organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Di­methyl­amino-N′-(4-nitro­benzyl­­idene)benzohydrazide methanol monosolvate

aChina Animal Heath and Epidemiology Center, Qingdao 266032, People's Republic of China, bWorker Hospital of Qingdao Salt Industry, Qingdao 266012, People's Republic of China, and cUniversity of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
*Correspondence e-mail: yongxiyue@126.com

(Received 23 August 2012; accepted 27 August 2012; online 1 September 2012)

In the title compound, C16H16N4O3·CH3OH, the aromatic rings form a dihedral angle of 0.4 (2)°. The nitro group is twisted from the attached benzene ring by 7.5 (2)°. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link alternating hydrazone and methanol mol­ecules into chains in [100]. The crystal packing exhibits ππ inter­actions between aromatic rings from neighbouring chains [centroid–centroid distances = 3.734 (3) and 3.903 (3) Å].

Related literature

For the biological activity of hydrazone compounds, see: Zhang et al. (2012[Zhang, M., Xian, D.-M., Li, H.-H., Zhang, J.-C. & You, Z.-L. (2012). Aust. J. Chem. 65, 343-350.]); Cacic et al. (2006[Cacic, M., Trkovnik, M., Cacic, F. & Has-Schon, E. (2006). Molecules, 11, 134-147.]); Rauf et al. (2008[Rauf, A., Banday, M. R. & Mattoo, R. H. (2008). Acta Chim. Slov. 55, 448-452.]); Bedia et al. (2006[Bedia, K. K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]). For similar hydrazone compounds, see: Horkaew et al. (2012[Horkaew, J., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2012). Acta Cryst. E68, o1069-o1070.]); Kargar et al. (2012[Kargar, H., Kia, R. & Tahir, M. N. (2012). Acta Cryst. E68, o2321-o2322.]); Hu & Liu (2012[Hu, H.-N. & Liu, S.-Y. (2012). Acta Cryst. E68, o1613.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N4O3·CH4O

  • Mr = 344.37

  • Triclinic, [P \overline 1]

  • a = 6.6621 (12) Å

  • b = 10.6685 (17) Å

  • c = 13.3437 (13) Å

  • α = 72.279 (2)°

  • β = 83.444 (2)°

  • γ = 73.984 (2)°

  • V = 867.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.30 × 0.27 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996)[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.] Tmin = 0.972, Tmax = 0.978

  • 6198 measured reflections

  • 3140 independent reflections

  • 2082 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.208

  • S = 1.08

  • 3140 reflections

  • 233 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3 0.82 1.92 2.733 (2) 170
N2—H2⋯O4i 0.89 (1) 2.01 (1) 2.889 (2) 170 (2)
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones derived from the condensation reactions of hydrazines with carbonyl-containing compounds have been found to possess many biological activities, such as antibacterial, anticonvulsant, anti-inflamatory, and antitubercular (Zhang et al., 2012; Cacic et al., 2006; Rauf et al., 2008; Bedia et al., 2006). Recently, a number of hydrazones have been prepared and structurally characterized (Horkaew et al., 2012; Kargar et al., 2012; Hu & Liu, 2012). As an extension of work on the structural characterization of hydrazones, the title compound is reported here.

The asymmetric unit of the title compound contains a hydrazone molecule and a methanol molecule of crystallization linked by O—H···O hydrogen bond (Fig. 1). The hydrazone molecule displays a trans conformation with respect to the C=N bond. Two aromatic rings in the hydrazone molecules form a dihedral angle of 0.4 (2)°. The nitro group is twisted from the attached benzene ring at 7.5 (2)°. Intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) link alternating hydrazone and methanol molecules into chains in [100] (Fig. 2). The crystal packing exhibits ππ interactions between the aromatic ring from the neighbouring chains [centroid-centroid distances 3.734 (3), 3.903 (3) Å].

Related literature top

For the biological activity of hydrazone compounds, see: Zhang et al. (2012); Cacic et al. (2006); Rauf et al. (2008); Bedia et al. (2006). For similar hydrazone compounds, see: Horkaew et al. (2012); Kargar et al. (2012); Hu & Liu (2012). For reference bond lengths, see: Allen et al. (1987).

Experimental top

4-Nitrobenzaldehyde (0.1 mmol, 15.1 mg) and 4-dimethylaminobenzhydrazide (0.1 mmol, 17.9 mg) were stirred in 20 ml methanol at room temperature for 30 min. A large number of small and yellow single crystals were formed by slow evaporation of the methanolic solution containing the compound in air.

Refinement top

The amide H2 atom was located in a difference map and was refined isotropically, with restraint N—H = 0.90 (1) Å. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93-0.96 Å , O—H = 0.82 Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl and hydroxyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Structure description top

Hydrazones derived from the condensation reactions of hydrazines with carbonyl-containing compounds have been found to possess many biological activities, such as antibacterial, anticonvulsant, anti-inflamatory, and antitubercular (Zhang et al., 2012; Cacic et al., 2006; Rauf et al., 2008; Bedia et al., 2006). Recently, a number of hydrazones have been prepared and structurally characterized (Horkaew et al., 2012; Kargar et al., 2012; Hu & Liu, 2012). As an extension of work on the structural characterization of hydrazones, the title compound is reported here.

The asymmetric unit of the title compound contains a hydrazone molecule and a methanol molecule of crystallization linked by O—H···O hydrogen bond (Fig. 1). The hydrazone molecule displays a trans conformation with respect to the C=N bond. Two aromatic rings in the hydrazone molecules form a dihedral angle of 0.4 (2)°. The nitro group is twisted from the attached benzene ring at 7.5 (2)°. Intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) link alternating hydrazone and methanol molecules into chains in [100] (Fig. 2). The crystal packing exhibits ππ interactions between the aromatic ring from the neighbouring chains [centroid-centroid distances 3.734 (3), 3.903 (3) Å].

For the biological activity of hydrazone compounds, see: Zhang et al. (2012); Cacic et al. (2006); Rauf et al. (2008); Bedia et al. (2006). For similar hydrazone compounds, see: Horkaew et al. (2012); Kargar et al. (2012); Hu & Liu (2012). For reference bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atomic numbering and 30% probability displacement ellipsoids. Hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. A portion of the crystal packing viewed down the b axis. Hydrogen bonds are drawn as dashed lines.
4-Dimethylamino-N'-(4-nitrobenzylidene)benzohydrazide methanol monosolvate top
Crystal data top
C16H16N4O3·CH4OZ = 2
Mr = 344.37F(000) = 364
Triclinic, P1Dx = 1.318 Mg m3
a = 6.6621 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6685 (17) ÅCell parameters from 2473 reflections
c = 13.3437 (13) Åθ = 2.5–26.5°
α = 72.279 (2)°µ = 0.10 mm1
β = 83.444 (2)°T = 298 K
γ = 73.984 (2)°Block, yellow
V = 867.9 (2) Å30.30 × 0.27 × 0.23 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3140 independent reflections
Radiation source: fine-focus sealed tube2082 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 25.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.972, Tmax = 0.978k = 1212
6198 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.1182P)2 + 0.1132P]
where P = (Fo2 + 2Fc2)/3
3140 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = 0.40 e Å3
Crystal data top
C16H16N4O3·CH4Oγ = 73.984 (2)°
Mr = 344.37V = 867.9 (2) Å3
Triclinic, P1Z = 2
a = 6.6621 (12) ÅMo Kα radiation
b = 10.6685 (17) ŵ = 0.10 mm1
c = 13.3437 (13) ÅT = 298 K
α = 72.279 (2)°0.30 × 0.27 × 0.23 mm
β = 83.444 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3140 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2082 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.978Rint = 0.035
6198 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.208H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.32 e Å3
3140 reflectionsΔρmin = 0.40 e Å3
233 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0844 (3)0.62271 (17)0.39221 (13)0.0471 (5)
N20.0240 (3)0.56468 (18)0.32624 (14)0.0478 (5)
N30.1415 (4)0.9440 (2)0.71802 (16)0.0655 (6)
N40.0400 (4)0.2426 (2)0.00213 (16)0.0715 (6)
O10.3228 (3)0.9304 (2)0.7318 (2)0.1055 (8)
O20.0001 (4)1.0126 (2)0.75895 (17)0.0929 (7)
O30.3593 (2)0.47225 (17)0.29021 (14)0.0672 (5)
O40.5727 (2)0.63544 (19)0.33104 (18)0.0796 (6)
H40.49990.58740.32540.119*
C10.0040 (3)0.7521 (2)0.51346 (15)0.0427 (5)
C20.2010 (3)0.7245 (2)0.54349 (16)0.0484 (5)
H2A0.30670.66360.51770.058*
C30.2480 (3)0.7863 (2)0.61062 (17)0.0516 (6)
H30.38480.76790.63070.062*
C40.0892 (3)0.8763 (2)0.64797 (16)0.0481 (5)
C50.1143 (3)0.9036 (2)0.62214 (17)0.0520 (6)
H50.21940.96280.64980.062*
C60.1598 (3)0.8413 (2)0.55424 (17)0.0508 (5)
H60.29730.85940.53540.061*
C70.0577 (3)0.6877 (2)0.44223 (17)0.0486 (5)
H70.19710.69430.43340.058*
C80.1735 (3)0.4890 (2)0.27631 (17)0.0458 (5)
C90.1067 (3)0.4274 (2)0.20565 (16)0.0436 (5)
C100.2582 (3)0.3367 (2)0.16454 (18)0.0561 (6)
H100.39630.31750.18280.067*
C110.2113 (4)0.2743 (3)0.09784 (19)0.0611 (6)
H110.31720.21250.07300.073*
C120.0067 (4)0.3021 (2)0.06654 (17)0.0537 (6)
C130.1459 (3)0.3920 (2)0.10855 (17)0.0547 (6)
H130.28420.41120.09040.066*
C140.0978 (3)0.4533 (2)0.17627 (17)0.0495 (5)
H140.20380.51310.20290.059*
C150.2519 (5)0.2624 (4)0.0273 (2)0.0884 (9)
H15A0.32650.22150.03430.133*
H15B0.25410.22100.08160.133*
H15C0.31710.35810.05150.133*
C160.1216 (6)0.1550 (4)0.0473 (3)0.1070 (12)
H16A0.22720.20150.08020.161*
H16B0.06400.13020.09910.161*
H16C0.18250.07450.00680.161*
C170.4766 (4)0.7717 (3)0.2827 (2)0.0819 (8)
H17A0.34860.79930.32050.123*
H17B0.44680.78230.21140.123*
H17C0.56810.82710.28300.123*
H20.1140 (17)0.579 (3)0.324 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0436 (9)0.0531 (10)0.0547 (10)0.0173 (8)0.0043 (8)0.0244 (8)
N20.0375 (9)0.0586 (11)0.0595 (11)0.0156 (8)0.0030 (8)0.0311 (9)
N30.0835 (15)0.0537 (12)0.0673 (13)0.0147 (11)0.0210 (11)0.0247 (10)
N40.0817 (15)0.0936 (16)0.0658 (13)0.0425 (13)0.0073 (11)0.0464 (12)
O10.0872 (15)0.1166 (18)0.146 (2)0.0217 (13)0.0391 (14)0.0764 (15)
O20.1084 (16)0.0876 (14)0.0976 (15)0.0057 (12)0.0188 (12)0.0597 (12)
O30.0373 (8)0.0834 (12)0.1006 (13)0.0109 (8)0.0093 (8)0.0561 (10)
O40.0382 (9)0.0841 (13)0.1399 (17)0.0125 (8)0.0084 (9)0.0664 (12)
C10.0416 (11)0.0459 (11)0.0455 (11)0.0149 (9)0.0015 (8)0.0166 (9)
C20.0425 (11)0.0522 (12)0.0542 (12)0.0093 (9)0.0034 (9)0.0223 (10)
C30.0445 (12)0.0567 (13)0.0575 (13)0.0133 (10)0.0108 (10)0.0183 (10)
C40.0586 (13)0.0435 (11)0.0468 (12)0.0157 (10)0.0077 (10)0.0150 (9)
C50.0523 (12)0.0505 (12)0.0554 (13)0.0082 (10)0.0002 (10)0.0236 (10)
C60.0397 (11)0.0573 (13)0.0600 (13)0.0123 (10)0.0014 (9)0.0236 (10)
C70.0395 (11)0.0558 (13)0.0583 (13)0.0152 (10)0.0024 (9)0.0243 (10)
C80.0375 (11)0.0487 (12)0.0576 (13)0.0132 (9)0.0034 (9)0.0217 (10)
C90.0390 (10)0.0490 (12)0.0490 (11)0.0161 (9)0.0002 (8)0.0190 (9)
C100.0405 (11)0.0689 (15)0.0705 (15)0.0184 (10)0.0038 (10)0.0346 (12)
C110.0551 (13)0.0725 (16)0.0718 (15)0.0232 (12)0.0103 (11)0.0419 (13)
C120.0632 (14)0.0644 (14)0.0477 (12)0.0332 (12)0.0039 (10)0.0232 (10)
C130.0489 (12)0.0664 (14)0.0578 (13)0.0211 (11)0.0083 (10)0.0223 (11)
C140.0416 (11)0.0569 (13)0.0572 (13)0.0147 (10)0.0025 (9)0.0245 (10)
C150.097 (2)0.120 (2)0.0789 (19)0.0550 (19)0.0136 (16)0.0449 (17)
C160.112 (3)0.148 (3)0.112 (3)0.066 (2)0.034 (2)0.095 (3)
C170.0672 (16)0.101 (2)0.085 (2)0.0297 (16)0.0022 (14)0.0310 (17)
Geometric parameters (Å, º) top
N1—C71.264 (3)C6—H60.9300
N1—N21.368 (2)C7—H70.9300
N2—C81.349 (3)C8—C91.468 (3)
N2—H20.892 (10)C9—C101.383 (3)
N3—O11.205 (3)C9—C141.390 (3)
N3—O21.212 (3)C10—C111.368 (3)
N3—C41.464 (3)C10—H100.9300
N4—C121.367 (3)C11—C121.398 (3)
N4—C161.427 (4)C11—H110.9300
N4—C151.432 (3)C12—C131.388 (3)
O3—C81.228 (2)C13—C141.374 (3)
O4—C171.396 (3)C13—H130.9300
O4—H40.8200C14—H140.9300
C1—C61.386 (3)C15—H15A0.9600
C1—C21.394 (3)C15—H15B0.9600
C1—C71.454 (3)C15—H15C0.9600
C2—C31.368 (3)C16—H16A0.9600
C2—H2A0.9300C16—H16B0.9600
C3—C41.378 (3)C16—H16C0.9600
C3—H30.9300C17—H17A0.9600
C4—C51.367 (3)C17—H17B0.9600
C5—C61.376 (3)C17—H17C0.9600
C5—H50.9300
C7—N1—N2117.48 (17)C10—C9—C8117.77 (18)
C8—N2—N1118.39 (17)C14—C9—C8125.07 (18)
C8—N2—H2126.9 (17)C11—C10—C9122.1 (2)
N1—N2—H2114.6 (17)C11—C10—H10119.0
O1—N3—O2122.8 (2)C9—C10—H10119.0
O1—N3—C4118.8 (2)C10—C11—C12120.9 (2)
O2—N3—C4118.4 (2)C10—C11—H11119.5
C12—N4—C16120.4 (2)C12—C11—H11119.5
C12—N4—C15121.0 (2)N4—C12—C13121.8 (2)
C16—N4—C15118.5 (2)N4—C12—C11121.1 (2)
C17—O4—H4109.5C13—C12—C11117.08 (19)
C6—C1—C2118.84 (19)C14—C13—C12121.61 (19)
C6—C1—C7119.61 (19)C14—C13—H13119.2
C2—C1—C7121.54 (18)C12—C13—H13119.2
C3—C2—C1120.56 (19)C13—C14—C9121.15 (19)
C3—C2—H2A119.7C13—C14—H14119.4
C1—C2—H2A119.7C9—C14—H14119.4
C2—C3—C4118.83 (19)N4—C15—H15A109.5
C2—C3—H3120.6N4—C15—H15B109.5
C4—C3—H3120.6H15A—C15—H15B109.5
C5—C4—C3122.28 (19)N4—C15—H15C109.5
C5—C4—N3119.25 (19)H15A—C15—H15C109.5
C3—C4—N3118.5 (2)H15B—C15—H15C109.5
C4—C5—C6118.42 (19)N4—C16—H16A109.5
C4—C5—H5120.8N4—C16—H16B109.5
C6—C5—H5120.8H16A—C16—H16B109.5
C5—C6—C1121.0 (2)N4—C16—H16C109.5
C5—C6—H6119.5H16A—C16—H16C109.5
C1—C6—H6119.5H16B—C16—H16C109.5
N1—C7—C1120.24 (19)O4—C17—H17A109.5
N1—C7—H7119.9O4—C17—H17B109.5
C1—C7—H7119.9H17A—C17—H17B109.5
O3—C8—N2120.71 (18)O4—C17—H17C109.5
O3—C8—C9121.40 (18)H17A—C17—H17C109.5
N2—C8—C9117.89 (17)H17B—C17—H17C109.5
C10—C9—C14117.15 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.821.922.733 (2)170
N2—H2···O4i0.89 (1)2.01 (1)2.889 (2)170 (2)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H16N4O3·CH4O
Mr344.37
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.6621 (12), 10.6685 (17), 13.3437 (13)
α, β, γ (°)72.279 (2), 83.444 (2), 73.984 (2)
V3)867.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.27 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
6198, 3140, 2082
Rint0.035
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.208, 1.08
No. of reflections3140
No. of parameters233
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.40

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.821.922.733 (2)169.8
N2—H2···O4i0.892 (10)2.006 (11)2.889 (2)170 (2)
Symmetry code: (i) x1, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBedia, K. K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCacic, M., Trkovnik, M., Cacic, F. & Has-Schon, E. (2006). Molecules, 11, 134–147.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHorkaew, J., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2012). Acta Cryst. E68, o1069–o1070.  CSD CrossRef IUCr Journals Google Scholar
First citationHu, H.-N. & Liu, S.-Y. (2012). Acta Cryst. E68, o1613.  CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R. & Tahir, M. N. (2012). Acta Cryst. E68, o2321–o2322.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRauf, A., Banday, M. R. & Mattoo, R. H. (2008). Acta Chim. Slov. 55, 448–452.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, M., Xian, D.-M., Li, H.-H., Zhang, J.-C. & You, Z.-L. (2012). Aust. J. Chem. 65, 343–350.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds