organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-(3,3-Di­phenyl­allyl­­idene)-3-nitro­aniline

aAdvanced Analysis Center, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea, bCenter for Neuro-Medicine, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea, and cDrug Discovery Platform Technology Team, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Republic of Korea
*Correspondence e-mail: j9601@kist.re.kr

(Received 17 September 2012; accepted 24 September 2012; online 29 September 2012)

In the title compound, C21H16N2O2, the 3-nitro­phenyl and two phenyl rings are twisted from the mean plane of the enimino fragment by 44.4 (1), 37.2 (1) and 74.1 (1)°, respectively. The crystal packing exhibits no classical inter­molecular contacts.

Related literature

For the structure of (E)-N-(3,3-diphenylallylidene)-4-nitroaniline, see: Kang et al. (2012[Kang, Y. K., Cho, Y. S., Lee, J. K., Yu, B.-Y. & Cha, J. H. (2012). Acta Cryst. E68, o3031.]). For the crystal structures of other closely related compounds, see: Khalaji et al. (2008a[Khalaji, A. D. & Harrison, W. T. A. (2008a). Anal. Sci. X-Ray Struct. Anal. Online, 24, x3-x4.],b[Khalaji, A. D., Welter, R., Amirnasr, M. & Barry, A. H. (2008b). Anal. Sci. X-Ray Struct. Anal. Online, 24, x139-x140.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16N2O2

  • Mr = 328.36

  • Monoclinic, P 21 /n

  • a = 5.8625 (7) Å

  • b = 22.825 (3) Å

  • c = 12.6370 (17) Å

  • β = 94.772 (4)°

  • V = 1685.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.967, Tmax = 0.983

  • 16270 measured reflections

  • 3866 independent reflections

  • 2663 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.136

  • S = 1.12

  • 3866 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

In the title molecule (Fig. 1), the dihedral angles between the mean planes of the central 3-nitrophenyl ring and phenyl rings C7–C12 and C1–C6 are 86.76 (8)° and 8.23 (3)°, respectively. The bond lengths and angles are unexceptional and correspond to those observed in the related compounds Khalaji et al. (2008a,b). The imine group displays a torsion angle C21–C16–N1–C15 of -45.19 (18)°. The nitro group is twisted at 1.1 (2)° from the attached benzene ring. The crystal packing exhibits no classical intermolecular contacts.

Related literature top

For the structure of (E)-N-(3,3-diphenylallylidene)-4-nitroaniline, see: Kang et al. (2012). For the crystal structures of other closely related compounds, see: Khalaji et al. (2008a,b).

Experimental top

To a solution of 3-nitroaniline (4.0 mmol) in ethanol (10 mL) was treated with equimolar quantities of substituted 2-phenylcinnamaldehydes. The mixture was refluxed for 5 h, and the progress of the reaction was monitored by TLC. Upon completion, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography to afford the title compound in 60% yield. Recrystallization from ethanol gave crystals suitable for X-ray analysis.

Refinement top

All hydrogen atoms were positioned geometrically (C—H = 0.93 Å), and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Structure description top

In the title molecule (Fig. 1), the dihedral angles between the mean planes of the central 3-nitrophenyl ring and phenyl rings C7–C12 and C1–C6 are 86.76 (8)° and 8.23 (3)°, respectively. The bond lengths and angles are unexceptional and correspond to those observed in the related compounds Khalaji et al. (2008a,b). The imine group displays a torsion angle C21–C16–N1–C15 of -45.19 (18)°. The nitro group is twisted at 1.1 (2)° from the attached benzene ring. The crystal packing exhibits no classical intermolecular contacts.

For the structure of (E)-N-(3,3-diphenylallylidene)-4-nitroaniline, see: Kang et al. (2012). For the crystal structures of other closely related compounds, see: Khalaji et al. (2008a,b).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoid.
(E)-N-(3,3-Diphenylallylidene)-3-nitroaniline top
Crystal data top
C21H16N2O2F(000) = 688
Mr = 328.36Dx = 1.294 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 8104 reflections
a = 5.8625 (7) Åθ = 3.1–27.5°
b = 22.825 (3) ŵ = 0.08 mm1
c = 12.6370 (17) ÅT = 296 K
β = 94.772 (4)°Block, colourless
V = 1685.1 (4) Å30.40 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3866 independent reflections
Radiation source: fine-focus sealed tube2663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 77
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
k = 2929
Tmin = 0.967, Tmax = 0.983l = 1616
16270 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.075P)2]
where P = (Fo2 + 2Fc2)/3
3866 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C21H16N2O2V = 1685.1 (4) Å3
Mr = 328.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.8625 (7) ŵ = 0.08 mm1
b = 22.825 (3) ÅT = 296 K
c = 12.6370 (17) Å0.40 × 0.20 × 0.20 mm
β = 94.772 (4)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3866 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
2663 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.983Rint = 0.030
16270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.12Δρmax = 0.18 e Å3
3866 reflectionsΔρmin = 0.25 e Å3
226 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.2806 (3)0.79532 (9)0.84554 (13)0.1205 (6)
O21.5869 (3)0.74640 (6)0.83527 (11)0.0942 (5)
N11.14274 (19)0.90554 (5)0.51096 (9)0.0464 (3)
N21.4414 (3)0.78014 (6)0.79813 (11)0.0690 (4)
C10.5605 (3)1.01496 (6)0.15119 (11)0.0525 (4)
H10.65621.00340.09990.063*
C20.3920 (3)1.05589 (7)0.12595 (13)0.0613 (4)
H20.37761.07240.05840.074*
C30.2448 (3)1.07259 (7)0.19989 (13)0.0573 (4)
H30.12921.09960.18200.069*
C40.2700 (2)1.04891 (6)0.30091 (12)0.0506 (3)
H40.17171.06020.35130.061*
C50.4406 (2)1.00859 (6)0.32705 (11)0.0452 (3)
H50.45670.99310.39530.054*
C60.5893 (2)0.99065 (5)0.25294 (10)0.0405 (3)
C71.0213 (2)0.90953 (7)0.14288 (12)0.0557 (4)
H71.13020.93760.16450.067*
C81.0584 (3)0.87204 (8)0.05913 (13)0.0639 (4)
H81.19130.87560.02430.077*
C90.9005 (3)0.82994 (7)0.02771 (12)0.0604 (4)
H90.92650.80500.02820.072*
C100.7044 (3)0.82455 (6)0.07869 (13)0.0594 (4)
H100.59790.79570.05800.071*
C110.6648 (2)0.86225 (6)0.16137 (11)0.0510 (3)
H110.53060.85870.19530.061*
C120.8224 (2)0.90501 (6)0.19400 (10)0.0410 (3)
C130.7721 (2)0.94683 (5)0.28026 (10)0.0398 (3)
C140.8838 (2)0.94559 (6)0.37731 (10)0.0442 (3)
H140.84890.97490.42450.053*
C151.0533 (2)0.90295 (6)0.41509 (10)0.0443 (3)
H151.09750.87370.36990.053*
C161.3099 (2)0.86430 (5)0.54794 (10)0.0410 (3)
C171.2973 (2)0.84251 (6)0.65043 (10)0.0463 (3)
H171.17830.85360.69040.056*
C181.4632 (2)0.80448 (6)0.69138 (11)0.0482 (3)
C191.6476 (2)0.78813 (6)0.63736 (13)0.0539 (4)
H191.75940.76300.66780.065*
C201.6606 (2)0.81029 (6)0.53643 (13)0.0554 (4)
H201.78350.80020.49810.067*
C211.4928 (2)0.84741 (6)0.49177 (11)0.0495 (3)
H211.50260.86130.42310.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1312 (13)0.1592 (16)0.0769 (10)0.0438 (12)0.0438 (10)0.0502 (10)
O20.1215 (11)0.0826 (9)0.0741 (9)0.0176 (8)0.0187 (8)0.0249 (7)
N10.0500 (6)0.0493 (6)0.0393 (6)0.0027 (5)0.0002 (5)0.0003 (5)
N20.0866 (10)0.0658 (9)0.0528 (8)0.0040 (7)0.0050 (8)0.0130 (7)
C10.0609 (8)0.0564 (8)0.0408 (7)0.0120 (7)0.0083 (6)0.0034 (6)
C20.0769 (10)0.0594 (9)0.0473 (8)0.0162 (8)0.0031 (7)0.0086 (7)
C30.0589 (8)0.0508 (8)0.0614 (9)0.0128 (7)0.0000 (7)0.0032 (7)
C40.0492 (7)0.0508 (8)0.0528 (8)0.0019 (6)0.0092 (6)0.0097 (6)
C50.0489 (7)0.0467 (7)0.0402 (7)0.0042 (6)0.0051 (6)0.0033 (6)
C60.0439 (6)0.0399 (6)0.0375 (6)0.0028 (5)0.0025 (5)0.0023 (5)
C70.0442 (7)0.0690 (9)0.0536 (8)0.0002 (7)0.0027 (6)0.0100 (7)
C80.0522 (8)0.0849 (11)0.0549 (9)0.0185 (8)0.0053 (7)0.0081 (8)
C90.0762 (10)0.0566 (9)0.0464 (8)0.0275 (8)0.0068 (8)0.0081 (7)
C100.0752 (10)0.0443 (8)0.0564 (9)0.0008 (7)0.0073 (8)0.0059 (6)
C110.0552 (8)0.0493 (8)0.0483 (8)0.0040 (6)0.0020 (6)0.0015 (6)
C120.0420 (6)0.0421 (7)0.0380 (7)0.0047 (5)0.0019 (5)0.0020 (5)
C130.0409 (6)0.0403 (6)0.0386 (6)0.0033 (5)0.0051 (5)0.0012 (5)
C140.0474 (7)0.0443 (7)0.0405 (7)0.0004 (6)0.0010 (6)0.0019 (5)
C150.0479 (7)0.0448 (7)0.0400 (7)0.0032 (6)0.0020 (6)0.0004 (5)
C160.0439 (6)0.0415 (6)0.0370 (6)0.0037 (5)0.0001 (5)0.0026 (5)
C170.0477 (7)0.0519 (7)0.0395 (7)0.0006 (6)0.0053 (6)0.0013 (6)
C180.0559 (7)0.0451 (7)0.0425 (7)0.0035 (6)0.0034 (6)0.0011 (6)
C190.0528 (8)0.0434 (7)0.0637 (9)0.0046 (6)0.0056 (7)0.0020 (6)
C200.0485 (7)0.0523 (8)0.0667 (10)0.0017 (7)0.0123 (7)0.0082 (7)
C210.0544 (7)0.0502 (7)0.0450 (7)0.0032 (6)0.0094 (6)0.0004 (6)
Geometric parameters (Å, º) top
O1—N21.209 (2)C9—C101.369 (2)
O2—N21.2144 (18)C9—H90.9300
N1—C151.2808 (16)C10—C111.388 (2)
N1—C161.4101 (16)C10—H100.9300
N2—C181.4742 (19)C11—C121.3831 (19)
C1—C21.378 (2)C11—H110.9300
C1—C61.3977 (18)C12—C131.4965 (18)
C1—H10.9300C13—C141.3419 (18)
C2—C31.378 (2)C14—C151.4435 (18)
C2—H20.9300C14—H140.9300
C3—C41.383 (2)C15—H150.9300
C3—H30.9300C16—C211.3890 (19)
C4—C51.3792 (19)C16—C171.3950 (18)
C4—H40.9300C17—C181.3722 (19)
C5—C61.3930 (18)C17—H170.9300
C5—H50.9300C18—C191.377 (2)
C6—C131.4852 (17)C19—C201.380 (2)
C7—C121.383 (2)C19—H190.9300
C7—C81.392 (2)C20—C211.383 (2)
C7—H70.9300C20—H200.9300
C8—C91.370 (2)C21—H210.9300
C8—H80.9300
C15—N1—C16120.07 (12)C12—C11—C10120.85 (14)
O1—N2—O2122.82 (15)C12—C11—H11119.6
O1—N2—C18118.43 (14)C10—C11—H11119.6
O2—N2—C18118.75 (16)C7—C12—C11118.79 (12)
C2—C1—C6120.77 (13)C7—C12—C13121.17 (12)
C2—C1—H1119.6C11—C12—C13119.99 (11)
C6—C1—H1119.6C14—C13—C6120.97 (12)
C3—C2—C1120.55 (14)C14—C13—C12122.78 (11)
C3—C2—H2119.7C6—C13—C12116.25 (10)
C1—C2—H2119.7C13—C14—C15125.94 (12)
C2—C3—C4119.55 (13)C13—C14—H14117.0
C2—C3—H3120.2C15—C14—H14117.0
C4—C3—H3120.2N1—C15—C14119.87 (13)
C5—C4—C3120.11 (13)N1—C15—H15120.1
C5—C4—H4119.9C14—C15—H15120.1
C3—C4—H4119.9C21—C16—C17118.56 (12)
C4—C5—C6121.14 (13)C21—C16—N1124.11 (12)
C4—C5—H5119.4C17—C16—N1117.18 (12)
C6—C5—H5119.4C18—C17—C16119.03 (13)
C5—C6—C1117.87 (12)C18—C17—H17120.5
C5—C6—C13121.42 (12)C16—C17—H17120.5
C1—C6—C13120.71 (12)C17—C18—C19123.04 (13)
C12—C7—C8120.03 (14)C17—C18—N2118.09 (14)
C12—C7—H7120.0C19—C18—N2118.87 (13)
C8—C7—H7120.0C18—C19—C20117.71 (13)
C9—C8—C7120.46 (15)C18—C19—H19121.1
C9—C8—H8119.8C20—C19—H19121.1
C7—C8—H8119.8C21—C20—C19120.63 (14)
C10—C9—C8120.01 (14)C21—C20—H20119.7
C10—C9—H9120.0C19—C20—H20119.7
C8—C9—H9120.0C20—C21—C16120.99 (13)
C9—C10—C11119.85 (14)C20—C21—H21119.5
C9—C10—H10120.1C16—C21—H21119.5
C11—C10—H10120.1
C6—C1—C2—C31.6 (2)C7—C12—C13—C6107.60 (13)
C1—C2—C3—C41.4 (2)C11—C12—C13—C669.96 (15)
C2—C3—C4—C50.4 (2)C6—C13—C14—C15175.77 (12)
C3—C4—C5—C60.4 (2)C12—C13—C14—C154.3 (2)
C4—C5—C6—C10.18 (18)C16—N1—C15—C14179.44 (11)
C4—C5—C6—C13179.42 (11)C13—C14—C15—N1177.81 (13)
C2—C1—C6—C50.8 (2)C15—N1—C16—C2145.24 (18)
C2—C1—C6—C13179.58 (13)C15—N1—C16—C17139.32 (13)
C12—C7—C8—C91.0 (2)C21—C16—C17—C181.14 (18)
C7—C8—C9—C100.1 (2)N1—C16—C17—C18176.83 (11)
C8—C9—C10—C110.7 (2)C16—C17—C18—C192.3 (2)
C9—C10—C11—C120.7 (2)C16—C17—C18—N2177.55 (12)
C8—C7—C12—C111.0 (2)O1—N2—C18—C171.1 (2)
C8—C7—C12—C13176.60 (13)O2—N2—C18—C17179.95 (14)
C10—C11—C12—C70.2 (2)O1—N2—C18—C19179.04 (17)
C10—C11—C12—C13177.46 (12)O2—N2—C18—C190.1 (2)
C5—C6—C13—C1436.10 (17)C17—C18—C19—C201.6 (2)
C1—C6—C13—C14144.31 (14)N2—C18—C19—C20178.26 (12)
C5—C6—C13—C12143.96 (12)C18—C19—C20—C210.3 (2)
C1—C6—C13—C1235.63 (16)C19—C20—C21—C161.4 (2)
C7—C12—C13—C1472.33 (17)C17—C16—C21—C200.66 (19)
C11—C12—C13—C14110.11 (14)N1—C16—C21—C20174.72 (11)

Experimental details

Crystal data
Chemical formulaC21H16N2O2
Mr328.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.8625 (7), 22.825 (3), 12.6370 (17)
β (°) 94.772 (4)
V3)1685.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Rigaku, 1995)
Tmin, Tmax0.967, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
16270, 3866, 2663
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.136, 1.12
No. of reflections3866
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.25

Computer programs: RAPID-AUTO (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

Fiancial support from the Korea Institute of Science and Technology (KIST) is gratefully acknowledged.

References

First citationKang, Y. K., Cho, Y. S., Lee, J. K., Yu, B.-Y. & Cha, J. H. (2012). Acta Cryst. E68, o3031.  CSD CrossRef IUCr Journals Google Scholar
First citationKhalaji, A. D. & Harrison, W. T. A. (2008a). Anal. Sci. X-Ray Struct. Anal. Online, 24, x3–x4.  CSD CrossRef CAS Google Scholar
First citationKhalaji, A. D., Welter, R., Amirnasr, M. & Barry, A. H. (2008b). Anal. Sci. X-Ray Struct. Anal. Online, 24, x139–x140.  CSD CrossRef CAS Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds