organic compounds
6-Methoxyisobenzofuran-1(3H)-one
aDepartamento de Química–UFV, Viçosa, MG, Brazil, and bInstituto de Química–UFU, Uberlândia, MG, Brazil
*Correspondence e-mail: robsonr.teixeira@ufv.br_or_silvana@ufu.br
In the title compound, C9H8O3, the molecular skeleton is almost planar [r.m.s. deviation = 0.016 (2) Å]. Weak intermolecular C—H⋯O and C—H⋯π interactions consolidate the crystal packing, with the molecules stacking in the [101] direction.
Related literature
For the biological activity of isobenzofuran-1(3H)-one, see: Brady et al. (2000); Huang et al. (2012); Cardozo et al. (2005); Yoganathan et al. (2003); Demuner et al. (2006). For related structures, see: Sun et al. (2009); Mendenhall et al. (2003).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Nonius, 2000); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536812039074/cv5338sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812039074/cv5338Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812039074/cv5338Isup3.cml
Starting materials were commercially available and were used without further purification. The synthesis of the title compound was carried out as follows. A tube of 40 ml equipped with a magnetic stir bar was charged with Palladium (II) acetate (156.8 mg, 0.70 mmol), potassium dihydrogen phosphate (3654 mg, 21.0 mmol), 3-methoxy benzoic acid (1064 mg, 7.00 mmol) and dibromomethane (28 ml). The tube was sealed with a teflon cap and the reaction mixture was stirred at 140 °C for 36 h. After this time, the mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel δ 3.87 (s, 3H, H-9), 5.26 (s, 2H, H-8), 7.22–7.38 (m, 3H, H-3, H-5 and H-6); 13C NMR (75 MHz, MeOH-d4) δ 56.0 (C-9), 69.7 (C-8), 107.7 (C-3), 123.1; 123.3 (C-5 and C-6), 127.3 (C-2), 139.1 (C-7), 160.8 (C-4), 171.4 (C-1). HREIMS m/z (M+H+): Calcd for C9H8O3, 165.0552; found: 165.0608.
(hexane-ethyl acetate 2:1 v/v) to afford the title compound in 59% yield (681 mg, 4.15 mmol) as a white solid. The crystals suitable for X-ray crystallographic analysis were obtained by slow evaporation from acetone solution at room temperature. M.p. 116.9–118.4 °C. IR (selected bands, cm-1): 3003, 2925, 2837, 1733, 1600, 1585, 1488, 1454, 1431, 1267, 1206, 1028, 973, 869, 749, 690, 545. 1H NMR (300 MHz, MeOH-d4)Isobenzofuran-1(3H)-one fragment, γ-lactone fused to aromatic ring, occurs in several compounds that exhibit biological activities ranging from antibacterial (Brady et al., 2000), antioxidant (Zhu et al., 2012), anticonvulsant (Cardozo et al., 2005), and anti-HIV (Yoganathan et al., 2003) to inhibition of the photosynthetic electron transport (Demuner et al., 2006). In a research program devoted to finding the phytotoxic compounds containing the isobenzofuran-1(3H)-one core, the title compound was synthesized.
The title molecule (Fig. 1) is essentially planar with a mean deviation of 0.016 (2) Å from the best plane formed by 12 non-H atoms. All bond lengths and angles are normal and correspond to those observed in the related compounds (Sun et al., 2009; Mendenhall et al., 2003). The crystal packing is stabilized by weak intermolecular C—H···O and C—H···π interactions (Table 1, Fig. 2), with a stacking direction of the molecules in [101].
For the biological activity of Isobenzofuran-1(3H)-one, see: Brady et al. (2000); Zhu et al. (2012); Cardozo et al. (2005);Yoganathan et al. (2003); Demuner et al. (2006). For related structures, see: Sun et al. (2009); Mendenhall et al. (2003).
Data collection: COLLECT (Nonius, 2000); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C9H8O3 | F(000) = 344 |
Mr = 164.15 | Dx = 1.411 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.2922 (19) Å | Cell parameters from 3082 reflections |
b = 8.4982 (12) Å | θ = 2.1–27.5° |
c = 9.786 (2) Å | µ = 0.11 mm−1 |
β = 90.471 (15)° | T = 293 K |
V = 772.8 (2) Å3 | Prism, colourless |
Z = 4 | 0.28 × 0.17 × 0.12 mm |
Nonius KappaCCD diffractometer | 1285 reflections with I > 2σ(I) |
Radiation source: Enraf Nonius FR590 | Rint = 0.036 |
Graphite monochromator | θmax = 27.5°, θmin = 2.2° |
Detector resolution: 9 pixels mm-1 | h = −12→12 |
CCD rotation images, thick slices scans | k = −10→11 |
3304 measured reflections | l = −12→12 |
1741 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.166 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0943P)2 + 0.032P] where P = (Fo2 + 2Fc2)/3 |
1741 reflections | (Δ/σ)max < 0.001 |
109 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C9H8O3 | V = 772.8 (2) Å3 |
Mr = 164.15 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.2922 (19) Å | µ = 0.11 mm−1 |
b = 8.4982 (12) Å | T = 293 K |
c = 9.786 (2) Å | 0.28 × 0.17 × 0.12 mm |
β = 90.471 (15)° |
Nonius KappaCCD diffractometer | 1285 reflections with I > 2σ(I) |
3304 measured reflections | Rint = 0.036 |
1741 independent reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.166 | H-atom parameters constrained |
S = 1.12 | Δρmax = 0.20 e Å−3 |
1741 reflections | Δρmin = −0.18 e Å−3 |
109 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.93834 (12) | 0.04009 (14) | 0.16871 (11) | 0.0695 (4) | |
O2 | 0.79489 (14) | −0.11746 (14) | 0.04458 (12) | 0.0752 (4) | |
O3 | 0.54600 (12) | 0.40633 (13) | −0.19372 (11) | 0.0699 (4) | |
C1 | 0.83141 (17) | 0.0134 (2) | 0.07489 (15) | 0.0612 (4) | |
C2 | 0.77893 (16) | 0.16711 (17) | 0.02593 (13) | 0.0552 (4) | |
C3 | 0.67205 (15) | 0.19885 (18) | −0.07089 (14) | 0.0569 (4) | |
H3 | 0.6212 | 0.1185 | −0.114 | 0.068* | |
C4 | 0.64497 (16) | 0.35569 (18) | −0.09995 (14) | 0.0568 (4) | |
C5 | 0.72174 (17) | 0.47477 (18) | −0.03217 (16) | 0.0632 (4) | |
H5 | 0.7013 | 0.5794 | −0.0524 | 0.076* | |
C6 | 0.82660 (17) | 0.44069 (19) | 0.06357 (16) | 0.0639 (4) | |
H6 | 0.8766 | 0.5208 | 0.108 | 0.077* | |
C7 | 0.85594 (16) | 0.28364 (18) | 0.09213 (14) | 0.0572 (4) | |
C8 | 0.96195 (18) | 0.2080 (2) | 0.18656 (16) | 0.0663 (5) | |
H8A | 1.0596 | 0.2365 | 0.1624 | 0.08* | |
H8B | 0.9448 | 0.2392 | 0.2804 | 0.08* | |
C9 | 0.45913 (19) | 0.2893 (2) | −0.25875 (18) | 0.0730 (5) | |
H9A | 0.3942 | 0.3389 | −0.3222 | 0.11* | |
H9B | 0.4051 | 0.2336 | −0.191 | 0.11* | |
H9C | 0.5197 | 0.2169 | −0.3067 | 0.11* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0805 (7) | 0.0576 (7) | 0.0702 (7) | 0.0088 (5) | −0.0046 (5) | 0.0056 (5) |
O2 | 0.0934 (9) | 0.0475 (7) | 0.0847 (8) | 0.0000 (5) | 0.0030 (6) | 0.0033 (5) |
O3 | 0.0797 (7) | 0.0492 (7) | 0.0804 (7) | −0.0024 (5) | −0.0172 (6) | 0.0022 (5) |
C1 | 0.0700 (9) | 0.0536 (9) | 0.0602 (8) | 0.0018 (7) | 0.0085 (7) | 0.0018 (6) |
C2 | 0.0635 (8) | 0.0479 (8) | 0.0541 (7) | 0.0004 (6) | 0.0070 (6) | 0.0000 (6) |
C3 | 0.0651 (8) | 0.0457 (8) | 0.0599 (8) | −0.0047 (6) | 0.0027 (6) | −0.0034 (6) |
C4 | 0.0635 (8) | 0.0480 (8) | 0.0588 (8) | −0.0014 (6) | −0.0003 (6) | −0.0001 (6) |
C5 | 0.0757 (9) | 0.0428 (8) | 0.0708 (9) | 0.0005 (6) | −0.0035 (7) | −0.0013 (6) |
C6 | 0.0734 (9) | 0.0496 (8) | 0.0686 (9) | −0.0049 (7) | −0.0032 (7) | −0.0081 (7) |
C7 | 0.0633 (8) | 0.0524 (9) | 0.0561 (7) | −0.0001 (6) | 0.0046 (6) | −0.0021 (6) |
C8 | 0.0728 (9) | 0.0610 (10) | 0.0649 (9) | 0.0037 (7) | −0.0022 (7) | −0.0042 (7) |
C9 | 0.0790 (10) | 0.0593 (10) | 0.0805 (10) | −0.0097 (8) | −0.0147 (8) | 0.0019 (8) |
O1—C1 | 1.366 (2) | C5—C6 | 1.377 (2) |
O1—C8 | 1.454 (2) | C5—H5 | 0.93 |
O2—C1 | 1.199 (2) | C6—C7 | 1.390 (2) |
O3—C4 | 1.3635 (19) | C6—H6 | 0.93 |
O3—C9 | 1.427 (2) | C7—C8 | 1.491 (2) |
C1—C2 | 1.473 (2) | C8—H8A | 0.97 |
C2—C7 | 1.380 (2) | C8—H8B | 0.97 |
C2—C3 | 1.393 (2) | C9—H9A | 0.96 |
C3—C4 | 1.385 (2) | C9—H9B | 0.96 |
C3—H3 | 0.93 | C9—H9C | 0.96 |
C4—C5 | 1.402 (2) | ||
C1—O1—C8 | 110.59 (12) | C5—C6—H6 | 120.8 |
C4—O3—C9 | 117.14 (13) | C7—C6—H6 | 120.8 |
O2—C1—O1 | 121.50 (16) | C2—C7—C6 | 119.63 (15) |
O2—C1—C2 | 130.52 (17) | C2—C7—C8 | 108.60 (14) |
O1—C1—C2 | 107.98 (14) | C6—C7—C8 | 131.77 (14) |
C7—C2—C3 | 122.97 (15) | O1—C8—C7 | 104.50 (12) |
C7—C2—C1 | 108.34 (15) | O1—C8—H8A | 110.9 |
C3—C2—C1 | 128.69 (14) | C7—C8—H8A | 110.9 |
C4—C3—C2 | 116.94 (14) | O1—C8—H8B | 110.9 |
C4—C3—H3 | 121.5 | C7—C8—H8B | 110.9 |
C2—C3—H3 | 121.5 | H8A—C8—H8B | 108.9 |
O3—C4—C3 | 124.20 (14) | O3—C9—H9A | 109.5 |
O3—C4—C5 | 115.37 (14) | O3—C9—H9B | 109.5 |
C3—C4—C5 | 120.43 (15) | H9A—C9—H9B | 109.5 |
C6—C5—C4 | 121.64 (15) | O3—C9—H9C | 109.5 |
C6—C5—H5 | 119.2 | H9A—C9—H9C | 109.5 |
C4—C5—H5 | 119.2 | H9B—C9—H9C | 109.5 |
C5—C6—C7 | 118.38 (15) | ||
C8—O1—C1—O2 | 179.83 (13) | O3—C4—C5—C6 | −178.97 (12) |
C8—O1—C1—C2 | −0.01 (16) | C3—C4—C5—C6 | 0.7 (2) |
O2—C1—C2—C7 | −179.93 (15) | C4—C5—C6—C7 | 0.2 (2) |
O1—C1—C2—C7 | −0.11 (16) | C3—C2—C7—C6 | 0.6 (2) |
O2—C1—C2—C3 | −0.6 (3) | C1—C2—C7—C6 | 179.99 (12) |
O1—C1—C2—C3 | 179.23 (12) | C3—C2—C7—C8 | −179.21 (12) |
C7—C2—C3—C4 | 0.2 (2) | C1—C2—C7—C8 | 0.18 (16) |
C1—C2—C3—C4 | −179.01 (12) | C5—C6—C7—C2 | −0.8 (2) |
C9—O3—C4—C3 | 4.2 (2) | C5—C6—C7—C8 | 178.95 (14) |
C9—O3—C4—C5 | −176.13 (13) | C1—O1—C8—C7 | 0.11 (15) |
C2—C3—C4—O3 | 178.74 (12) | C2—C7—C8—O1 | −0.18 (15) |
C2—C3—C4—C5 | −0.9 (2) | C6—C7—C8—O1 | −179.96 (14) |
Cg1 is the centroid of C2–C7 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9B···O2i | 0.96 | 2.55 | 3.490 (2) | 165 |
C8—H8B···Cg1ii | 0.97 | 2.84 | 3.637 (2) | 140 |
C9—H9C···Cg1iii | 0.96 | 2.91 | 3.744 (2) | 146 |
Symmetry codes: (i) −x+1, −y, −z; (ii) x, −y+3/2, z−1/2; (iii) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H8O3 |
Mr | 164.15 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 9.2922 (19), 8.4982 (12), 9.786 (2) |
β (°) | 90.471 (15) |
V (Å3) | 772.8 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.28 × 0.17 × 0.12 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3304, 1741, 1285 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.166, 1.12 |
No. of reflections | 1741 |
No. of parameters | 109 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.18 |
Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Cg1 is the centroid of C2–C7 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9B···O2i | 0.96 | 2.55 | 3.490 (2) | 164.9 |
C8—H8B···Cg1ii | 0.97 | 2.84 | 3.637 (2) | 140.0 |
C9—H9C···Cg1iii | 0.96 | 2.91 | 3.744 (2) | 146.0 |
Symmetry codes: (i) −x+1, −y, −z; (ii) x, −y+3/2, z−1/2; (iii) x, −y+3/2, z+1/2. |
Acknowledgements
The authors thank Professor Dr Javier Ellena of the IFSC, USP, Brazil, for the X-ray data collection. This work was supported financially by CAPES, CNPq, FUNARBE and FAPEMIG. This work is also a collaborative research project with members of the Rede Mineira de Química (RQ—MG), also supported by FAPEMIG.
References
Brady, S. F., Wagenaar, M. M., Sing, M. P., Janson, J. E. & Clardy, J. (2000). Org. Lett. 2, 4043–4046. Web of Science CSD CrossRef PubMed CAS Google Scholar
Cardozo, J. A., Filho, R. B., Velandia, J. R. & Pabón, M. F. G. (2005). Rev. Col. Cienc. Quim. Farm. 34, 69–79. Google Scholar
Demuner, A. J., Barbosa, L. C. A., Veiga, T. A. M., Barreto, R. W., King-Diaz, B. & Lotina-Hennsen, B. (2006). Biochem. Syst. Ecol. 34, 790–795. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Huang, X.-Z., Zhu, Y., Guan, X.-L., Tian, K., Guo, J.-M., Wang, H.-B. & Fu, G.-M. (2012). Molecules, 17, 4219–4224. Web of Science CrossRef CAS PubMed Google Scholar
Mendenhall, G. D., Luck, R. L., Bohn, R. K. & Castejon, H. J. (2003). J. Mol. Struct. 645, 249–258. CSD CrossRef Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, M.-X., Li, X., Liu, W.-Y. & Xiao, K. (2009). Acta Cryst. E65, o2146. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yoganathan, K., Rossant, C., Ng, S., Huang, Y., Butler, M. S. & Buss, A. D. (2003). J. Nat. Prod. 66, 1116–1117. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Isobenzofuran-1(3H)-one fragment, γ-lactone fused to aromatic ring, occurs in several compounds that exhibit biological activities ranging from antibacterial (Brady et al., 2000), antioxidant (Zhu et al., 2012), anticonvulsant (Cardozo et al., 2005), and anti-HIV (Yoganathan et al., 2003) to inhibition of the photosynthetic electron transport (Demuner et al., 2006). In a research program devoted to finding the phytotoxic compounds containing the isobenzofuran-1(3H)-one core, the title compound was synthesized.
The title molecule (Fig. 1) is essentially planar with a mean deviation of 0.016 (2) Å from the best plane formed by 12 non-H atoms. All bond lengths and angles are normal and correspond to those observed in the related compounds (Sun et al., 2009; Mendenhall et al., 2003). The crystal packing is stabilized by weak intermolecular C—H···O and C—H···π interactions (Table 1, Fig. 2), with a stacking direction of the molecules in [101].