organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Ethyl-2-[1-(2-hy­dr­oxy-6-meth­­oxy­phenyl)ethyl­­idene]hydrazinecarbo­thio­amide

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 8 September 2012; accepted 14 September 2012; online 22 September 2012)

In the title compound, C12H17N3O2S, the dihedral angle between the mean planes of the hydrazinecarbothio­amide group and the benzene ring is 86.8 (4)°. In the crystal, inter­molecular O—H⋯S hydrogen bonds link the mol­ecules into chains along [001]. The crystal studied was an inversion twin, the refined ratio of the twin components being 0.98021 (3):0.01978 (7).

Related literature

For thio­semicarbazone structures and their biological activity, see: Lobana et al. (2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]). For thio­semicarbazones as ligands for metal-catalyzed reactions or hydrogenations, see: Xie et al. (2010[Xie, G., Chellan, P., Mao, J., Chibale, K. & Smith, G. S. (2010). Adv. Synth. Catal. 352, 1641-1647.]); Pelagatti et al. (1998[Pelagatti, P., Venturini, A., Carcelli, M., Costa, M., Bacchi, A., Pelizzi, G. & Pelizza, C. (1998). J. Chem. Soc. Dalton Trans. pp. 2715-2721.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17N3O2S

  • Mr = 267.35

  • Monoclinic, P c

  • a = 8.5681 (6) Å

  • b = 8.0393 (5) Å

  • c = 10.3808 (8) Å

  • β = 103.510 (7)°

  • V = 695.26 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.46 × 0.32 × 0.24 mm

Data collection
  • Oxford Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.974, Tmax = 1.000

  • 7338 measured reflections

  • 3987 independent reflections

  • 3287 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.128

  • S = 1.05

  • 3987 reflections

  • 173 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1510 Friedel pairs

  • Flack parameter: 0.00 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯S1i 0.82 2.35 3.1655 (19) 175
Symmetry code: (i) [x, -y, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiosemicarbazones are an important class of ligands whose metal complex structures and biological activity have been extensively investigated (Lobana et al., 2009). Recently, thiosemicarbazones have been studied as ligands for metal catalyzed reactions such as Mizoroki–Heck couplings (Xie et al., 2010) and hydrogenations (Pelagatti et al., 1998). The crystal structure of a novel thiosemicarbazone molecule is reported here.

In the title compound, C12H17N3O2S (Fig. 1), the dihedral angle between the mean plane of the hydrazinecarbothioamide group (N1/S1/C3/N2/N3) and benzene ring is 86.8 (4)°. Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, the intermolecular O—H···S hydrogen bonds (Table 1) link the molecules into chains in [001] (Fig. 2).

Related literature top

For thiosemicarbazone structures and their biological activity, see: Lobana et al. (2009). For thiosemicarbazones as ligands for metal-catalyzed reactions or hydrogenations, see: Xie et al. (2010); Pelagatti et al. (1998). For reference bond-length data, see: Allen et al. (1987).

Experimental top

A 50 ml round-bottomed flask was charged with 0.507 g (3.05 mmol) of 2'-hydroxy-6'-methoxyacetophenone and 0.363 g (3.05 mmol) of 4-ethyl-3-thiosemicarbazide followed by 35 ml of methanol, resulting in a clear yellow solution. The solution was refluxed for 5 h, and then the solvent was removed by rotary evaporation. The product was dissolved into 40°C acetonitrile and slowly allowed to cool to 0°C. Translucent crystals were observed after 48 h. (m.p. 458–460 K).

Refinement top

Atoms H1A and H2 were located on a difference map and refined isotropically. The remaining H atoms were placed in their calculated positions and then refined using the riding model, with C—H lengths of 0.93 Å (CH), 0.97 Å (CH2) or 0.96 Å (CH3) and the O—H length of 0.82 Å. The isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3, OH) times Ueq of the parent atom. The structure was refined as an inversion twin, with the twin law -1 0 0 0 -1 0 0 0 -1 2 and the refined ratio of twin components being 0.98021 (3):0.01978 (7).

Structure description top

Thiosemicarbazones are an important class of ligands whose metal complex structures and biological activity have been extensively investigated (Lobana et al., 2009). Recently, thiosemicarbazones have been studied as ligands for metal catalyzed reactions such as Mizoroki–Heck couplings (Xie et al., 2010) and hydrogenations (Pelagatti et al., 1998). The crystal structure of a novel thiosemicarbazone molecule is reported here.

In the title compound, C12H17N3O2S (Fig. 1), the dihedral angle between the mean plane of the hydrazinecarbothioamide group (N1/S1/C3/N2/N3) and benzene ring is 86.8 (4)°. Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, the intermolecular O—H···S hydrogen bonds (Table 1) link the molecules into chains in [001] (Fig. 2).

For thiosemicarbazone structures and their biological activity, see: Lobana et al. (2009). For thiosemicarbazones as ligands for metal-catalyzed reactions or hydrogenations, see: Xie et al. (2010); Pelagatti et al. (1998). For reference bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram viewed along the c axis. Weak O—H···S intermolecular interactions are shown by dashed lines. C-bound H atoms were omitted for clarity.
N-Ethyl-2-[1-(2-hydroxy-6- methoxyphenyl)ethylidene]hydrazinecarbothioamide top
Crystal data top
C12H17N3O2SF(000) = 284
Mr = 267.35Dx = 1.277 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71070 Å
Hall symbol: P -2ycCell parameters from 2153 reflections
a = 8.5681 (6) Åθ = 3.2–32.3°
b = 8.0393 (5) ŵ = 0.23 mm1
c = 10.3808 (8) ÅT = 173 K
β = 103.510 (7)°Chunk, colourless
V = 695.26 (8) Å30.46 × 0.32 × 0.24 mm
Z = 2
Data collection top
Oxford Xcalibur (Eos, Gemini)
diffractometer
3987 independent reflections
Radiation source: Enhance (Mo) X-ray Source3287 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.1500 pixels mm-1θmax = 32.3°, θmin = 3.2°
ω scansh = 1211
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1111
Tmin = 0.974, Tmax = 1.000l = 1515
7338 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.0627P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3987 reflectionsΔρmax = 0.63 e Å3
173 parametersΔρmin = 0.21 e Å3
2 restraintsAbsolute structure: Flack (1983), with 1510 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (8)
Crystal data top
C12H17N3O2SV = 695.26 (8) Å3
Mr = 267.35Z = 2
Monoclinic, PcMo Kα radiation
a = 8.5681 (6) ŵ = 0.23 mm1
b = 8.0393 (5) ÅT = 173 K
c = 10.3808 (8) Å0.46 × 0.32 × 0.24 mm
β = 103.510 (7)°
Data collection top
Oxford Xcalibur (Eos, Gemini)
diffractometer
3987 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
3287 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 1.000Rint = 0.030
7338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128Δρmax = 0.63 e Å3
S = 1.05Δρmin = 0.21 e Å3
3987 reflectionsAbsolute structure: Flack (1983), with 1510 Friedel pairs
173 parametersAbsolute structure parameter: 0.00 (8)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.55727 (6)0.29581 (7)0.59523 (6)0.04628 (16)
O10.7690 (2)0.0256 (2)1.0893 (2)0.0585 (5)
H10.71550.05951.08650.088*
O21.1860 (2)0.2488 (3)0.92524 (19)0.0549 (5)
N10.6144 (3)0.5442 (3)0.7677 (2)0.0457 (5)
H1A0.637 (4)0.575 (4)0.839 (3)0.050 (9)*
N20.7546 (2)0.3070 (2)0.83163 (19)0.0379 (4)
H20.782 (3)0.198 (4)0.823 (3)0.047 (8)*
N30.8239 (2)0.3855 (2)0.94956 (18)0.0344 (4)
C10.4947 (5)0.8165 (4)0.7392 (3)0.0657 (9)
H1B0.44040.79480.80860.098*
H1C0.43230.89250.67640.098*
H1D0.59800.86440.77650.098*
C20.5155 (4)0.6584 (4)0.6716 (3)0.0568 (7)
H2A0.41160.60860.63480.068*
H2B0.56740.68000.59960.068*
C30.6451 (2)0.3906 (2)0.7390 (2)0.0346 (4)
C40.9297 (2)0.3025 (2)1.0323 (2)0.0333 (4)
C50.9822 (2)0.1311 (3)1.0085 (2)0.0345 (4)
C61.1173 (3)0.1064 (3)0.9568 (2)0.0415 (5)
C71.1719 (3)0.0556 (4)0.9435 (3)0.0523 (6)
H71.26230.07310.91020.063*
C81.0913 (4)0.1879 (3)0.9799 (3)0.0532 (7)
H81.13010.29480.97310.064*
C90.9556 (3)0.1677 (3)1.0258 (3)0.0494 (6)
H90.90020.25951.04640.059*
C100.9014 (3)0.0067 (3)1.0412 (2)0.0411 (5)
C111.0021 (3)0.3811 (3)1.1618 (3)0.0510 (6)
H11A0.95850.49081.16440.077*
H11B1.11630.38831.17300.077*
H11C0.97820.31511.23190.077*
C121.3067 (4)0.2315 (5)0.8506 (3)0.0717 (9)
H12A1.39760.17330.90290.107*
H12B1.33970.33980.82810.107*
H12C1.26360.17000.77100.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0464 (3)0.0416 (3)0.0444 (3)0.0038 (3)0.0023 (2)0.0014 (3)
O10.0607 (11)0.0363 (9)0.0872 (14)0.0008 (8)0.0352 (11)0.0062 (10)
O20.0481 (10)0.0661 (12)0.0562 (12)0.0008 (9)0.0238 (9)0.0002 (9)
N10.0463 (10)0.0360 (10)0.0482 (12)0.0125 (8)0.0027 (9)0.0005 (9)
N20.0434 (9)0.0266 (8)0.0390 (10)0.0100 (7)0.0001 (8)0.0012 (7)
N30.0367 (8)0.0284 (8)0.0371 (9)0.0056 (7)0.0066 (7)0.0024 (7)
C10.100 (3)0.0467 (15)0.0512 (15)0.0374 (16)0.0185 (16)0.0129 (12)
C20.0634 (16)0.0465 (14)0.0556 (16)0.0212 (12)0.0042 (13)0.0089 (12)
C30.0312 (9)0.0284 (9)0.0433 (11)0.0026 (8)0.0066 (8)0.0047 (8)
C40.0366 (10)0.0291 (9)0.0344 (10)0.0049 (7)0.0089 (8)0.0048 (8)
C50.0378 (10)0.0314 (10)0.0319 (9)0.0105 (8)0.0031 (8)0.0030 (8)
C60.0382 (10)0.0493 (13)0.0344 (10)0.0081 (9)0.0034 (9)0.0021 (9)
C70.0464 (12)0.0651 (17)0.0438 (12)0.0242 (12)0.0074 (10)0.0085 (12)
C80.0653 (16)0.0414 (13)0.0442 (13)0.0226 (12)0.0046 (12)0.0054 (10)
C90.0603 (15)0.0317 (11)0.0504 (14)0.0123 (10)0.0012 (12)0.0045 (10)
C100.0426 (11)0.0355 (10)0.0432 (12)0.0084 (9)0.0062 (9)0.0030 (9)
C110.0660 (15)0.0382 (12)0.0429 (13)0.0100 (11)0.0007 (11)0.0026 (10)
C120.0528 (16)0.114 (3)0.0560 (17)0.0008 (17)0.0279 (14)0.0007 (18)
Geometric parameters (Å, º) top
S1—C31.688 (2)C4—C111.484 (3)
O1—C101.367 (3)C4—C51.487 (3)
O1—H10.8200C5—C101.389 (3)
O2—C61.362 (3)C5—C61.399 (3)
O2—C121.436 (3)C6—C71.402 (4)
N1—C31.311 (3)C7—C81.368 (4)
N1—C21.471 (3)C7—H70.9300
N1—H1A0.76 (3)C8—C91.365 (4)
N2—C31.355 (3)C8—H80.9300
N2—N31.382 (2)C9—C101.396 (3)
N2—H20.92 (3)C9—H90.9300
N3—C41.281 (3)C11—H11A0.9600
C1—C21.482 (4)C11—H11B0.9600
C1—H1B0.9600C11—H11C0.9600
C1—H1C0.9600C12—H12A0.9600
C1—H1D0.9600C12—H12B0.9600
C2—H2A0.9700C12—H12C0.9600
C2—H2B0.9700
C10—O1—H1109.5C6—C5—C4120.3 (2)
C6—O2—C12117.1 (3)O2—C6—C5114.6 (2)
C3—N1—C2123.2 (2)O2—C6—C7125.7 (2)
C3—N1—H1A121 (2)C5—C6—C7119.7 (2)
C2—N1—H1A116 (2)C8—C7—C6119.6 (2)
C3—N2—N3119.04 (16)C8—C7—H7120.2
C3—N2—H2124.0 (18)C6—C7—H7120.2
N3—N2—H2116.8 (18)C9—C8—C7122.0 (2)
C4—N3—N2116.48 (17)C9—C8—H8119.0
C2—C1—H1B109.5C7—C8—H8119.0
C2—C1—H1C109.5C8—C9—C10118.9 (3)
H1B—C1—H1C109.5C8—C9—H9120.5
C2—C1—H1D109.5C10—C9—H9120.5
H1B—C1—H1D109.5O1—C10—C5116.17 (19)
H1C—C1—H1D109.5O1—C10—C9123.0 (2)
N1—C2—C1109.1 (2)C5—C10—C9120.8 (2)
N1—C2—H2A109.9C4—C11—H11A109.5
C1—C2—H2A109.9C4—C11—H11B109.5
N1—C2—H2B109.9H11A—C11—H11B109.5
C1—C2—H2B109.9C4—C11—H11C109.5
H2A—C2—H2B108.3H11A—C11—H11C109.5
N1—C3—N2116.6 (2)H11B—C11—H11C109.5
N1—C3—S1123.69 (17)O2—C12—H12A109.5
N2—C3—S1119.71 (15)O2—C12—H12B109.5
N3—C4—C11117.74 (18)H12A—C12—H12B109.5
N3—C4—C5124.46 (19)O2—C12—H12C109.5
C11—C4—C5117.79 (18)H12A—C12—H12C109.5
C10—C5—C6119.0 (2)H12B—C12—H12C109.5
C10—C5—C4120.74 (18)
C3—N2—N3—C4178.22 (19)C10—C5—C6—O2178.6 (2)
C3—N1—C2—C1175.6 (3)C4—C5—C6—O23.4 (3)
C2—N1—C3—N2171.6 (2)C10—C5—C6—C72.3 (3)
C2—N1—C3—S18.0 (3)C4—C5—C6—C7175.6 (2)
N3—N2—C3—N11.3 (3)O2—C6—C7—C8179.7 (2)
N3—N2—C3—S1179.12 (15)C5—C6—C7—C80.7 (4)
N2—N3—C4—C11177.9 (2)C6—C7—C8—C91.8 (4)
N2—N3—C4—C50.6 (3)C7—C8—C9—C102.7 (4)
N3—C4—C5—C1087.9 (3)C6—C5—C10—O1179.0 (2)
C11—C4—C5—C1090.5 (3)C4—C5—C10—O13.0 (3)
N3—C4—C5—C694.1 (3)C6—C5—C10—C91.5 (3)
C11—C4—C5—C687.4 (3)C4—C5—C10—C9176.5 (2)
C12—O2—C6—C5169.3 (2)C8—C9—C10—O1178.5 (2)
C12—O2—C6—C711.7 (4)C8—C9—C10—C51.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S1i0.822.353.1655 (19)175
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H17N3O2S
Mr267.35
Crystal system, space groupMonoclinic, Pc
Temperature (K)173
a, b, c (Å)8.5681 (6), 8.0393 (5), 10.3808 (8)
β (°) 103.510 (7)
V3)695.26 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.46 × 0.32 × 0.24
Data collection
DiffractometerOxford Xcalibur (Eos, Gemini)
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.974, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7338, 3987, 3287
Rint0.030
(sin θ/λ)max1)0.752
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.128, 1.05
No. of reflections3987
No. of parameters173
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.21
Absolute structureFlack (1983), with 1510 Friedel pairs
Absolute structure parameter0.00 (8)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S1i0.822.353.1655 (19)175.2
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPelagatti, P., Venturini, A., Carcelli, M., Costa, M., Bacchi, A., Pelizzi, G. & Pelizza, C. (1998). J. Chem. Soc. Dalton Trans. pp. 2715–2721.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, G., Chellan, P., Mao, J., Chibale, K. & Smith, G. S. (2010). Adv. Synth. Catal. 352, 1641–1647.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds