10) | −0.0033 (10) |
C13 | 0.0688 (17) | 0.0344 (14) | 0.0318 (12) | 0.0025 (13) | 0.0180 (11) | −0.0008 (10) |
C10 | 0.0495 (14) | 0.0462 (15) | 0.0289 (11) | 0.0133 (12) | 0.0111 (10) | −0.0028 (10) |
C4 | 0.0357 (11) | 0.0381 (14) | 0.0348 (12) | 0.0018 (10) | 0.0113 (9) | −0.0032 (10) |
C17 | 0.0327 (11) | 0.0384 (13) | 0.0252 (10) | 0.0025 (10) | 0.0033 (8) | 0.0011 (9) |
C12 | 0.0415 (12) | 0.0432 (14) | 0.0259 (10) | −0.0013 (11) | 0.0118 (9) | 0.0016 (10) |
C1 | 0.0381 (11) | 0.0377 (13) | 0.0248 (10) | 0.0048 (10) | 0.0083 (8) | −0.0015 (9) |
C23 | 0.0540 (16) | 0.0437 (16) | 0.0505 (16) | 0.0079 (13) | 0.0027 (12) | −0.0104 (13) |
C24 | 0.0613 (17) | 0.0534 (18) | 0.0479 (16) | 0.0040 (15) | 0.0060 (13) | −0.0154 (14) |
C15 | 0.073 (2) | 0.0520 (18) | 0.0429 (15) | 0.0098 (15) | 0.0185 (14) | 0.0102 (13) |
C16 | 0.090 (2) | 0.076 (2) | 0.0498 (18) | 0.026 (2) | 0.0241 (16) | 0.0267 (17) |
O3—C20 | 1.374 (3) | C7—C17 | 1.514 (3) |
O3—C23 | 1.416 (3) | C7—H7 | 0.9800 |
O2—C12 | 1.377 (3) | C2—C1 | 1.555 (3) |
O2—C15 | 1.413 (3) | C2—H2 | 0.9800 |
O1—C8 | 1.209 (3) | C19—H19 | 0.9300 |
N1—C7 | 1.456 (3) | C14—C13 | 1.388 (3) |
N1—C1 | 1.460 (3) | C14—H14 | 0.9300 |
N1—H1N | 0.8600 | C22—C17 | 1.395 (3) |
C20—C19 | 1.387 (3) | C22—H22 | 0.9300 |
C20—C21 | 1.389 (4) | C11—C10 | 1.376 (3) |
C5—C4 | 1.527 (3) | C11—C12 | 1.377 (4) |
C5—C6 | 1.536 (4) | C11—H11 | 0.9300 |
C5—H5A | 0.9700 | C13—C12 | 1.390 (3) |
C5—H5B | 0.9700 | C13—H13 | 0.9300 |
C18—C17 | 1.379 (3) | C10—H10 | 0.9300 |
C18—C19 | 1.392 (3) | C4—H4A | 0.9700 |
C18—H18 | 0.9300 | C4—H4B | 0.9700 |
C9—C14 | 1.378 (3) | C1—H1 | 0.9800 |
C9—C10 | 1.389 (3) | C23—C24 | 1.497 (3) |
C9—C1 | 1.510 (3) | C23—H23A | 0.9700 |
C21—C22 | 1.379 (3) | C23—H23B | 0.9700 |
C21—H21 | 0.9300 | C24—H24A | 0.9600 |
C8—C2 | 1.502 (3) | C24—H24B | 0.9600 |
C8—C6 | 1.507 (3) | C24—H24C | 0.9600 |
C3—C4 | 1.520 (3) | C15—C16 | 1.489 (4) |
C3—C2 | 1.536 (3) | C15—H15A | 0.9700 |
C3—H3A | 0.9700 | C15—H15B | 0.9700 |
C3—H3B | 0.9700 | C16—H16A | 0.9600 |
C6—C7 | 1.555 (3) | C16—H16B | 0.9600 |
C6—H6 | 0.9800 | C16—H16C | 0.9600 |
C20—O3—C23 | 118.68 (18) | C13—C14—H14 | 119.0 |
C12—O2—C15 | 118.45 (19) | C21—C22—C17 | 121.6 (2) |
C7—N1—C1 | 114.74 (19) | C21—C22—H22 | 119.2 |
C7—N1—H1N | 122.6 | C17—C22—H22 | 119.2 |
C1—N1—H1N | 122.6 | C10—C11—C12 | 120.0 (2) |
O3—C20—C19 | 124.8 (2) | C10—C11—H11 | 120.0 |
O3—C20—C21 | 116.14 (19) | C12—C11—H11 | 120.0 |
C19—C20—C21 | 119.1 (2) | C12—C13—C14 | 119.3 (2) |
C4—C5—C6 | 113.94 (19) | C12—C13—H13 | 120.3 |
C4—C5—H5A | 108.8 | C14—C13—H13 | 120.3 |
C6—C5—H5A | 108.8 | C11—C10—C9 | 121.9 (2) |
C4—C5—H5B | 108.8 | C11—C10—H10 | 119.1 |
C6—C5—H5B | 108.8 | C9—C10—H10 | 119.1 |
H5A—C5—H5B | 107.7 | C3—C4—C5 | 112.0 (2) |
C17—C18—C19 | 121.6 (2) | C3—C4—H4A | 109.2 |
C17—C18—H18 | 119.2 | C5—C4—H4A | 109.2 |
C19—C18—H18 | 119.2 | C3—C4—H4B | 109.2 |
C14—C9—C10 | 117.4 (2) | C5—C4—H4B | 109.2 |
C14—C9—C1 | 122.35 (19) | H4A—C4—H4B | 107.9 |
C10—C9—C1 | 120.2 (2) | C18—C17—C22 | 117.6 (2) |
C22—C21—C20 | 120.1 (2) | C18—C17—C7 | 122.54 (19) |
C22—C21—H21 | 120.0 | C22—C17—C7 | 119.8 (2) |
C20—C21—H21 | 120.0 | O2—C12—C11 | 116.4 (2) |
O1—C8—C2 | 124.4 (2) | O2—C12—C13 | 124.1 (2) |
O1—C8—C6 | 124.3 (2) | C11—C12—C13 | 119.5 (2) |
C2—C8—C6 | 111.3 (2) | N1—C1—C9 | 111.8 (2) |
C4—C3—C2 | 114.00 (18) | N1—C1—C2 | 110.00 (18) |
C4—C3—H3A | 108.8 | C9—C1—C2 | 111.01 (17) |
C2—C3—H3A | 108.8 | N1—C1—H1 | 108.0 |
C4—C3—H3B | 108.8 | C9—C1—H1 | 108.0 |
C2—C3—H3B | 108.8 | C2—C1—H1 | 108.0 |
H3A—C3—H3B | 107.6 | O3—C23—C24 | 108.7 (2) |
C8—C6—C5 | 108.31 (19) | O3—C23—H23A | 109.9 |
C8—C6—C7 | 106.74 (19) | C24—C23—H23A | 109.9 |
C5—C6—C7 | 115.6 (2) | O3—C23—H23B | 109.9 |
C8—C6—H6 | 108.7 | C24—C23—H23B | 109.9 |
C5—C6—H6 | 108.7 | H23A—C23—H23B | 108.3 |
C7—C6—H6 | 108.7 | C23—C24—H24A | 109.5 |
N1—C7—C17 | 111.9 (2) | C23—C24—H24B | 109.5 |
N1—C7—C6 | 110.13 (17) | H24A—C24—H24B | 109.5 |
C17—C7—C6 | 110.99 (18) | C23—C24—H24C | 109.5 |
N1—C7—H7 | 107.9 | H24A—C24—H24C | 109.5 |
C17—C7—H7 | 107.9 | H24B—C24—H24C | 109.5 |
C6—C7—H7 | 107.9 | O2—C15—C16 | 109.1 (2) |
C8—C2—C3 | 108.46 (19) | O2—C15—H15A | 109.9 |
C8—C2—C1 | 107.17 (18) | C16—C15—H15A | 109.9 |
C3—C2—C1 | 115.2 (2) | O2—C15—H15B | 109.9 |
C8—C2—H2 | 108.6 | C16—C15—H15B | 109.9 |
C3—C2—H2 | 108.6 | H15A—C15—H15B | 108.3 |
C1—C2—H2 | 108.6 | C15—C16—H16A | 109.5 |
C20—C19—C18 | 119.9 (2) | C15—C16—H16B | 109.5 |
C20—C19—H19 | 120.0 | H16A—C16—H16B | 109.5 |
C18—C19—H19 | 120.0 | C15—C16—H16C | 109.5 |
C9—C14—C13 | 121.9 (2) | H16A—C16—H16C | 109.5 |
C9—C14—H14 | 119.0 | H16B—C16—H16C | 109.5 |
C23—O3—C20—C19 | 8.5 (4) | C14—C9—C10—C11 | −0.6 (4) |
C23—O3—C20—C21 | −172.5 (3) | C1—C9—C10—C11 | 176.5 (2) |
O3—C20—C21—C22 | 179.7 (2) | C2—C3—C4—C5 | −46.6 (3) |
C19—C20—C21—C22 | −1.2 (4) | C6—C5—C4—C3 | 46.6 (3) |
O1—C8—C6—C5 | −118.4 (3) | C19—C18—C17—C22 | −2.5 (4) |
C2—C8—C6—C5 | 62.6 (2) | C19—C18—C17—C7 | 174.5 (2) |
O1—C8—C6—C7 | 116.5 (3) | C21—C22—C17—C18 | 2.7 (4) |
C2—C8—C6—C7 | −62.5 (2) | C21—C22—C17—C7 | −174.5 (2) |
C4—C5—C6—C8 | −53.9 (3) | N1—C7—C17—C18 | 35.2 (3) |
C4—C5—C6—C7 | 65.7 (3) | C6—C7—C17—C18 | −88.3 (3) |
C1—N1—C7—C17 | 179.35 (18) | N1—C7—C17—C22 | −147.8 (2) |
C1—N1—C7—C6 | −56.7 (2) | C6—C7—C17—C22 | 88.7 (3) |
C8—C6—C7—N1 | 57.0 (2) | C15—O2—C12—C11 | 169.6 (3) |
C5—C6—C7—N1 | −63.5 (2) | C15—O2—C12—C13 | −11.4 (4) |
C8—C6—C7—C17 | −178.52 (18) | C10—C11—C12—O2 | −179.3 (2) |
C5—C6—C7—C17 | 61.0 (2) | C10—C11—C12—C13 | 1.6 (4) |
O1—C8—C2—C3 | 118.4 (3) | C14—C13—C12—O2 | 179.9 (2) |
C6—C8—C2—C3 | −62.6 (2) | C14—C13—C12—C11 | −1.2 (4) |
O1—C8—C2—C1 | −116.7 (3) | C7—N1—C1—C9 | −179.96 (18) |
C6—C8—C2—C1 | 62.3 (2) | C7—N1—C1—C2 | 56.2 (2) |
C4—C3—C2—C8 | 54.2 (3) | C14—C9—C1—N1 | −27.4 (3) |
C4—C3—C2—C1 | −65.9 (3) | C10—C9—C1—N1 | 155.7 (2) |
O3—C20—C19—C18 | −179.6 (2) | C14—C9—C1—C2 | 95.9 (3) |
C21—C20—C19—C18 | 1.4 (4) | C10—C9—C1—C2 | −81.1 (3) |
C17—C18—C19—C20 | 0.5 (4) | C8—C2—C1—N1 | −56.4 (2) |
C10—C9—C14—C13 | 1.0 (4) | C3—C2—C1—N1 | 64.4 (2) |
C1—C9—C14—C13 | −176.0 (2) | C8—C2—C1—C9 | 179.34 (18) |
C20—C21—C22—C17 | −0.8 (4) | C3—C2—C1—C9 | −59.9 (2) |
C9—C14—C13—C12 | −0.2 (4) | C20—O3—C23—C24 | 174.3 (2) |
C12—C11—C10—C9 | −0.8 (4) | C12—O2—C15—C16 | −166.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18···O1i | 0.93 | 2.57 | 3.428 (3) | 154 |
C14—H14···O1i | 0.92 | 2.61 | 3.501 (3) | 159 |
Symmetry code: (i) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C24H29NO3 |
Mr | 379.48 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 14.0319 (11), 7.3143 (6), 20.5820 (17) |
β (°) | 106.841 (3) |
V (Å3) | 2021.8 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.35 × 0.28 × 0.25 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.972, 0.980 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15180, 5415, 3042 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.694 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.072, 0.232, 1.05 |
No. of reflections | 5415 |
No. of parameters | 255 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.49, −0.51 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18···O1i | 0.93 | 2.57 | 3.428 (3) | 154 |
C14—H14···O1i | 0.92 | 2.61 | 3.501 (3) | 159 |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
This research was supported by the Inje University research grant 2011. The authors acknowledge the Department of Chemistry, IIT Madras, for the data collection.
References
Barker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565–4575. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Park, D. H., Jeong, Y. T. & Parthiban, P. (2011a). J. Mol. Struct. 1005, 31–44. Web of Science CrossRef CAS Google Scholar
Park, D. H., Ramkumar, V. & Parthiban, P. (2012). Acta Cryst. E68, o779–o780. CSD CrossRef IUCr Journals Google Scholar
Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981–6985. Web of Science CSD CrossRef PubMed CAS Google Scholar
Parthiban, P., Ramkumar, V., Park, D. H. & Jeong, Y. T. (2011b). Acta Cryst. E67, o1475–o1476. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Parthiban, P., Rathika, P., Park, K. S. & Jeong, Y. T. (2010b). Monatsh. Chem. 141, 79–93. Web of Science CrossRef CAS Google Scholar
Parthiban, P., Rathika, P., Ramkumar, V., Son, S. M. & Jeong, Y. T. (2010a). Bioorg. Med. Chem. Lett. 20, 1642–1647. Web of Science CSD CrossRef CAS PubMed Google Scholar
Parthiban, P., Subalakshmi, V., Balasubramanian, K., Islam, Md. N., Choi, J. S. & Jeong, Y. T. (2011a). Bioorg. Med. Chem. Lett. 21, 2287–2296. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Alkaloids with 3-azabicyclononane nucleus display broad-spectrum of biological activities ranging from antibacterial to anticancer (Barker et al., 2005; Parthiban et al., 2009, 2010a, 2010b, 2011a). Hence, the synthesis of new molecules that contain 3-azabicyclononane pharmacophore as well as their isolaton from the natural products are important in the field of medicinal chemistry. Accordingly, we synthesized the title compound by a non-laborious method to explore its stereochemistry in the solid-state.
Examination of the asymmery parameters and torsion angles of the title compound reveal that the values are similar to those observed in the analogs viz., 2,4-bis(4-ethoxyphenyl)-7-methyl-3-azabicyclo[3.3.1]nonan-9-one (Park et al., 2012) and 2,4-bis(2-ethoxyphenyl)-7-methyl -3-azabicyclo[3.3.1]nonan-9-one (Parthiban et al., 2011b). The torsion angles of the title compound C2—C8—C6—C7, C1—C2—C8—C6, C2—C8—C6—C5 and C3—C2—C8—C6 are -62.5 (2), 62.3 (2), 62.6 (2) and -62.6 (2)°, respectively, that clearly assign the chair-chair conformation to the bicycle as in the analogs. The orientations of the ethoxyphenyl groups on both sides of the secondary amino group are identified by their torsion angles. The torsion angles C8—C2—C1—C9 and C8—C6—C7—C17 are 179.34 (18) and -178.52 (18)°, respectively. This clearly conform their equatorial orientations and it is very similar to those in 7-methylated 4-ehtoxyphenyl [C3—C2—C1—C7 and its mirror image is 176.7 (5)%, center of symmetry bisects the molecule] and 2-ethoxyphenyl analogs [C8—C6—C7—C15 and C8—C2—C1—C9 are 176.83 (14) and -179.07 (14)°, respectively]. In the title compound, two benzene rings are inclined to each other with an angle of 28.0 (1)° as in 7-methylated analog (26.11 (3)°), while in 7-methylated ortho analog this angle is 12.41 (4)°.
The crystal packing is stabilized by the weak intermolecular C—H···O hydrogen bonds (Table 1) and π–π interactions.