organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Meth­oxyisobenzo­furan-1(3H)-one

aDepartamento de Química–UFV, Viçosa, MG, Brazil, and bInstituto de Química–UFU, Uberlândia, MG, Brazil
*Correspondence e-mail: robsonr.teixeira@ufv.br_or_silvana@ufu.br

(Received 4 September 2012; accepted 12 September 2012; online 26 September 2012)

In the title compound, C9H8O3, the mol­ecular skeleton is almost planar [r.m.s. deviation = 0.016 (2) Å]. Weak inter­molecular C—H⋯O and C—H⋯π inter­actions consolidate the crystal packing, with the mol­ecules stacking in the [101] direction.

Related literature

For the biological activity of isobenzofuran-1(3H)-one, see: Brady et al. (2000[Brady, S. F., Wagenaar, M. M., Sing, M. P., Janson, J. E. & Clardy, J. (2000). Org. Lett. 2, 4043-4046.]); Huang et al. (2012)[Huang, X.-Z., Zhu, Y., Guan, X.-L., Tian, K., Guo, J.-M., Wang, H.-B. & Fu, G.-M. (2012). Molecules, 17, 4219-4224.]; Cardozo et al. (2005[Cardozo, J. A., Filho, R. B., Velandia, J. R. & Pabón, M. F. G. (2005). Rev. Col. Cienc. Quim. Farm. 34, 69-79.]); Yoganathan et al. (2003[Yoganathan, K., Rossant, C., Ng, S., Huang, Y., Butler, M. S. & Buss, A. D. (2003). J. Nat. Prod. 66, 1116-1117.]); Demuner et al. (2006[Demuner, A. J., Barbosa, L. C. A., Veiga, T. A. M., Barreto, R. W., King-Diaz, B. & Lotina-Hennsen, B. (2006). Biochem. Syst. Ecol. 34, 790-795.]). For related structures, see: Sun et al. (2009[Sun, M.-X., Li, X., Liu, W.-Y. & Xiao, K. (2009). Acta Cryst. E65, o2146.]); Mendenhall et al. (2003[Mendenhall, G. D., Luck, R. L., Bohn, R. K. & Castejon, H. J. (2003). J. Mol. Struct. 645, 249-258.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8O3

  • Mr = 164.15

  • Monoclinic, P 21 /c

  • a = 9.2922 (19) Å

  • b = 8.4982 (12) Å

  • c = 9.786 (2) Å

  • β = 90.471 (15)°

  • V = 772.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.28 × 0.17 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 3304 measured reflections

  • 1741 independent reflections

  • 1285 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.166

  • S = 1.12

  • 1741 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O2i 0.96 2.55 3.490 (2) 165
C8—H8BCg1ii 0.97 2.84 3.637 (2) 140
C9—H9CCg1iii 0.96 2.91 3.744 (2) 146
Symmetry codes: (i) -x+1, -y, -z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Isobenzofuran-1(3H)-one fragment, γ-lactone fused to aromatic ring, occurs in several compounds that exhibit biological activities ranging from antibacterial (Brady et al., 2000), antioxidant (Zhu et al., 2012), anticonvulsant (Cardozo et al., 2005), and anti-HIV (Yoganathan et al., 2003) to inhibition of the photosynthetic electron transport (Demuner et al., 2006). In a research program devoted to finding the phytotoxic compounds containing the isobenzofuran-1(3H)-one core, the title compound was synthesized.

The title molecule (Fig. 1) is essentially planar with a mean deviation of 0.016 (2) Å from the best plane formed by 12 non-H atoms. All bond lengths and angles are normal and correspond to those observed in the related compounds (Sun et al., 2009; Mendenhall et al., 2003). The crystal packing is stabilized by weak intermolecular C—H···O and C—H···π interactions (Table 1, Fig. 2), with a stacking direction of the molecules in [101].

Related literature top

For the biological activity of Isobenzofuran-1(3H)-one, see: Brady et al. (2000); Zhu et al. (2012); Cardozo et al. (2005);Yoganathan et al. (2003); Demuner et al. (2006). For related structures, see: Sun et al. (2009); Mendenhall et al. (2003).

Experimental top

Starting materials were commercially available and were used without further purification. The synthesis of the title compound was carried out as follows. A tube of 40 ml equipped with a magnetic stir bar was charged with Palladium (II) acetate (156.8 mg, 0.70 mmol), potassium dihydrogen phosphate (3654 mg, 21.0 mmol), 3-methoxy benzoic acid (1064 mg, 7.00 mmol) and dibromomethane (28 ml). The tube was sealed with a teflon cap and the reaction mixture was stirred at 140 °C for 36 h. After this time, the mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography (hexane-ethyl acetate 2:1 v/v) to afford the title compound in 59% yield (681 mg, 4.15 mmol) as a white solid. The crystals suitable for X-ray crystallographic analysis were obtained by slow evaporation from acetone solution at room temperature. M.p. 116.9–118.4 °C. IR (selected bands, cm-1): 3003, 2925, 2837, 1733, 1600, 1585, 1488, 1454, 1431, 1267, 1206, 1028, 973, 869, 749, 690, 545. 1H NMR (300 MHz, MeOH-d4) δ 3.87 (s, 3H, H-9), 5.26 (s, 2H, H-8), 7.22–7.38 (m, 3H, H-3, H-5 and H-6); 13C NMR (75 MHz, MeOH-d4) δ 56.0 (C-9), 69.7 (C-8), 107.7 (C-3), 123.1; 123.3 (C-5 and C-6), 127.3 (C-2), 139.1 (C-7), 160.8 (C-4), 171.4 (C-1). HREIMS m/z (M+H+): Calcd for C9H8O3, 165.0552; found: 165.0608.

Structure description top

Isobenzofuran-1(3H)-one fragment, γ-lactone fused to aromatic ring, occurs in several compounds that exhibit biological activities ranging from antibacterial (Brady et al., 2000), antioxidant (Zhu et al., 2012), anticonvulsant (Cardozo et al., 2005), and anti-HIV (Yoganathan et al., 2003) to inhibition of the photosynthetic electron transport (Demuner et al., 2006). In a research program devoted to finding the phytotoxic compounds containing the isobenzofuran-1(3H)-one core, the title compound was synthesized.

The title molecule (Fig. 1) is essentially planar with a mean deviation of 0.016 (2) Å from the best plane formed by 12 non-H atoms. All bond lengths and angles are normal and correspond to those observed in the related compounds (Sun et al., 2009; Mendenhall et al., 2003). The crystal packing is stabilized by weak intermolecular C—H···O and C—H···π interactions (Table 1, Fig. 2), with a stacking direction of the molecules in [101].

For the biological activity of Isobenzofuran-1(3H)-one, see: Brady et al. (2000); Zhu et al. (2012); Cardozo et al. (2005);Yoganathan et al. (2003); Demuner et al. (2006). For related structures, see: Sun et al. (2009); Mendenhall et al. (2003).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labeling and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A portion of the crystal packing viewed approximately down the c axis. Dotted lines denote intermolecular C—H···O and C—H···π interactions. Centroids of six-membered rings are drawn as red balls.
6-Methoxyisobenzofuran-1(3H)-one top
Crystal data top
C9H8O3F(000) = 344
Mr = 164.15Dx = 1.411 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.2922 (19) ÅCell parameters from 3082 reflections
b = 8.4982 (12) Åθ = 2.1–27.5°
c = 9.786 (2) ŵ = 0.11 mm1
β = 90.471 (15)°T = 293 K
V = 772.8 (2) Å3Prism, colourless
Z = 40.28 × 0.17 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
1285 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.036
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
Detector resolution: 9 pixels mm-1h = 1212
CCD rotation images, thick slices scansk = 1011
3304 measured reflectionsl = 1212
1741 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0943P)2 + 0.032P]
where P = (Fo2 + 2Fc2)/3
1741 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C9H8O3V = 772.8 (2) Å3
Mr = 164.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2922 (19) ŵ = 0.11 mm1
b = 8.4982 (12) ÅT = 293 K
c = 9.786 (2) Å0.28 × 0.17 × 0.12 mm
β = 90.471 (15)°
Data collection top
Nonius KappaCCD
diffractometer
1285 reflections with I > 2σ(I)
3304 measured reflectionsRint = 0.036
1741 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.12Δρmax = 0.20 e Å3
1741 reflectionsΔρmin = 0.18 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.93834 (12)0.04009 (14)0.16871 (11)0.0695 (4)
O20.79489 (14)0.11746 (14)0.04458 (12)0.0752 (4)
O30.54600 (12)0.40633 (13)0.19372 (11)0.0699 (4)
C10.83141 (17)0.0134 (2)0.07489 (15)0.0612 (4)
C20.77893 (16)0.16711 (17)0.02593 (13)0.0552 (4)
C30.67205 (15)0.19885 (18)0.07089 (14)0.0569 (4)
H30.62120.11850.1140.068*
C40.64497 (16)0.35569 (18)0.09995 (14)0.0568 (4)
C50.72174 (17)0.47477 (18)0.03217 (16)0.0632 (4)
H50.70130.57940.05240.076*
C60.82660 (17)0.44069 (19)0.06357 (16)0.0639 (4)
H60.87660.52080.1080.077*
C70.85594 (16)0.28364 (18)0.09213 (14)0.0572 (4)
C80.96195 (18)0.2080 (2)0.18656 (16)0.0663 (5)
H8A1.05960.23650.16240.08*
H8B0.94480.23920.28040.08*
C90.45913 (19)0.2893 (2)0.25875 (18)0.0730 (5)
H9A0.39420.33890.32220.11*
H9B0.40510.23360.1910.11*
H9C0.51970.21690.30670.11*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0805 (7)0.0576 (7)0.0702 (7)0.0088 (5)0.0046 (5)0.0056 (5)
O20.0934 (9)0.0475 (7)0.0847 (8)0.0000 (5)0.0030 (6)0.0033 (5)
O30.0797 (7)0.0492 (7)0.0804 (7)0.0024 (5)0.0172 (6)0.0022 (5)
C10.0700 (9)0.0536 (9)0.0602 (8)0.0018 (7)0.0085 (7)0.0018 (6)
C20.0635 (8)0.0479 (8)0.0541 (7)0.0004 (6)0.0070 (6)0.0000 (6)
C30.0651 (8)0.0457 (8)0.0599 (8)0.0047 (6)0.0027 (6)0.0034 (6)
C40.0635 (8)0.0480 (8)0.0588 (8)0.0014 (6)0.0003 (6)0.0001 (6)
C50.0757 (9)0.0428 (8)0.0708 (9)0.0005 (6)0.0035 (7)0.0013 (6)
C60.0734 (9)0.0496 (8)0.0686 (9)0.0049 (7)0.0032 (7)0.0081 (7)
C70.0633 (8)0.0524 (9)0.0561 (7)0.0001 (6)0.0046 (6)0.0021 (6)
C80.0728 (9)0.0610 (10)0.0649 (9)0.0037 (7)0.0022 (7)0.0042 (7)
C90.0790 (10)0.0593 (10)0.0805 (10)0.0097 (8)0.0147 (8)0.0019 (8)
Geometric parameters (Å, º) top
O1—C11.366 (2)C5—C61.377 (2)
O1—C81.454 (2)C5—H50.93
O2—C11.199 (2)C6—C71.390 (2)
O3—C41.3635 (19)C6—H60.93
O3—C91.427 (2)C7—C81.491 (2)
C1—C21.473 (2)C8—H8A0.97
C2—C71.380 (2)C8—H8B0.97
C2—C31.393 (2)C9—H9A0.96
C3—C41.385 (2)C9—H9B0.96
C3—H30.93C9—H9C0.96
C4—C51.402 (2)
C1—O1—C8110.59 (12)C5—C6—H6120.8
C4—O3—C9117.14 (13)C7—C6—H6120.8
O2—C1—O1121.50 (16)C2—C7—C6119.63 (15)
O2—C1—C2130.52 (17)C2—C7—C8108.60 (14)
O1—C1—C2107.98 (14)C6—C7—C8131.77 (14)
C7—C2—C3122.97 (15)O1—C8—C7104.50 (12)
C7—C2—C1108.34 (15)O1—C8—H8A110.9
C3—C2—C1128.69 (14)C7—C8—H8A110.9
C4—C3—C2116.94 (14)O1—C8—H8B110.9
C4—C3—H3121.5C7—C8—H8B110.9
C2—C3—H3121.5H8A—C8—H8B108.9
O3—C4—C3124.20 (14)O3—C9—H9A109.5
O3—C4—C5115.37 (14)O3—C9—H9B109.5
C3—C4—C5120.43 (15)H9A—C9—H9B109.5
C6—C5—C4121.64 (15)O3—C9—H9C109.5
C6—C5—H5119.2H9A—C9—H9C109.5
C4—C5—H5119.2H9B—C9—H9C109.5
C5—C6—C7118.38 (15)
C8—O1—C1—O2179.83 (13)O3—C4—C5—C6178.97 (12)
C8—O1—C1—C20.01 (16)C3—C4—C5—C60.7 (2)
O2—C1—C2—C7179.93 (15)C4—C5—C6—C70.2 (2)
O1—C1—C2—C70.11 (16)C3—C2—C7—C60.6 (2)
O2—C1—C2—C30.6 (3)C1—C2—C7—C6179.99 (12)
O1—C1—C2—C3179.23 (12)C3—C2—C7—C8179.21 (12)
C7—C2—C3—C40.2 (2)C1—C2—C7—C80.18 (16)
C1—C2—C3—C4179.01 (12)C5—C6—C7—C20.8 (2)
C9—O3—C4—C34.2 (2)C5—C6—C7—C8178.95 (14)
C9—O3—C4—C5176.13 (13)C1—O1—C8—C70.11 (15)
C2—C3—C4—O3178.74 (12)C2—C7—C8—O10.18 (15)
C2—C3—C4—C50.9 (2)C6—C7—C8—O1179.96 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9B···O2i0.962.553.490 (2)165
C8—H8B···Cg1ii0.972.843.637 (2)140
C9—H9C···Cg1iii0.962.913.744 (2)146
Symmetry codes: (i) x+1, y, z; (ii) x, y+3/2, z1/2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H8O3
Mr164.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.2922 (19), 8.4982 (12), 9.786 (2)
β (°) 90.471 (15)
V3)772.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.28 × 0.17 × 0.12
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3304, 1741, 1285
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.166, 1.12
No. of reflections1741
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9B···O2i0.962.553.490 (2)164.9
C8—H8B···Cg1ii0.972.843.637 (2)140.0
C9—H9C···Cg1iii0.962.913.744 (2)146.0
Symmetry codes: (i) x+1, y, z; (ii) x, y+3/2, z1/2; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

The authors thank Professor Dr Javier Ellena of the IFSC, USP, Brazil, for the X-ray data collection. This work was supported financially by CAPES, CNPq, FUNARBE and FAPEMIG. This work is also a collaborative research project with members of the Rede Mineira de Química (RQ—MG), also supported by FAPEMIG.

References

First citationBrady, S. F., Wagenaar, M. M., Sing, M. P., Janson, J. E. & Clardy, J. (2000). Org. Lett. 2, 4043–4046.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCardozo, J. A., Filho, R. B., Velandia, J. R. & Pabón, M. F. G. (2005). Rev. Col. Cienc. Quim. Farm. 34, 69–79.  Google Scholar
First citationDemuner, A. J., Barbosa, L. C. A., Veiga, T. A. M., Barreto, R. W., King-Diaz, B. & Lotina-Hennsen, B. (2006). Biochem. Syst. Ecol. 34, 790–795.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHuang, X.-Z., Zhu, Y., Guan, X.-L., Tian, K., Guo, J.-M., Wang, H.-B. & Fu, G.-M. (2012). Molecules, 17, 4219–4224.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMendenhall, G. D., Luck, R. L., Bohn, R. K. & Castejon, H. J. (2003). J. Mol. Struct. 645, 249–258.  CSD CrossRef Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, M.-X., Li, X., Liu, W.-Y. & Xiao, K. (2009). Acta Cryst. E65, o2146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYoganathan, K., Rossant, C., Ng, S., Huang, Y., Butler, M. S. & Buss, A. D. (2003). J. Nat. Prod. 66, 1116–1117.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds