metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1H-benzimidazole-2-carboxyl­ato-κ2N3,O)bis­­(ethanol-κO)manganese(II)

aZhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China
*Correspondence e-mail: cwzmmc@yahoo.cn

(Received 12 September 2012; accepted 16 September 2012; online 22 September 2012)

In the title compound, [Mn(C8H5N2O2)2(C2H5OH)2], the MnII atom is six-coordinated by two N and two O atoms from two 1H-benzimidazole-2-carboxyl­ate (L) ligands and by two O atoms from two ethanol mol­ecules in a distorted octa­hedral geometry. The mean planes of the two L ligands are inclined to each other at 7.6 (1)°. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the ab plane.

Related literature

For related structures, see: Carballo et al. (1996[Carballo, R., Castineiras, A., Hiller, W. & Strähle, J. (1996). J. Coord. Chem. 40, 253-271.]); Di et al. (2010[Di, L. L., Wang, Y., Lin, G. W. & Lu, T. (2010). Acta Cryst. E66, m610-m611.]); Fan et al. (2011[Fan, J., Cai, S.-L., Zheng, S.-R. & Zhang, W.-G. (2011). Acta Cryst. C67, m346-m350.]); Małecki & Maroń (2012[Małecki, J. G. & Maroń, A. (2012). Polyhedron, 40, 125-133.]); Rettig et al. (1999[Rettig, S. J., Storr, A. & Trotter, T. (1999). Can. J. Chem. 77, 434-438.]); Saczewski et al. (2006[Saczewski, F., Dziemidowicz-Borys, E., Bednarski, P. J., Gruenert, R., Gdaniec, M. & Tabin, P. (2006). J. Inorg. Biochem. 100, 1389-1398.]); Zheng et al. (2011[Zheng, S. R., Cai, S. L., Fan, J., Xiao, T. T. & Zhang, W. G. (2011). Inorg. Chem. Commun. 14, 818-821.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C8H5N2O2)2(C2H6O)2]

  • Mr = 469.36

  • Triclinic, [P \overline 1]

  • a = 5.4176 (12) Å

  • b = 10.358 (2) Å

  • c = 19.853 (5) Å

  • α = 75.671 (3)°

  • β = 88.294 (3)°

  • γ = 78.230 (3)°

  • V = 1056.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 298 K

  • 0.32 × 0.25 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.814, Tmax = 0.867

  • 5431 measured reflections

  • 3751 independent reflections

  • 2664 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.131

  • S = 1.06

  • 3751 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.86 1.96 2.766 (3) 155
N4—H4⋯O2ii 0.86 1.97 2.786 (3) 158
O5—H5A⋯O3iii 0.85 1.89 2.710 (3) 161
O6—H6A⋯O1iv 0.85 1.88 2.692 (3) 158
Symmetry codes: (i) x+1, y-1, z; (ii) x-1, y+1, z; (iii) x+1, y, z; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N-Heterocyclic carboxylic acids, a kind of multidentate ligands for the construction of new metal coordination polymers, have attracted much attention not only because their versatile coordination behaviors but also owing to their forming high-dimensional polymers through hydrogen-bonding interactions in the process of self-assembly. 1H-benzimidazole-2-carboxylic acid (HL), which includes two nitrogen atoms of an aromatic group and one carboxylate group, is an ideal candidate for preparing new coordination polymers. Up to now, several coordination polymers with low-dimensional structural features based on the HL ligand have been investigated (Carballo et al., 1996; Di et al., 2010; Fan et al., 2011; Małecki & Maroń, 2012; Rettig et al., 1999; Saczewski et al., 2006; Zheng et al., 2011). For example, Fan et al. (2011) have described the structure of a mononuclear complex [Cd(L)2(C2H5OH)2]. In this paper, we report a new MnII coordination polymer [Mn(L)2(C2H5OH)2], which is isomorphous with the CdII analog.

The asymmetric unit of the title compound contains one MnII ion, two L anions and two coordinated ethanol molecules. As illustrated in Fig. 1, the MnII ion is six-coordinated with two N and two O atoms from two bidentate chelating L ligands in the equatorial plane, and two ethanol molecules in axial positions, forming a slightly distorted octahedral geometry. The Mn—N bond lengths are in the range of 2.227 (2)–2.230 (2) Å, and the Mn—O distances vary from 2.197 (2) to 2.235 (2) Å, all of which are similar to those in CdII analog. In the crystal structure, pairs of intermolecular N—H···O hydrogen bonds (Table1) link the molecules into one-dimensional chains, which are further connected by O—H···O hydrogen bonds involving the carboxylate O atoms of the L ligands and the coordinated ethanol molecules, resulting in the formation of a two-dimensional supramolecular network (Fig. 2).

Related literature top

For related structures, see: Carballo et al. (1996); Di et al. (2010); Fan et al. (2011); Małecki & Maroń (2012); Rettig et al. (1999); Saczewski et al. (2006); Zheng et al. (2011).

Experimental top

A mixture of HL (0.30 mmol), MnCl2 (0.30 mmol) and 8 ml C2H5OH was sealed into a 15 ml Teflon-lined stainless steel autoclave, heated at 393 K for 48 h under autogenous pressure, and then slowly cooled to room temperature at a rate of 5 k /h. Pink block crystals of the title compound were obtained, washed with distilled water, and dried in air (yield: 38%).

Refinement top

C- and N-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, N—H = 0.86 Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C), Uiso(H) = 1.2Ueq(N). Hydroxy H atoms were located in a difference Fourier map and refined as riding atoms, with O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O).

Structure description top

N-Heterocyclic carboxylic acids, a kind of multidentate ligands for the construction of new metal coordination polymers, have attracted much attention not only because their versatile coordination behaviors but also owing to their forming high-dimensional polymers through hydrogen-bonding interactions in the process of self-assembly. 1H-benzimidazole-2-carboxylic acid (HL), which includes two nitrogen atoms of an aromatic group and one carboxylate group, is an ideal candidate for preparing new coordination polymers. Up to now, several coordination polymers with low-dimensional structural features based on the HL ligand have been investigated (Carballo et al., 1996; Di et al., 2010; Fan et al., 2011; Małecki & Maroń, 2012; Rettig et al., 1999; Saczewski et al., 2006; Zheng et al., 2011). For example, Fan et al. (2011) have described the structure of a mononuclear complex [Cd(L)2(C2H5OH)2]. In this paper, we report a new MnII coordination polymer [Mn(L)2(C2H5OH)2], which is isomorphous with the CdII analog.

The asymmetric unit of the title compound contains one MnII ion, two L anions and two coordinated ethanol molecules. As illustrated in Fig. 1, the MnII ion is six-coordinated with two N and two O atoms from two bidentate chelating L ligands in the equatorial plane, and two ethanol molecules in axial positions, forming a slightly distorted octahedral geometry. The Mn—N bond lengths are in the range of 2.227 (2)–2.230 (2) Å, and the Mn—O distances vary from 2.197 (2) to 2.235 (2) Å, all of which are similar to those in CdII analog. In the crystal structure, pairs of intermolecular N—H···O hydrogen bonds (Table1) link the molecules into one-dimensional chains, which are further connected by O—H···O hydrogen bonds involving the carboxylate O atoms of the L ligands and the coordinated ethanol molecules, resulting in the formation of a two-dimensional supramolecular network (Fig. 2).

For related structures, see: Carballo et al. (1996); Di et al. (2010); Fan et al. (2011); Małecki & Maroń (2012); Rettig et al. (1999); Saczewski et al. (2006); Zheng et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the two-dimensional supramolecular network. Hydrogen bonds are shown as dashed lines.
Bis(1H-benzimidazole-2-carboxylato- κ2N3,O)bis(ethanol-κO)manganese(II) top
Crystal data top
[Mn(C8H5N2O2)2(C2H6O)2]Z = 2
Mr = 469.36F(000) = 486
Triclinic, P1Dx = 1.476 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.4176 (12) ÅCell parameters from 1379 reflections
b = 10.358 (2) Åθ = 2.6–26.0°
c = 19.853 (5) ŵ = 0.67 mm1
α = 75.671 (3)°T = 298 K
β = 88.294 (3)°Block, pink
γ = 78.230 (3)°0.32 × 0.25 × 0.22 mm
V = 1056.4 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3751 independent reflections
Radiation source: fine-focus sealed tube2664 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 25.3°, θmin = 2.1°
Absorption correction: multi-scan
(APEX2; Bruker, 2004)
h = 66
Tmin = 0.814, Tmax = 0.867k = 1212
5431 measured reflectionsl = 2319
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.1644P]
where P = (Fo2 + 2Fc2)/3
3751 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Mn(C8H5N2O2)2(C2H6O)2]γ = 78.230 (3)°
Mr = 469.36V = 1056.4 (4) Å3
Triclinic, P1Z = 2
a = 5.4176 (12) ÅMo Kα radiation
b = 10.358 (2) ŵ = 0.67 mm1
c = 19.853 (5) ÅT = 298 K
α = 75.671 (3)°0.32 × 0.25 × 0.22 mm
β = 88.294 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3751 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2004)
2664 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.867Rint = 0.022
5431 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.06Δρmax = 0.40 e Å3
3751 reflectionsΔρmin = 0.37 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.46488 (9)0.05915 (4)0.74701 (2)0.03348 (18)
O10.8162 (4)0.08678 (19)0.78515 (11)0.0369 (5)
O60.2473 (4)0.0469 (2)0.83306 (11)0.0422 (6)
H6A0.09320.04330.82330.051*
O50.6780 (4)0.1657 (2)0.66112 (11)0.0461 (6)
H5A0.82990.16250.67300.055*
O30.1113 (4)0.2050 (2)0.71013 (11)0.0368 (5)
O21.0056 (4)0.3035 (2)0.79681 (12)0.0481 (6)
O40.0995 (4)0.4137 (2)0.70807 (12)0.0476 (6)
N40.2721 (5)0.4332 (2)0.80378 (14)0.0402 (7)
H40.16330.50870.79450.048*
N10.4569 (5)0.1113 (2)0.69784 (13)0.0333 (6)
N30.4673 (5)0.2256 (2)0.79975 (13)0.0334 (6)
N20.6283 (5)0.3281 (2)0.70541 (13)0.0376 (7)
H20.73020.40560.71810.045*
C30.3176 (6)0.1605 (3)0.65648 (15)0.0329 (7)
C90.0768 (6)0.3172 (3)0.72763 (16)0.0331 (7)
C80.4246 (6)0.2976 (3)0.66079 (16)0.0355 (8)
C160.4743 (6)0.4005 (3)0.84869 (17)0.0380 (8)
C20.6400 (6)0.2151 (3)0.72576 (16)0.0322 (7)
C120.8195 (7)0.2074 (3)0.88379 (17)0.0438 (8)
H120.90510.12100.88180.053*
C70.3212 (7)0.3756 (3)0.62573 (18)0.0473 (9)
H70.39240.46680.62950.057*
C150.5634 (8)0.4703 (4)0.89100 (19)0.0552 (10)
H150.47930.55670.89340.066*
C100.2738 (6)0.3254 (3)0.77646 (16)0.0337 (7)
C110.5984 (6)0.2698 (3)0.84512 (16)0.0327 (7)
C40.1007 (7)0.0984 (3)0.61532 (18)0.0456 (9)
H4A0.02620.00770.61190.055*
C50.0011 (7)0.1746 (4)0.58016 (18)0.0505 (9)
H50.14210.13440.55210.061*
C10.8394 (6)0.2038 (3)0.77318 (16)0.0342 (7)
C60.1096 (8)0.3117 (4)0.58541 (19)0.0544 (10)
H60.03610.36050.56090.065*
C130.9074 (7)0.2778 (4)0.92515 (19)0.0548 (10)
H131.05570.23840.95110.066*
C140.7791 (8)0.4069 (4)0.9290 (2)0.0627 (12)
H140.84220.45090.95810.075*
C170.6190 (9)0.2498 (4)0.5940 (2)0.0713 (12)
H17A0.55090.34180.59770.086*
H17B0.77330.25120.56800.086*
C190.3144 (9)0.1405 (5)0.8966 (2)0.0818 (15)
H19A0.16280.14600.92350.098*
H19B0.37650.22910.88750.098*
C180.4453 (11)0.2095 (7)0.5564 (2)0.124 (2)
H18A0.29760.19940.58350.187*
H18B0.52050.12420.54630.187*
H18C0.39900.27730.51370.187*
C200.4932 (11)0.1153 (7)0.9374 (2)0.123 (2)
H20A0.54370.19300.97570.185*
H20B0.42270.03730.95470.185*
H20C0.63740.09820.90990.185*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0294 (3)0.0244 (3)0.0481 (3)0.00030 (19)0.0057 (2)0.0157 (2)
O10.0298 (13)0.0262 (11)0.0574 (14)0.0004 (9)0.0091 (10)0.0188 (10)
O60.0336 (13)0.0479 (13)0.0476 (14)0.0115 (11)0.0036 (10)0.0131 (11)
O50.0371 (14)0.0578 (15)0.0456 (14)0.0137 (11)0.0057 (11)0.0127 (12)
O30.0317 (13)0.0281 (11)0.0536 (14)0.0012 (9)0.0084 (10)0.0181 (10)
O20.0421 (15)0.0307 (12)0.0695 (16)0.0061 (11)0.0190 (12)0.0174 (11)
O40.0412 (15)0.0268 (12)0.0727 (17)0.0047 (11)0.0160 (12)0.0157 (11)
N40.0433 (18)0.0220 (13)0.0554 (17)0.0011 (12)0.0068 (14)0.0150 (12)
N10.0303 (16)0.0270 (13)0.0434 (15)0.0008 (11)0.0032 (12)0.0150 (12)
N30.0307 (15)0.0263 (13)0.0433 (15)0.0005 (11)0.0031 (12)0.0126 (11)
N20.0399 (17)0.0221 (13)0.0530 (17)0.0018 (12)0.0056 (13)0.0162 (12)
C30.0326 (19)0.0312 (16)0.0380 (18)0.0054 (14)0.0002 (14)0.0149 (14)
C90.0323 (19)0.0228 (15)0.0436 (18)0.0016 (14)0.0002 (14)0.0104 (14)
C80.0336 (19)0.0331 (17)0.0435 (19)0.0053 (14)0.0004 (15)0.0174 (14)
C160.040 (2)0.0300 (17)0.0450 (19)0.0051 (15)0.0039 (16)0.0119 (15)
C20.0335 (19)0.0209 (15)0.0425 (18)0.0014 (13)0.0013 (14)0.0110 (13)
C120.038 (2)0.0433 (19)0.049 (2)0.0049 (16)0.0007 (16)0.0127 (16)
C70.055 (3)0.0373 (19)0.056 (2)0.0115 (17)0.0024 (19)0.0234 (17)
C150.064 (3)0.042 (2)0.069 (3)0.0064 (19)0.010 (2)0.0322 (19)
C100.0329 (19)0.0226 (15)0.0449 (19)0.0029 (13)0.0014 (14)0.0096 (13)
C110.0350 (19)0.0278 (16)0.0371 (17)0.0052 (14)0.0031 (14)0.0122 (13)
C40.039 (2)0.0414 (19)0.057 (2)0.0008 (16)0.0056 (17)0.0199 (17)
C50.042 (2)0.059 (2)0.053 (2)0.0095 (18)0.0128 (18)0.0189 (19)
C10.0315 (19)0.0249 (16)0.0449 (19)0.0005 (14)0.0025 (15)0.0110 (14)
C60.060 (3)0.059 (2)0.056 (2)0.023 (2)0.006 (2)0.026 (2)
C130.046 (2)0.067 (3)0.056 (2)0.014 (2)0.0121 (18)0.020 (2)
C140.071 (3)0.062 (3)0.067 (3)0.018 (2)0.017 (2)0.031 (2)
C170.074 (3)0.069 (3)0.062 (3)0.014 (2)0.018 (2)0.002 (2)
C190.079 (3)0.070 (3)0.081 (3)0.028 (3)0.036 (3)0.022 (2)
C180.105 (5)0.218 (7)0.059 (3)0.087 (5)0.022 (3)0.004 (4)
C200.111 (5)0.208 (7)0.058 (3)0.090 (5)0.027 (3)0.005 (4)
Geometric parameters (Å, º) top
Mn1—O12.197 (2)C16—C111.402 (4)
Mn1—O32.201 (2)C2—C11.494 (4)
Mn1—O52.220 (2)C12—C131.376 (5)
Mn1—N12.227 (2)C12—C111.391 (4)
Mn1—N32.230 (2)C12—H120.9300
Mn1—O62.235 (2)C7—C61.369 (5)
O1—C11.273 (3)C7—H70.9300
O6—C191.393 (4)C15—C141.363 (5)
O6—H6A0.8535C15—H150.9300
O5—C171.405 (4)C4—C51.368 (5)
O5—H5A0.8546C4—H4A0.9300
O3—C91.271 (3)C5—C61.401 (5)
O2—C11.226 (3)C5—H50.9300
O4—C91.226 (3)C6—H60.9300
N4—C101.355 (4)C13—C141.395 (5)
N4—C161.366 (4)C13—H130.9300
N4—H40.8600C14—H140.9300
N1—C21.323 (4)C17—C181.404 (6)
N1—C31.380 (4)C17—H17A0.9700
N3—C101.316 (4)C17—H17B0.9700
N3—C111.378 (4)C19—C201.384 (6)
N2—C21.343 (4)C19—H19A0.9700
N2—C81.371 (4)C19—H19B0.9700
N2—H20.8600C18—H18A0.9600
C3—C41.397 (4)C18—H18B0.9600
C3—C81.403 (4)C18—H18C0.9600
C9—C101.492 (4)C20—H20A0.9600
C8—C71.392 (5)C20—H20B0.9600
C16—C151.388 (4)C20—H20C0.9600
O1—Mn1—O3179.29 (8)C6—C7—H7121.6
O1—Mn1—O589.01 (8)C8—C7—H7121.6
O3—Mn1—O591.60 (8)C14—C15—C16117.3 (3)
O1—Mn1—N176.37 (8)C14—C15—H15121.3
O3—Mn1—N1103.94 (8)C16—C15—H15121.3
O5—Mn1—N193.63 (9)N3—C10—N4112.0 (3)
O1—Mn1—N3103.36 (8)N3—C10—C9123.3 (3)
O3—Mn1—N376.30 (8)N4—C10—C9124.7 (3)
O5—Mn1—N388.43 (9)N3—C11—C12131.0 (3)
N1—Mn1—N3177.92 (9)N3—C11—C16109.1 (3)
O1—Mn1—O691.49 (8)C12—C11—C16119.9 (3)
O3—Mn1—O687.90 (8)C5—C4—C3118.1 (3)
O5—Mn1—O6179.50 (8)C5—C4—H4A120.9
N1—Mn1—O686.45 (9)C3—C4—H4A120.9
N3—Mn1—O691.50 (9)C4—C5—C6121.6 (3)
C1—O1—Mn1116.15 (19)C4—C5—H5119.2
C19—O6—Mn1134.0 (3)C6—C5—H5119.2
C19—O6—H6A109.2O2—C1—O1126.1 (3)
Mn1—O6—H6A115.6O2—C1—C2119.4 (3)
C17—O5—Mn1135.8 (2)O1—C1—C2114.5 (2)
C17—O5—H5A111.0C7—C6—C5121.6 (3)
Mn1—O5—H5A112.8C7—C6—H6119.2
C9—O3—Mn1116.57 (19)C5—C6—H6119.2
C10—N4—C16107.7 (3)C12—C13—C14121.5 (4)
C10—N4—H4126.1C12—C13—H13119.3
C16—N4—H4126.1C14—C13—H13119.3
C2—N1—C3105.3 (2)C15—C14—C13121.6 (4)
C2—N1—Mn1108.91 (19)C15—C14—H14119.2
C3—N1—Mn1144.9 (2)C13—C14—H14119.2
C10—N3—C11105.9 (2)C18—C17—O5114.3 (4)
C10—N3—Mn1109.0 (2)C18—C17—H17A108.7
C11—N3—Mn1145.0 (2)O5—C17—H17A108.7
C2—N2—C8107.6 (2)C18—C17—H17B108.7
C2—N2—H2126.2O5—C17—H17B108.7
C8—N2—H2126.2H17A—C17—H17B107.6
N1—C3—C4131.3 (3)C20—C19—O6117.2 (4)
N1—C3—C8109.2 (3)C20—C19—H19A108.0
C4—C3—C8119.5 (3)O6—C19—H19A108.0
O4—C9—O3125.6 (3)C20—C19—H19B108.0
O4—C9—C10120.1 (3)O6—C19—H19B108.0
O3—C9—C10114.3 (3)H19A—C19—H19B107.2
N2—C8—C7132.4 (3)C17—C18—H18A109.5
N2—C8—C3105.3 (3)C17—C18—H18B109.5
C7—C8—C3122.3 (3)H18A—C18—H18B109.5
N4—C16—C15132.9 (3)C17—C18—H18C109.5
N4—C16—C11105.3 (3)H18A—C18—H18C109.5
C15—C16—C11121.8 (3)H18B—C18—H18C109.5
N1—C2—N2112.6 (3)C19—C20—H20A109.5
N1—C2—C1122.6 (2)C19—C20—H20B109.5
N2—C2—C1124.8 (3)H20A—C20—H20B109.5
C13—C12—C11117.8 (3)C19—C20—H20C109.5
C13—C12—H12121.1H20A—C20—H20C109.5
C11—C12—H12121.1H20B—C20—H20C109.5
C6—C7—C8116.9 (3)
O5—Mn1—O1—C1104.5 (2)C3—N1—C2—N20.1 (4)
N1—Mn1—O1—C110.5 (2)Mn1—N1—C2—N2172.0 (2)
N3—Mn1—O1—C1167.4 (2)C3—N1—C2—C1178.4 (3)
O6—Mn1—O1—C175.5 (2)Mn1—N1—C2—C19.5 (4)
O1—Mn1—O6—C1916.9 (3)C8—N2—C2—N10.2 (4)
O3—Mn1—O6—C19162.8 (3)C8—N2—C2—C1178.3 (3)
N1—Mn1—O6—C1993.1 (3)N2—C8—C7—C6178.8 (4)
N3—Mn1—O6—C1986.5 (3)C3—C8—C7—C60.9 (5)
O1—Mn1—O5—C17155.4 (3)N4—C16—C15—C14178.6 (4)
O3—Mn1—O5—C1724.9 (3)C11—C16—C15—C140.5 (6)
N1—Mn1—O5—C1779.1 (3)C11—N3—C10—N40.5 (4)
N3—Mn1—O5—C17101.2 (3)Mn1—N3—C10—N4176.7 (2)
O5—Mn1—O3—C981.6 (2)C11—N3—C10—C9177.6 (3)
N1—Mn1—O3—C9175.8 (2)Mn1—N3—C10—C95.3 (4)
N3—Mn1—O3—C96.4 (2)C16—N4—C10—N31.2 (4)
O6—Mn1—O3—C998.4 (2)C16—N4—C10—C9176.8 (3)
O1—Mn1—N1—C29.8 (2)O4—C9—C10—N3179.7 (3)
O3—Mn1—N1—C2169.5 (2)O3—C9—C10—N30.0 (5)
O5—Mn1—N1—C297.9 (2)O4—C9—C10—N41.9 (5)
O6—Mn1—N1—C282.6 (2)O3—C9—C10—N4177.9 (3)
O1—Mn1—N1—C3176.6 (4)C10—N3—C11—C12178.8 (3)
O3—Mn1—N1—C32.8 (4)Mn1—N3—C11—C123.6 (6)
O5—Mn1—N1—C395.3 (4)C10—N3—C11—C160.5 (4)
O6—Mn1—N1—C384.2 (4)Mn1—N3—C11—C16175.7 (3)
O1—Mn1—N3—C10175.0 (2)C13—C12—C11—N3179.8 (3)
O3—Mn1—N3—C105.7 (2)C13—C12—C11—C160.5 (5)
O5—Mn1—N3—C1086.4 (2)N4—C16—C11—N31.2 (4)
O6—Mn1—N3—C1093.2 (2)C15—C16—C11—N3179.5 (3)
O1—Mn1—N3—C110.2 (4)N4—C16—C11—C12178.2 (3)
O3—Mn1—N3—C11179.1 (4)C15—C16—C11—C121.1 (5)
O5—Mn1—N3—C1188.8 (4)N1—C3—C4—C5179.1 (3)
O6—Mn1—N3—C1191.7 (4)C8—C3—C4—C50.4 (5)
C2—N1—C3—C4178.9 (3)C3—C4—C5—C60.8 (6)
Mn1—N1—C3—C411.9 (6)Mn1—O1—C1—O2171.0 (3)
C2—N1—C3—C80.0 (3)Mn1—O1—C1—C28.8 (3)
Mn1—N1—C3—C8167.0 (3)N1—C2—C1—O2179.3 (3)
Mn1—O3—C9—O4174.7 (3)N2—C2—C1—O20.9 (5)
Mn1—O3—C9—C105.6 (3)N1—C2—C1—O10.9 (4)
C2—N2—C8—C7178.4 (4)N2—C2—C1—O1179.3 (3)
C2—N2—C8—C30.2 (4)C8—C7—C6—C50.5 (6)
N1—C3—C8—N20.1 (4)C4—C5—C6—C70.3 (6)
C4—C3—C8—N2178.9 (3)C11—C12—C13—C140.5 (6)
N1—C3—C8—C7178.5 (3)C16—C15—C14—C130.6 (6)
C4—C3—C8—C70.5 (5)C12—C13—C14—C151.2 (6)
C10—N4—C16—C15179.4 (4)Mn1—O5—C17—C1840.2 (6)
C10—N4—C16—C111.5 (4)Mn1—O6—C19—C2045.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.861.962.766 (3)155
N4—H4···O2ii0.861.972.786 (3)158
O5—H5A···O3iii0.851.892.710 (3)161
O6—H6A···O1iv0.851.882.692 (3)158
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z; (iii) x+1, y, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C8H5N2O2)2(C2H6O)2]
Mr469.36
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.4176 (12), 10.358 (2), 19.853 (5)
α, β, γ (°)75.671 (3), 88.294 (3), 78.230 (3)
V3)1056.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.32 × 0.25 × 0.22
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(APEX2; Bruker, 2004)
Tmin, Tmax0.814, 0.867
No. of measured, independent and
observed [I > 2σ(I)] reflections
5431, 3751, 2664
Rint0.022
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.131, 1.06
No. of reflections3751
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.37

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.861.962.766 (3)155
N4—H4···O2ii0.861.972.786 (3)158
O5—H5A···O3iii0.851.892.710 (3)161
O6—H6A···O1iv0.851.882.692 (3)158
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z; (iii) x+1, y, z; (iv) x1, y, z.
 

Acknowledgements

The authors gratefully acknowledge the Science and Technology Research Project of Zhongshan City (grant No. 20114A256).

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCarballo, R., Castineiras, A., Hiller, W. & Strähle, J. (1996). J. Coord. Chem. 40, 253–271.  CrossRef CAS Web of Science Google Scholar
First citationDi, L. L., Wang, Y., Lin, G. W. & Lu, T. (2010). Acta Cryst. E66, m610–m611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFan, J., Cai, S.-L., Zheng, S.-R. & Zhang, W.-G. (2011). Acta Cryst. C67, m346–m350.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMałecki, J. G. & Maroń, A. (2012). Polyhedron, 40, 125–133.  Google Scholar
First citationRettig, S. J., Storr, A. & Trotter, T. (1999). Can. J. Chem. 77, 434–438.  CrossRef CAS Google Scholar
First citationSaczewski, F., Dziemidowicz-Borys, E., Bednarski, P. J., Gruenert, R., Gdaniec, M. & Tabin, P. (2006). J. Inorg. Biochem. 100, 1389–1398.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, S. R., Cai, S. L., Fan, J., Xiao, T. T. & Zhang, W. G. (2011). Inorg. Chem. Commun. 14, 818–821.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds