organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­phen­yl)-1-(4-methyl­phen­yl)-1H-phenanthro[9,10-d]imidazole

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 23 August 2012; accepted 31 August 2012; online 8 September 2012)

The phenanthrene tricyclic ring system in the title mol­ecule, C28H19FN2, is slightly skewed with a dihedral angle of 7.50 (6)° between the outer benzene rings. The p-tolyl and fluoro­benzene rings are twisted from the attached imidazole ring by 70.40 (7) and 28.33 (7)°, respectively. In the crystal, C—H⋯F hydrogen bonds link the mol­ecules into zigzag chains in [001], and weak C—H⋯π inter­actions further consolidate the crystal packing.

Related literature

For related structures, see: Yuan et al. (2011[Yuan, Y., Li, D., Zhang, X., Zhao, X., Liu, Y., Zhang, J. & Wang, Y. (2011). New J. Chem. 35, 1534-1540.]); Rosepriya et al. (2011[Rosepriya, S., Venkatesh Perumal, M., Thiruvalluvar, A., Jayabharathi, J., Butcher, R. J., Jasinski, J. P. & Golen, J. A. (2011). Acta Cryst. E67, o1965.]).

[Scheme 1]

Experimental

Crystal data
  • C28H19FN2

  • Mr = 402.45

  • Monoclinic, P 21 /c

  • a = 10.1809 (2) Å

  • b = 10.7654 (2) Å

  • c = 18.4871 (3) Å

  • β = 96.115 (1)°

  • V = 2014.68 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 123 K

  • 0.45 × 0.35 × 0.25 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.753, Tmax = 0.850

  • 8155 measured reflections

  • 4054 independent reflections

  • 3619 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.106

  • S = 1.03

  • 4054 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C2/N3/C4/C5, C4–C6/C11/C12/C17, C12–C17 and C24–C29 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯F4i 0.93 2.54 3.1371 (16) 122
C14—H14⋯Cg2ii 0.93 2.95 3.5613 (15) 125
C20—H20⋯Cg2iii 0.93 2.84 3.4540 (14) 125
C23—H23⋯Cg3iv 0.93 2.81 3.5709 (14) 140
C30—H30ACg1iii 0.96 2.91 3.4294 (17) 115
C30—H30BCg4i 0.96 2.77 3.6659 (16) 155
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Yuan et al. (2011) have reported synthesis, single-crystal structures, photophysical, electrochemical and mobility properties of four phenanthroimidazole derivatives, namely, 1,2-diphenyl-1H-phenanthro[9,10 -d]imidazole, 2-phenyl-1-p-tolyl-1H-phenanthro[9,10 -d]imidazole, 1-phenyl-2-p-tolyl-1H-phenanthro-[9,10 -d]imidazole and 1,2-di-p-tolyl-1H-phenanthro[9,10 -d]imidazole. Since our research group deals with the hole transport materials and organic light emitting devices, we are interested in the title compound, (I), as a ligand for Iridium complexes.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related compounds (Yuan et al., 2011; Rosepriya et al., 2011). The phenanthrene tricycle is stranded with a dihedral angle of 7.50 (6)° between the utmost benzene rings. The p-tolyl and fluorobenzene rings are twisted from the attached imidazole ring at 70.40 (7) and 28.33 (7)°, respectively. The dihedral angle between the p-tolyl and fluorobenzene rings is 66.63 (6) °.

In the crystal, C7—H7···F4 hydrogen bonds (Table 1) link the molecules into zigzag chains in [001] (Fig. 2), and weak C—H···π interactions (Table 1) consolidate further the crystal packing.

Related literature top

For related structures, see: Yuan et al. (2011); Rosepriya et al. (2011).

Experimental top

The title compound has been synthesized by a mixture of phenanthrene-9,10-dione (1.0 g, 4.8 mmol), ammonium acetate (1.48 g, 19.2 mmol), 4-fluorobenzaldehyde (0.6 g, 4.3 mmol) and 4-methylaniline (2.95 g, 24 mmol). These four components have been refluxed in ethanol (20 ml) at 353 K. The reaction was monitored by TLC and purified by column chromatography using petroleum ether: ethyl acetate (9:1) as the eluent. Yield: 0.8 g (50%). The compound was dissolved in dimethyl sulfoxide and allowed to slow evaporation, to obtain crystals suitable for X-ray diffraction studies.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 and 0.96 Å for Csp2 and methyl H atoms, respectively. Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for other C-bound H atoms.

Structure description top

Yuan et al. (2011) have reported synthesis, single-crystal structures, photophysical, electrochemical and mobility properties of four phenanthroimidazole derivatives, namely, 1,2-diphenyl-1H-phenanthro[9,10 -d]imidazole, 2-phenyl-1-p-tolyl-1H-phenanthro[9,10 -d]imidazole, 1-phenyl-2-p-tolyl-1H-phenanthro-[9,10 -d]imidazole and 1,2-di-p-tolyl-1H-phenanthro[9,10 -d]imidazole. Since our research group deals with the hole transport materials and organic light emitting devices, we are interested in the title compound, (I), as a ligand for Iridium complexes.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related compounds (Yuan et al., 2011; Rosepriya et al., 2011). The phenanthrene tricycle is stranded with a dihedral angle of 7.50 (6)° between the utmost benzene rings. The p-tolyl and fluorobenzene rings are twisted from the attached imidazole ring at 70.40 (7) and 28.33 (7)°, respectively. The dihedral angle between the p-tolyl and fluorobenzene rings is 66.63 (6) °.

In the crystal, C7—H7···F4 hydrogen bonds (Table 1) link the molecules into zigzag chains in [001] (Fig. 2), and weak C—H···π interactions (Table 1) consolidate further the crystal packing.

For related structures, see: Yuan et al. (2011); Rosepriya et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A portion of the crystal packing viewed down the b axis. Dashed lines indicate C—H···F hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
2-(4-Fluorophenyl)-1-(4-methylphenyl)-1H- phenanthro[9,10-d]imidazole top
Crystal data top
C28H19FN2F(000) = 840
Mr = 402.45Dx = 1.327 Mg m3
Monoclinic, P21/cMelting point: 494 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 10.1809 (2) ÅCell parameters from 4975 reflections
b = 10.7654 (2) Åθ = 4.1–75.3°
c = 18.4871 (3) ŵ = 0.67 mm1
β = 96.115 (1)°T = 123 K
V = 2014.68 (6) Å3Block, colourless
Z = 40.45 × 0.35 × 0.25 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
4054 independent reflections
Radiation source: Enhance (Cu) X-ray Source3619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10.5081 pixels mm-1θmax = 75.5°, θmin = 4.4°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1113
Tmin = 0.753, Tmax = 0.850l = 2213
8155 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.6604P]
where P = (Fo2 + 2Fc2)/3
4054 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C28H19FN2V = 2014.68 (6) Å3
Mr = 402.45Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.1809 (2) ŵ = 0.67 mm1
b = 10.7654 (2) ÅT = 123 K
c = 18.4871 (3) Å0.45 × 0.35 × 0.25 mm
β = 96.115 (1)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
4054 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3619 reflections with I > 2σ(I)
Tmin = 0.753, Tmax = 0.850Rint = 0.022
8155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
4054 reflectionsΔρmin = 0.22 e Å3
281 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F40.18868 (10)0.04100 (8)0.00640 (5)0.0413 (3)
N10.22790 (10)0.50374 (10)0.22352 (5)0.0213 (3)
N30.32302 (10)0.57512 (10)0.12764 (6)0.0230 (3)
C20.26496 (12)0.47886 (12)0.15502 (7)0.0222 (3)
C40.32401 (12)0.66606 (12)0.18005 (6)0.0213 (3)
C50.26743 (12)0.62474 (11)0.24026 (6)0.0207 (3)
C60.26588 (12)0.69804 (12)0.30544 (6)0.0212 (3)
C70.22497 (13)0.65420 (12)0.37131 (7)0.0253 (3)
C80.23298 (14)0.72837 (13)0.43239 (7)0.0282 (4)
C90.28381 (14)0.84865 (13)0.43030 (7)0.0299 (4)
C100.32612 (13)0.89271 (13)0.36685 (7)0.0273 (4)
C110.31801 (12)0.82110 (12)0.30268 (7)0.0223 (3)
C120.36582 (12)0.86934 (12)0.23605 (7)0.0227 (3)
C130.40522 (13)0.99443 (13)0.22925 (7)0.0266 (4)
C140.44945 (13)1.03779 (13)0.16616 (8)0.0296 (4)
C150.45837 (13)0.95801 (14)0.10720 (7)0.0298 (4)
C160.41987 (13)0.83594 (13)0.11144 (7)0.0260 (4)
C170.37198 (12)0.79098 (12)0.17515 (7)0.0221 (3)
C180.17293 (12)0.41523 (12)0.27015 (6)0.0214 (3)
C190.04292 (13)0.42709 (13)0.28571 (7)0.0258 (4)
C200.00771 (13)0.34031 (13)0.33123 (7)0.0287 (4)
C210.06862 (14)0.24164 (13)0.36048 (7)0.0286 (4)
C220.19820 (14)0.23184 (13)0.34311 (7)0.0286 (4)
C230.25117 (13)0.31826 (12)0.29870 (7)0.0247 (3)
C240.24119 (12)0.36103 (12)0.11511 (7)0.0231 (3)
C250.13499 (13)0.28159 (13)0.12329 (7)0.0276 (4)
C260.11766 (14)0.17314 (13)0.08261 (7)0.0299 (4)
C270.20587 (15)0.14662 (13)0.03352 (7)0.0291 (4)
C280.31057 (14)0.22303 (13)0.02274 (7)0.0297 (4)
C290.32810 (13)0.33064 (13)0.06400 (7)0.0263 (4)
C300.01479 (16)0.14695 (15)0.41001 (8)0.0383 (4)
H70.192020.573890.373600.0303*
H80.204420.698190.475180.0339*
H90.289040.898660.471520.0358*
H100.361230.972410.366290.0327*
H130.401151.048450.268210.0319*
H140.473571.120730.162700.0355*
H150.490320.987440.065140.0357*
H160.425500.783020.072130.0312*
H190.009490.492040.266010.0310*
H200.094280.348490.342300.0344*
H220.250280.165870.361710.0343*
H230.338210.311090.288270.0296*
H250.075400.301570.156280.0331*
H260.047840.119680.088520.0358*
H280.368090.203010.011340.0356*
H290.398430.383210.057610.0315*
H30A0.073570.169500.418360.0575*
H30B0.069690.144700.455550.0575*
H30C0.014040.066500.387570.0575*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F40.0566 (6)0.0297 (4)0.0377 (5)0.0015 (4)0.0052 (4)0.0148 (4)
N10.0245 (5)0.0200 (5)0.0198 (5)0.0001 (4)0.0042 (4)0.0014 (4)
N30.0239 (5)0.0235 (5)0.0219 (5)0.0008 (4)0.0038 (4)0.0008 (4)
C20.0226 (6)0.0242 (6)0.0201 (6)0.0027 (5)0.0037 (4)0.0003 (5)
C40.0213 (5)0.0230 (6)0.0196 (5)0.0018 (5)0.0023 (4)0.0005 (5)
C50.0209 (5)0.0198 (6)0.0213 (6)0.0009 (5)0.0020 (4)0.0005 (5)
C60.0216 (5)0.0219 (6)0.0202 (6)0.0023 (5)0.0021 (4)0.0002 (5)
C70.0284 (6)0.0237 (6)0.0241 (6)0.0009 (5)0.0049 (5)0.0008 (5)
C80.0342 (7)0.0306 (7)0.0206 (6)0.0003 (5)0.0063 (5)0.0007 (5)
C90.0395 (7)0.0275 (7)0.0225 (6)0.0023 (6)0.0030 (5)0.0052 (5)
C100.0330 (7)0.0211 (6)0.0276 (6)0.0001 (5)0.0024 (5)0.0022 (5)
C110.0226 (6)0.0213 (6)0.0227 (6)0.0026 (5)0.0013 (4)0.0002 (5)
C120.0207 (5)0.0228 (6)0.0241 (6)0.0002 (5)0.0005 (4)0.0023 (5)
C130.0274 (6)0.0245 (7)0.0275 (6)0.0026 (5)0.0009 (5)0.0001 (5)
C140.0289 (6)0.0247 (7)0.0344 (7)0.0052 (5)0.0002 (5)0.0066 (6)
C150.0282 (7)0.0346 (7)0.0266 (6)0.0038 (5)0.0033 (5)0.0086 (6)
C160.0243 (6)0.0305 (7)0.0230 (6)0.0003 (5)0.0021 (5)0.0028 (5)
C170.0189 (5)0.0245 (6)0.0226 (6)0.0012 (5)0.0011 (4)0.0025 (5)
C180.0258 (6)0.0204 (6)0.0184 (5)0.0032 (5)0.0039 (4)0.0021 (5)
C190.0253 (6)0.0271 (7)0.0251 (6)0.0011 (5)0.0027 (5)0.0011 (5)
C200.0241 (6)0.0356 (7)0.0270 (6)0.0064 (5)0.0054 (5)0.0034 (6)
C210.0352 (7)0.0285 (7)0.0218 (6)0.0104 (5)0.0021 (5)0.0013 (5)
C220.0350 (7)0.0238 (7)0.0267 (6)0.0010 (5)0.0017 (5)0.0019 (5)
C230.0255 (6)0.0251 (6)0.0239 (6)0.0002 (5)0.0045 (5)0.0021 (5)
C240.0264 (6)0.0230 (6)0.0198 (6)0.0028 (5)0.0017 (4)0.0002 (5)
C250.0295 (6)0.0286 (7)0.0252 (6)0.0005 (5)0.0057 (5)0.0048 (5)
C260.0338 (7)0.0268 (7)0.0289 (7)0.0032 (5)0.0029 (5)0.0023 (5)
C270.0399 (7)0.0221 (6)0.0242 (6)0.0051 (5)0.0013 (5)0.0058 (5)
C280.0345 (7)0.0316 (7)0.0237 (6)0.0083 (6)0.0066 (5)0.0030 (5)
C290.0274 (6)0.0275 (7)0.0241 (6)0.0027 (5)0.0039 (5)0.0000 (5)
C300.0428 (8)0.0407 (8)0.0313 (7)0.0165 (7)0.0031 (6)0.0049 (6)
Geometric parameters (Å, º) top
F4—C271.3567 (16)C21—C301.512 (2)
N1—C21.3855 (16)C22—C231.3874 (19)
N1—C51.3885 (16)C24—C251.3993 (18)
N1—C181.4377 (16)C24—C291.4003 (18)
N3—C21.3203 (17)C25—C261.3898 (19)
N3—C41.3767 (16)C26—C271.373 (2)
C2—C241.4744 (18)C27—C281.378 (2)
C4—C51.3803 (16)C28—C291.3881 (19)
C4—C171.4369 (18)C7—H70.9300
C5—C61.4419 (16)C8—H80.9300
C6—C71.4097 (17)C9—H90.9300
C6—C111.4301 (18)C10—H100.9300
C7—C81.3783 (18)C13—H130.9300
C8—C91.397 (2)C14—H140.9300
C9—C101.3763 (19)C15—H150.9300
C10—C111.4098 (18)C16—H160.9300
C11—C121.4669 (18)C19—H190.9300
C12—C131.4145 (19)C20—H200.9300
C12—C171.4136 (18)C22—H220.9300
C13—C141.3758 (19)C23—H230.9300
C14—C151.398 (2)C25—H250.9300
C15—C161.376 (2)C26—H260.9300
C16—C171.4077 (18)C28—H280.9300
C18—C191.3900 (18)C29—H290.9300
C18—C231.3832 (18)C30—H30A0.9600
C19—C201.3925 (19)C30—H30B0.9600
C20—C211.391 (2)C30—H30C0.9600
C21—C221.395 (2)
C2—N1—C5106.52 (10)C24—C25—C26120.66 (12)
C2—N1—C18125.54 (10)C25—C26—C27118.56 (13)
C5—N1—C18127.60 (10)F4—C27—C26118.57 (13)
C2—N3—C4104.97 (11)F4—C27—C28118.60 (12)
N1—C2—N3112.04 (11)C26—C27—C28122.83 (13)
N1—C2—C24125.28 (11)C27—C28—C29118.36 (13)
N3—C2—C24122.66 (11)C24—C29—C28120.82 (12)
N3—C4—C5111.47 (11)C6—C7—H7119.00
N3—C4—C17126.74 (11)C8—C7—H7119.00
C5—C4—C17121.76 (11)C7—C8—H8120.00
N1—C5—C4104.98 (10)C9—C8—H8120.00
N1—C5—C6132.14 (11)C8—C9—H9120.00
C4—C5—C6122.70 (11)C10—C9—H9120.00
C5—C6—C7124.70 (12)C9—C10—H10119.00
C5—C6—C11116.11 (10)C11—C10—H10119.00
C7—C6—C11119.07 (11)C12—C13—H13119.00
C6—C7—C8121.11 (12)C14—C13—H13119.00
C7—C8—C9120.28 (12)C13—C14—H14120.00
C8—C9—C10119.58 (12)C15—C14—H14120.00
C9—C10—C11122.22 (13)C14—C15—H15120.00
C6—C11—C10117.73 (11)C16—C15—H15120.00
C6—C11—C12121.03 (11)C15—C16—H16120.00
C10—C11—C12121.21 (12)C17—C16—H16120.00
C11—C12—C13122.30 (12)C18—C19—H19120.00
C11—C12—C17120.29 (11)C20—C19—H19120.00
C13—C12—C17117.41 (12)C19—C20—H20119.00
C12—C13—C14121.32 (12)C21—C20—H20119.00
C13—C14—C15120.45 (13)C21—C22—H22119.00
C14—C15—C16119.98 (12)C23—C22—H22119.00
C15—C16—C17120.15 (12)C18—C23—H23120.00
C4—C17—C12117.65 (11)C22—C23—H23120.00
C4—C17—C16121.66 (12)C24—C25—H25120.00
C12—C17—C16120.66 (12)C26—C25—H25120.00
N1—C18—C19120.22 (11)C25—C26—H26121.00
N1—C18—C23118.94 (11)C27—C26—H26121.00
C19—C18—C23120.85 (12)C27—C28—H28121.00
C18—C19—C20119.04 (12)C29—C28—H28121.00
C19—C20—C21121.32 (12)C24—C29—H29120.00
C20—C21—C22118.12 (12)C28—C29—H29120.00
C20—C21—C30121.79 (13)C21—C30—H30A109.00
C22—C21—C30120.09 (13)C21—C30—H30B109.00
C21—C22—C23121.49 (13)C21—C30—H30C109.00
C18—C23—C22119.18 (12)H30A—C30—H30B109.00
C2—C24—C25124.00 (11)H30A—C30—H30C109.00
C2—C24—C29117.18 (11)H30B—C30—H30C109.00
C25—C24—C29118.76 (12)
C5—N1—C2—N30.67 (14)C7—C8—C9—C100.1 (2)
C5—N1—C2—C24179.32 (12)C8—C9—C10—C111.1 (2)
C18—N1—C2—N3174.41 (11)C9—C10—C11—C61.14 (19)
C18—N1—C2—C246.95 (19)C9—C10—C11—C12178.96 (13)
C2—N1—C5—C41.00 (13)C6—C11—C12—C13173.38 (12)
C2—N1—C5—C6174.12 (13)C6—C11—C12—C175.61 (18)
C18—N1—C5—C4174.57 (11)C10—C11—C12—C138.88 (19)
C18—N1—C5—C60.6 (2)C10—C11—C12—C17172.14 (12)
C2—N1—C18—C19112.80 (14)C11—C12—C13—C14179.83 (12)
C2—N1—C18—C2366.83 (16)C17—C12—C13—C140.82 (19)
C5—N1—C18—C1974.79 (16)C11—C12—C17—C43.00 (18)
C5—N1—C18—C23105.58 (15)C11—C12—C17—C16178.90 (12)
C4—N3—C2—N10.03 (13)C13—C12—C17—C4176.03 (11)
C4—N3—C2—C24178.71 (11)C13—C12—C17—C162.07 (18)
C2—N3—C4—C50.65 (14)C12—C13—C14—C151.0 (2)
C2—N3—C4—C17177.29 (12)C13—C14—C15—C161.5 (2)
N1—C2—C24—C2528.9 (2)C14—C15—C16—C170.3 (2)
N1—C2—C24—C29153.74 (12)C15—C16—C17—C4176.46 (12)
N3—C2—C24—C25149.60 (13)C15—C16—C17—C121.56 (19)
N3—C2—C24—C2927.75 (18)N1—C18—C19—C20179.79 (11)
N3—C4—C5—N11.05 (14)C23—C18—C19—C200.59 (19)
N3—C4—C5—C6174.66 (11)N1—C18—C23—C22179.33 (11)
C17—C4—C5—N1177.01 (11)C19—C18—C23—C220.30 (19)
C17—C4—C5—C67.28 (19)C18—C19—C20—C210.8 (2)
N3—C4—C17—C12178.97 (12)C19—C20—C21—C220.2 (2)
N3—C4—C17—C162.9 (2)C19—C20—C21—C30179.94 (13)
C5—C4—C17—C123.28 (18)C20—C21—C22—C230.8 (2)
C5—C4—C17—C16174.80 (12)C30—C21—C22—C23179.02 (13)
N1—C5—C6—C73.0 (2)C21—C22—C23—C181.0 (2)
N1—C5—C6—C11178.89 (12)C2—C24—C25—C26178.69 (12)
C4—C5—C6—C7171.39 (12)C29—C24—C25—C261.39 (19)
C4—C5—C6—C114.49 (18)C2—C24—C29—C28178.28 (12)
C5—C6—C7—C8176.56 (13)C25—C24—C29—C280.8 (2)
C11—C6—C7—C80.80 (19)C24—C25—C26—C270.9 (2)
C5—C6—C11—C10175.94 (11)C25—C26—C27—F4179.75 (12)
C5—C6—C11—C121.88 (17)C25—C26—C27—C280.2 (2)
C7—C6—C11—C100.18 (18)F4—C27—C28—C29179.67 (12)
C7—C6—C11—C12178.00 (12)C26—C27—C28—C290.8 (2)
C6—C7—C8—C90.9 (2)C27—C28—C29—C240.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C2/N3/C4/C5, C4–C6/C11/C12/C17, C12–C17 and C24–C29 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···F4i0.932.543.1371 (16)122
C14—H14···Cg2ii0.932.953.5613 (15)125
C20—H20···Cg2iii0.932.843.4540 (14)125
C23—H23···Cg3iv0.932.813.5709 (14)140
C30—H30A···Cg1iii0.962.913.4294 (17)115
C30—H30B···Cg4i0.962.773.6659 (16)155
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC28H19FN2
Mr402.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)10.1809 (2), 10.7654 (2), 18.4871 (3)
β (°) 96.115 (1)
V3)2014.68 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.67
Crystal size (mm)0.45 × 0.35 × 0.25
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.753, 0.850
No. of measured, independent and
observed [I > 2σ(I)] reflections
8155, 4054, 3619
Rint0.022
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.03
No. of reflections4054
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: CrysAlis PRO (Agilent, 2012), SIR2011 (Burla et al., 2012), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C2/N3/C4/C5, C4–C6/C11/C12/C17, C12–C17 and C24–C29 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···F4i0.932.543.1371 (16)122
C14—H14···Cg2ii0.932.953.5613 (15)125
C20—H20···Cg2iii0.932.843.4540 (14)125
C23—H23···Cg3iv0.932.813.5709 (14)140
C30—H30A···Cg1iii0.962.913.4294 (17)115
C30—H30B···Cg4i0.962.773.6659 (16)155
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

RS is thankful to the DRDO (F. No. NRB-213/MAT/10–11) for providing a fellowship. JJ is thankful to the DST (No. SR/S1/IC-73/2010), the UGC [F. No. 36–21/2008 (SR)] and the DRDO (F. No. NRB-213/MAT/10–11) for providing funds for this research study. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRosepriya, S., Venkatesh Perumal, M., Thiruvalluvar, A., Jayabharathi, J., Butcher, R. J., Jasinski, J. P. & Golen, J. A. (2011). Acta Cryst. E67, o1965.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, Y., Li, D., Zhang, X., Zhao, X., Liu, Y., Zhang, J. & Wang, Y. (2011). New J. Chem. 35, 1534–1540.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds