organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Bis(4-eth­­oxy­phen­yl)-3-aza­bi­cyclo­[3.3.1]nonan-9-one

aDepartment of Biomedicinal Chemistry, Inje University, Gimhae, Gyeongnam 621 749, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai 600 036, TamilNadu, India
*Correspondence e-mail: parthisivam@yahoo.co.in

(Received 18 August 2012; accepted 30 August 2012; online 5 September 2012)

The title compound, C24H29NO3, exists in a twin-chair conformation with an equatorial orientation of the 4-eth­oxy­phenyl groups. The benzene rings are inclined to each other at an angle of 28.0 (1)°. In the crystal, weak C—H⋯O inter­actions link mol­ecules related by translation into chains along the b axis. The crystal packing exhibits ππ inter­actions between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.692 (3) Å].

Related literature

For the synthesis and stereochemistry of 3-aza­bicyclo­[3.3.1]nonan-9-ones, see: Park et al. (2011a[Park, D. H., Jeong, Y. T. & Parthiban, P. (2011a). J. Mol. Struct. 1005, 31-44.]). For the biological activity of 3-aza­bicyclo­[3.3.1]nonan-9-ones, see: Barker et al. (2005[Barker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565-4575.]); Parthiban et al. (2009[Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981-6985.], 2010a[Parthiban, P., Rathika, P., Ramkumar, V., Son, S. M. & Jeong, Y. T. (2010a). Bioorg. Med. Chem. Lett. 20, 1642-1647.],b[Parthiban, P., Rathika, P., Park, K. S. & Jeong, Y. T. (2010b). Monatsh. Chem. 141, 79-93.], 2011a[Parthiban, P., Subalakshmi, V., Balasubramanian, K., Islam, Md. N., Choi, J. S. & Jeong, Y. T. (2011a). Bioorg. Med. Chem. Lett. 21, 2287-2296.]). For related structures, see: Parthiban et al. (2011b[Parthiban, P., Ramkumar, V., Park, D. H. & Jeong, Y. T. (2011b). Acta Cryst. E67, o1475-o1476.]); Park et al. (2012[Park, D. H., Ramkumar, V. & Parthiban, P. (2012). Acta Cryst. E68, o779-o780.]).

[Scheme 1]

Experimental

Crystal data
  • C24H29NO3

  • Mr = 379.48

  • Monoclinic, P 21 /n

  • a = 14.0319 (11) Å

  • b = 7.3143 (6) Å

  • c = 20.5820 (17) Å

  • β = 106.841 (3)°

  • V = 2021.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.35 × 0.28 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.980

  • 15180 measured reflections

  • 5415 independent reflections

  • 3042 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.232

  • S = 1.05

  • 5415 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O1i 0.93 2.57 3.428 (3) 154
C14—H14⋯O1i 0.92 2.61 3.501 (3) 159
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Alkaloids with 3-azabicyclononane nucleus display broad-spectrum of biological activities ranging from antibacterial to anticancer (Barker et al., 2005; Parthiban et al., 2009, 2010a, 2010b, 2011a). Hence, the synthesis of new molecules that contain 3-azabicyclononane pharmacophore as well as their isolaton from the natural products are important in the field of medicinal chemistry. Accordingly, we synthesized the title compound by a non-laborious method to explore its stereochemistry in the solid-state.

Examination of the asymmery parameters and torsion angles of the title compound reveal that the values are similar to those observed in the analogs viz., 2,4-bis(4-ethoxyphenyl)-7-methyl-3-azabicyclo[3.3.1]nonan-9-one (Park et al., 2012) and 2,4-bis(2-ethoxyphenyl)-7-methyl -3-azabicyclo[3.3.1]nonan-9-one (Parthiban et al., 2011b). The torsion angles of the title compound C2—C8—C6—C7, C1—C2—C8—C6, C2—C8—C6—C5 and C3—C2—C8—C6 are -62.5 (2), 62.3 (2), 62.6 (2) and -62.6 (2)°, respectively, that clearly assign the chair-chair conformation to the bicycle as in the analogs. The orientations of the ethoxyphenyl groups on both sides of the secondary amino group are identified by their torsion angles. The torsion angles C8—C2—C1—C9 and C8—C6—C7—C17 are 179.34 (18) and -178.52 (18)°, respectively. This clearly conform their equatorial orientations and it is very similar to those in 7-methylated 4-ehtoxyphenyl [C3—C2—C1—C7 and its mirror image is 176.7 (5)%, center of symmetry bisects the molecule] and 2-ethoxyphenyl analogs [C8—C6—C7—C15 and C8—C2—C1—C9 are 176.83 (14) and -179.07 (14)°, respectively]. In the title compound, two benzene rings are inclined to each other with an angle of 28.0 (1)° as in 7-methylated analog (26.11 (3)°), while in 7-methylated ortho analog this angle is 12.41 (4)°.

The crystal packing is stabilized by the weak intermolecular C—H···O hydrogen bonds (Table 1) and ππ interactions.

Related literature top

For the synthesis and stereochemistry of 3-azabicyclo[3.3.1]nonan-9-ones, see: Park et al. (2011a). For the biological activity of 3-azabicyclo[3.3.1]nonan-9-ones, see: Barker et al. (2005); Parthiban et al. (2009, 2010a,b, 2011a). For related structures, see: Parthiban et al. (2011b); Park et al. (2012).

Experimental top

The 2,4-bis(4-ethoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one was synthesized by a modified and an optimized Mannich condensation in one-pot, using 4-ethoxybenzaldehyde (0.1 mol, 15.018 g/13.91 ml), cyclohexanone (0.05 mol, 4.90 g/5.18 ml) and ammonium acetate (0.075 mol, 5.78 g) in a 50 ml of absolute ethanol (Park et al., 2011). The mixture was gently warmed on a hot plate at 303–308 K (30–35° C) with moderate stirring till the complete consumption of the starting materials, which was monitored by TLC. At the end, the crude azabicyclic ketone was separated by filtration and gently washed with 1:5 cold ethanol-ether mixture. X-ray diffraction quality crystals of the title compound were obtained by slow evaporation from ethanol.

Refinement top

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98 Å, methylene C—H = 0.97 Å, and N—H = 0.86 Å, and with Uiso(H) = 1.2-1.5Ueq(C, N).

Structure description top

Alkaloids with 3-azabicyclononane nucleus display broad-spectrum of biological activities ranging from antibacterial to anticancer (Barker et al., 2005; Parthiban et al., 2009, 2010a, 2010b, 2011a). Hence, the synthesis of new molecules that contain 3-azabicyclononane pharmacophore as well as their isolaton from the natural products are important in the field of medicinal chemistry. Accordingly, we synthesized the title compound by a non-laborious method to explore its stereochemistry in the solid-state.

Examination of the asymmery parameters and torsion angles of the title compound reveal that the values are similar to those observed in the analogs viz., 2,4-bis(4-ethoxyphenyl)-7-methyl-3-azabicyclo[3.3.1]nonan-9-one (Park et al., 2012) and 2,4-bis(2-ethoxyphenyl)-7-methyl -3-azabicyclo[3.3.1]nonan-9-one (Parthiban et al., 2011b). The torsion angles of the title compound C2—C8—C6—C7, C1—C2—C8—C6, C2—C8—C6—C5 and C3—C2—C8—C6 are -62.5 (2), 62.3 (2), 62.6 (2) and -62.6 (2)°, respectively, that clearly assign the chair-chair conformation to the bicycle as in the analogs. The orientations of the ethoxyphenyl groups on both sides of the secondary amino group are identified by their torsion angles. The torsion angles C8—C2—C1—C9 and C8—C6—C7—C17 are 179.34 (18) and -178.52 (18)°, respectively. This clearly conform their equatorial orientations and it is very similar to those in 7-methylated 4-ehtoxyphenyl [C3—C2—C1—C7 and its mirror image is 176.7 (5)%, center of symmetry bisects the molecule] and 2-ethoxyphenyl analogs [C8—C6—C7—C15 and C8—C2—C1—C9 are 176.83 (14) and -179.07 (14)°, respectively]. In the title compound, two benzene rings are inclined to each other with an angle of 28.0 (1)° as in 7-methylated analog (26.11 (3)°), while in 7-methylated ortho analog this angle is 12.41 (4)°.

The crystal packing is stabilized by the weak intermolecular C—H···O hydrogen bonds (Table 1) and ππ interactions.

For the synthesis and stereochemistry of 3-azabicyclo[3.3.1]nonan-9-ones, see: Park et al. (2011a). For the biological activity of 3-azabicyclo[3.3.1]nonan-9-ones, see: Barker et al. (2005); Parthiban et al. (2009, 2010a,b, 2011a). For related structures, see: Parthiban et al. (2011b); Park et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anistropic displacement representation of the molecule with atoms represented with 30% probability ellipsoids.
2,4-Bis(4-ethoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one top
Crystal data top
C24H29NO3F(000) = 816
Mr = 379.48Dx = 1.247 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4030 reflections
a = 14.0319 (11) Åθ = 2.8–28.3°
b = 7.3143 (6) ŵ = 0.08 mm1
c = 20.5820 (17) ÅT = 293 K
β = 106.841 (3)°Block, colourless
V = 2021.8 (3) Å30.35 × 0.28 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5415 independent reflections
Radiation source: fine-focus sealed tube3042 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
phi and ω scansθmax = 29.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1910
Tmin = 0.972, Tmax = 0.980k = 610
15180 measured reflectionsl = 2628
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.232H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1095P)2 + 0.8855P]
where P = (Fo2 + 2Fc2)/3
5415 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C24H29NO3V = 2021.8 (3) Å3
Mr = 379.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.0319 (11) ŵ = 0.08 mm1
b = 7.3143 (6) ÅT = 293 K
c = 20.5820 (17) Å0.35 × 0.28 × 0.25 mm
β = 106.841 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5415 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3042 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.980Rint = 0.034
15180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.232H-atom parameters constrained
S = 1.05Δρmax = 0.49 e Å3
5415 reflectionsΔρmin = 0.51 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O31.11887 (13)0.5928 (3)0.47084 (8)0.0489 (5)
O20.82074 (15)0.5864 (3)0.14064 (8)0.0496 (5)
O10.86995 (18)0.2221 (3)0.17033 (10)0.0645 (7)
N10.96262 (14)0.2816 (3)0.16513 (8)0.0340 (5)
H1N0.96830.39860.16450.041*
C201.08546 (17)0.5034 (4)0.40974 (11)0.0368 (5)
C50.80462 (19)0.1721 (4)0.23518 (11)0.0388 (6)
H5A0.75560.08890.24350.047*
H5B0.82420.25590.27330.047*
C180.98813 (17)0.4710 (3)0.29306 (11)0.0385 (6)
H180.94280.52030.25480.046*
C90.90291 (17)0.2906 (3)0.04047 (10)0.0326 (5)
C211.12530 (19)0.3309 (4)0.40653 (11)0.0424 (6)
H211.17200.28280.44440.051*
C80.86704 (19)0.0568 (3)0.16953 (12)0.0385 (6)
C30.74291 (18)0.1672 (4)0.10705 (11)0.0377 (5)
H3A0.72530.24780.06790.045*
H3B0.68780.08340.10270.045*
C60.89630 (19)0.0616 (3)0.23207 (11)0.0370 (5)
H60.91680.01750.27210.044*
C70.98759 (17)0.1764 (3)0.22787 (10)0.0342 (5)
H71.04120.09140.22700.041*
C20.83556 (18)0.0568 (3)0.10609 (11)0.0354 (5)
H20.81780.02520.06680.042*
C191.01727 (18)0.5742 (4)0.35234 (12)0.0398 (6)
H190.99110.69060.35350.048*
C140.8740 (2)0.4705 (4)0.04078 (11)0.0427 (6)
H140.87320.52380.08160.051*
C221.09565 (18)0.2309 (4)0.34725 (11)0.0403 (6)
H221.12360.11630.34560.048*
C110.8779 (2)0.3173 (4)0.08037 (11)0.0425 (6)
H110.88060.26460.12090.051*
C130.8459 (2)0.5745 (4)0.01813 (12)0.0443 (6)
H130.82650.69560.01660.053*
C100.90468 (19)0.2167 (4)0.02133 (11)0.0416 (6)
H100.92450.09590.02290.050*
C40.75624 (17)0.2812 (3)0.17080 (11)0.0360 (5)
H4A0.69180.32530.17240.043*
H4B0.79730.38660.16900.043*
C171.02478 (16)0.2975 (3)0.28970 (11)0.0332 (5)
C120.84721 (18)0.4958 (4)0.07936 (11)0.0364 (5)
C10.92723 (17)0.1728 (3)0.10336 (10)0.0337 (5)
H10.98060.08850.10130.040*
C231.0724 (2)0.7590 (4)0.47980 (14)0.0520 (7)
H23A1.00100.74120.46940.062*
H23B1.08460.85160.44940.062*
C241.1141 (2)0.8196 (4)0.55196 (14)0.0562 (8)
H24A1.09610.73320.58150.084*
H24B1.08770.93770.55760.084*
H24C1.18540.82690.56300.084*
C150.7732 (3)0.7581 (4)0.14446 (14)0.0554 (8)
H15A0.82090.84970.12120.067*
H15B0.72060.75150.12260.067*
C160.7307 (3)0.8097 (5)0.21709 (15)0.0712 (10)
H16A0.78210.80630.23930.107*
H16B0.70360.93090.22000.107*
H16C0.67900.72510.23880.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0551 (11)0.0491 (11)0.0322 (9)0.0124 (9)0.0039 (7)0.0091 (8)
O20.0672 (12)0.0548 (12)0.0289 (9)0.0118 (10)0.0172 (8)0.0084 (8)
O10.1000 (18)0.0292 (11)0.0569 (13)0.0043 (11)0.0110 (11)0.0016 (9)
N10.0411 (10)0.0356 (11)0.0225 (9)0.0035 (9)0.0048 (7)0.0003 (8)
C200.0364 (11)0.0413 (14)0.0279 (11)0.0011 (10)0.0016 (9)0.0016 (10)
C50.0483 (13)0.0402 (14)0.0304 (11)0.0065 (11)0.0153 (10)0.0025 (10)
C180.0384 (12)0.0401 (14)0.0286 (11)0.0024 (11)0.0035 (9)0.0057 (10)
C90.0352 (11)0.0384 (13)0.0241 (10)0.0015 (10)0.0085 (8)0.0017 (9)
C210.0436 (13)0.0488 (16)0.0267 (11)0.0115 (12)0.0027 (9)0.0024 (10)
C80.0485 (13)0.0281 (13)0.0377 (12)0.0037 (11)0.0105 (10)0.0002 (10)
C30.0375 (11)0.0411 (14)0.0305 (11)0.0038 (11)0.0034 (9)0.0014 (10)
C60.0495 (13)0.0306 (12)0.0278 (11)0.0006 (11)0.0065 (9)0.0054 (9)
C70.0375 (11)0.0366 (13)0.0257 (10)0.0074 (10)0.0046 (8)0.0019 (9)
C20.0476 (13)0.0306 (12)0.0254 (10)0.0010 (10)0.0066 (9)0.0062 (9)
C190.0410 (12)0.0341 (13)0.0375 (12)0.0066 (11)0.0004 (10)0.0015 (10)
C140.0645 (16)0.0398 (15)0.0251 (11)0.0022 (12)0.0152 (10)0.0057 (10)
C220.0450 (13)0.0411 (14)0.0292 (11)0.0153 (11)0.0017 (10)0.0009 (10)
C110.0538 (14)0.0512 (16)0.0235 (11)0.0093 (13)0.0128 (10)0.0033 (10)
C130.0688 (17)0.0344 (14)0.0318 (12)0.0025 (13)0.0180 (11)0.0008 (10)
C100.0495 (14)0.0462 (15)0.0289 (11)0.0133 (12)0.0111 (10)0.0028 (10)
C40.0357 (11)0.0381 (14)0.0348 (12)0.0018 (10)0.0113 (9)0.0032 (10)
C170.0327 (11)0.0384 (13)0.0252 (10)0.0025 (10)0.0033 (8)0.0011 (9)
C120.0415 (12)0.0432 (14)0.0259 (10)0.0013 (11)0.0118 (9)0.0016 (10)
C10.0381 (11)0.0377 (13)0.0248 (10)0.0048 (10)0.0083 (8)0.0015 (9)
C230.0540 (16)0.0437 (16)0.0505 (16)0.0079 (13)0.0027 (12)0.0104 (13)
C240.0613 (17)0.0534 (18)0.0479 (16)0.0040 (15)0.0060 (13)0.0154 (14)
C150.073 (2)0.0520 (18)0.0429 (15)0.0098 (15)0.0185 (14)0.0102 (13)
C160.090 (2)0.076 (2)0.0498 (18)0.026 (2)0.0241 (16)0.0267 (17)
Geometric parameters (Å, º) top
O3—C201.374 (3)C7—C171.514 (3)
O3—C231.416 (3)C7—H70.9800
O2—C121.377 (3)C2—C11.555 (3)
O2—C151.413 (3)C2—H20.9800
O1—C81.209 (3)C19—H190.9300
N1—C71.456 (3)C14—C131.388 (3)
N1—C11.460 (3)C14—H140.9300
N1—H1N0.8600C22—C171.395 (3)
C20—C191.387 (3)C22—H220.9300
C20—C211.389 (4)C11—C101.376 (3)
C5—C41.527 (3)C11—C121.377 (4)
C5—C61.536 (4)C11—H110.9300
C5—H5A0.9700C13—C121.390 (3)
C5—H5B0.9700C13—H130.9300
C18—C171.379 (3)C10—H100.9300
C18—C191.392 (3)C4—H4A0.9700
C18—H180.9300C4—H4B0.9700
C9—C141.378 (3)C1—H10.9800
C9—C101.389 (3)C23—C241.497 (3)
C9—C11.510 (3)C23—H23A0.9700
C21—C221.379 (3)C23—H23B0.9700
C21—H210.9300C24—H24A0.9600
C8—C21.502 (3)C24—H24B0.9600
C8—C61.507 (3)C24—H24C0.9600
C3—C41.520 (3)C15—C161.489 (4)
C3—C21.536 (3)C15—H15A0.9700
C3—H3A0.9700C15—H15B0.9700
C3—H3B0.9700C16—H16A0.9600
C6—C71.555 (3)C16—H16B0.9600
C6—H60.9800C16—H16C0.9600
C20—O3—C23118.68 (18)C13—C14—H14119.0
C12—O2—C15118.45 (19)C21—C22—C17121.6 (2)
C7—N1—C1114.74 (19)C21—C22—H22119.2
C7—N1—H1N122.6C17—C22—H22119.2
C1—N1—H1N122.6C10—C11—C12120.0 (2)
O3—C20—C19124.8 (2)C10—C11—H11120.0
O3—C20—C21116.14 (19)C12—C11—H11120.0
C19—C20—C21119.1 (2)C12—C13—C14119.3 (2)
C4—C5—C6113.94 (19)C12—C13—H13120.3
C4—C5—H5A108.8C14—C13—H13120.3
C6—C5—H5A108.8C11—C10—C9121.9 (2)
C4—C5—H5B108.8C11—C10—H10119.1
C6—C5—H5B108.8C9—C10—H10119.1
H5A—C5—H5B107.7C3—C4—C5112.0 (2)
C17—C18—C19121.6 (2)C3—C4—H4A109.2
C17—C18—H18119.2C5—C4—H4A109.2
C19—C18—H18119.2C3—C4—H4B109.2
C14—C9—C10117.4 (2)C5—C4—H4B109.2
C14—C9—C1122.35 (19)H4A—C4—H4B107.9
C10—C9—C1120.2 (2)C18—C17—C22117.6 (2)
C22—C21—C20120.1 (2)C18—C17—C7122.54 (19)
C22—C21—H21120.0C22—C17—C7119.8 (2)
C20—C21—H21120.0O2—C12—C11116.4 (2)
O1—C8—C2124.4 (2)O2—C12—C13124.1 (2)
O1—C8—C6124.3 (2)C11—C12—C13119.5 (2)
C2—C8—C6111.3 (2)N1—C1—C9111.8 (2)
C4—C3—C2114.00 (18)N1—C1—C2110.00 (18)
C4—C3—H3A108.8C9—C1—C2111.01 (17)
C2—C3—H3A108.8N1—C1—H1108.0
C4—C3—H3B108.8C9—C1—H1108.0
C2—C3—H3B108.8C2—C1—H1108.0
H3A—C3—H3B107.6O3—C23—C24108.7 (2)
C8—C6—C5108.31 (19)O3—C23—H23A109.9
C8—C6—C7106.74 (19)C24—C23—H23A109.9
C5—C6—C7115.6 (2)O3—C23—H23B109.9
C8—C6—H6108.7C24—C23—H23B109.9
C5—C6—H6108.7H23A—C23—H23B108.3
C7—C6—H6108.7C23—C24—H24A109.5
N1—C7—C17111.9 (2)C23—C24—H24B109.5
N1—C7—C6110.13 (17)H24A—C24—H24B109.5
C17—C7—C6110.99 (18)C23—C24—H24C109.5
N1—C7—H7107.9H24A—C24—H24C109.5
C17—C7—H7107.9H24B—C24—H24C109.5
C6—C7—H7107.9O2—C15—C16109.1 (2)
C8—C2—C3108.46 (19)O2—C15—H15A109.9
C8—C2—C1107.17 (18)C16—C15—H15A109.9
C3—C2—C1115.2 (2)O2—C15—H15B109.9
C8—C2—H2108.6C16—C15—H15B109.9
C3—C2—H2108.6H15A—C15—H15B108.3
C1—C2—H2108.6C15—C16—H16A109.5
C20—C19—C18119.9 (2)C15—C16—H16B109.5
C20—C19—H19120.0H16A—C16—H16B109.5
C18—C19—H19120.0C15—C16—H16C109.5
C9—C14—C13121.9 (2)H16A—C16—H16C109.5
C9—C14—H14119.0H16B—C16—H16C109.5
C23—O3—C20—C198.5 (4)C14—C9—C10—C110.6 (4)
C23—O3—C20—C21172.5 (3)C1—C9—C10—C11176.5 (2)
O3—C20—C21—C22179.7 (2)C2—C3—C4—C546.6 (3)
C19—C20—C21—C221.2 (4)C6—C5—C4—C346.6 (3)
O1—C8—C6—C5118.4 (3)C19—C18—C17—C222.5 (4)
C2—C8—C6—C562.6 (2)C19—C18—C17—C7174.5 (2)
O1—C8—C6—C7116.5 (3)C21—C22—C17—C182.7 (4)
C2—C8—C6—C762.5 (2)C21—C22—C17—C7174.5 (2)
C4—C5—C6—C853.9 (3)N1—C7—C17—C1835.2 (3)
C4—C5—C6—C765.7 (3)C6—C7—C17—C1888.3 (3)
C1—N1—C7—C17179.35 (18)N1—C7—C17—C22147.8 (2)
C1—N1—C7—C656.7 (2)C6—C7—C17—C2288.7 (3)
C8—C6—C7—N157.0 (2)C15—O2—C12—C11169.6 (3)
C5—C6—C7—N163.5 (2)C15—O2—C12—C1311.4 (4)
C8—C6—C7—C17178.52 (18)C10—C11—C12—O2179.3 (2)
C5—C6—C7—C1761.0 (2)C10—C11—C12—C131.6 (4)
O1—C8—C2—C3118.4 (3)C14—C13—C12—O2179.9 (2)
C6—C8—C2—C362.6 (2)C14—C13—C12—C111.2 (4)
O1—C8—C2—C1116.7 (3)C7—N1—C1—C9179.96 (18)
C6—C8—C2—C162.3 (2)C7—N1—C1—C256.2 (2)
C4—C3—C2—C854.2 (3)C14—C9—C1—N127.4 (3)
C4—C3—C2—C165.9 (3)C10—C9—C1—N1155.7 (2)
O3—C20—C19—C18179.6 (2)C14—C9—C1—C295.9 (3)
C21—C20—C19—C181.4 (4)C10—C9—C1—C281.1 (3)
C17—C18—C19—C200.5 (4)C8—C2—C1—N156.4 (2)
C10—C9—C14—C131.0 (4)C3—C2—C1—N164.4 (2)
C1—C9—C14—C13176.0 (2)C8—C2—C1—C9179.34 (18)
C20—C21—C22—C170.8 (4)C3—C2—C1—C959.9 (2)
C9—C14—C13—C120.2 (4)C20—O3—C23—C24174.3 (2)
C12—C11—C10—C90.8 (4)C12—O2—C15—C16166.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.932.573.428 (3)154
C14—H14···O1i0.922.613.501 (3)159
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H29NO3
Mr379.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.0319 (11), 7.3143 (6), 20.5820 (17)
β (°) 106.841 (3)
V3)2021.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.28 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.972, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
15180, 5415, 3042
Rint0.034
(sin θ/λ)max1)0.694
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.232, 1.05
No. of reflections5415
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.51

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.932.573.428 (3)154
C14—H14···O1i0.922.613.501 (3)159
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This research was supported by the Inje University research grant 2011. The authors acknowledge the Department of Chemistry, IIT Madras, for the data collection.

References

First citationBarker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565–4575.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPark, D. H., Jeong, Y. T. & Parthiban, P. (2011a). J. Mol. Struct. 1005, 31–44.  Web of Science CrossRef CAS Google Scholar
First citationPark, D. H., Ramkumar, V. & Parthiban, P. (2012). Acta Cryst. E68, o779–o780.  CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981–6985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParthiban, P., Ramkumar, V., Park, D. H. & Jeong, Y. T. (2011b). Acta Cryst. E67, o1475–o1476.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParthiban, P., Rathika, P., Park, K. S. & Jeong, Y. T. (2010b). Monatsh. Chem. 141, 79–93.  Web of Science CrossRef CAS Google Scholar
First citationParthiban, P., Rathika, P., Ramkumar, V., Son, S. M. & Jeong, Y. T. (2010a). Bioorg. Med. Chem. Lett. 20, 1642–1647.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationParthiban, P., Subalakshmi, V., Balasubramanian, K., Islam, Md. N., Choi, J. S. & Jeong, Y. T. (2011a). Bioorg. Med. Chem. Lett. 21, 2287–2296.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds