organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new polymorph of 2-(2H-benzotriazol-2-yl)acetic acid

aThe Mirzo Ulugbek National University of Uzbekistan, Faculty of Chemistry, University Str. 6, Tashkent 100779, Uzbekistan, bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, H. Abdullaev Str. 83, Tashkent 100125, Uzbekistan, and cS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
*Correspondence e-mail: guloy@mail.ru

(Received 4 July 2012; accepted 24 August 2012; online 1 September 2012)

A new polymorph of 2-(benzotriazol-2-yl)acetic acid, C8H7N3O2, crystallizes in the space group C2/c (Z = 8). The non-planar mol­ecule has a synplanar conformation of the carb­oxy group. The crystal structure features helices parallel to the b axis sustained by O—H⋯N hydrogen bonding which are similar to those in the known polymorph [Giordano & Zagari (1978[Giordano, F. & Zagari, A. (1978). J. Chem. Soc. Perkin Trans. 2, pp. 312-315.]). J. Chem. Soc. Perkin Trans. 2, pp. 312–315]. However, in the title structure, columns are formed by ππ stacking inter­actions between benzotriazole fragments of centrosymmetrically related adjacent mol­ecules [centroid-centroid distances = 3.593 (10) and 3.381 (10) Å] whereas ππ stacking inter­actions are not observed in the other polymorph. In the crystal of the title compound, C—H⋯O inter­actions are also observed.

Related literature

For general background to the biological activity of benzotriazole derivatives, see: Hirokawa et al. (1998[Hirokawa, Y., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. Med. Chem. Lett. 8, 1973-1978.]); Yu et al. (2003[Yu, K. L., Zhang, Y., Civiello, R. L., Kadow, K. F., Cianci, C., Krystal, M. & Meanwell, N. A. (2003). Bioorg. Med. Chem. Lett. 13, 2141-2144.]); Kopanska et al. (2004[Kopanska, K., Najda, A., Zebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2004). Bioorg. Med. Chem. 12, 2617-2624.]). For the previously reported polymorph, see: Giordano & Zagari (1978[Giordano, F. & Zagari, A. (1978). J. Chem. Soc. Perkin Trans. 2, pp. 312-315.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7N3O2

  • Mr = 177.17

  • Monoclinic, C 2/c

  • a = 11.719 (9) Å

  • b = 8.308 (3) Å

  • c = 17.246 (5) Å

  • β = 96.703 (5)°

  • V = 1667.6 (15) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.89 mm−1

  • T = 293 K

  • 0.40 × 0.32 × 0.28 mm

Data collection
  • Oxford Diffraction Xcalibur, Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.181, Tmax = 1.000

  • 4907 measured reflections

  • 1488 independent reflections

  • 1235 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.04

  • 1488 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N3i 0.82 1.91 2.7273 (17) 171
C2—H2⋯O2ii 0.93 2.54 3.365 (3) 148
C7—H7A⋯O1iii 0.97 2.49 3.387 (3) 154
C7—H7B⋯O2iv 0.97 2.39 3.268 (3) 150
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [-x+2, y, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzotriazol derivatives exhibit a good degree of analgesic, diuretic, anti-inflammatory, antiviral and antihypertensive activities (Kopanska et al., 2004; Yu et al., 2003; Hirokawa et al., 1998).

In the known polymorphic form (polymorph I) of the title compound reported by Giordano et al.(1978) [J. Chem. Soc., Perkin Trans. 2, 312–315] the molecules are linked in helices parallel to b axis by a strong O—H···N hydrogen bond [D···A =2.6995 Å; angle D—H···A =168.08°]. We have now obtained a new polymorph of benzotriazol-2-yl-acetic acid (II), which crystallizes in the space group C2/c and its crystal structure is reported here. The asymmetric unit comprises a non-planar independent molecule with a synplanar conformation of the carboxyl group (Fig. 1). Carboxyl group is twisted away from the plane of the 1,2,3-benzotriazol fragment (C1/C2/C3/C4/C5/C6/N1/N2/N3) by 88.41 (15)°. There are helices parallel to b axis forming by intermolecular O—H···N hydrogen bonds [D···A =2.7273 (17) Å; D—H···A =171°] as in polymorph I (Table 1). Columns form by π-π stacking interactions between benzotriazol fragments of centrosymmetrically related adjacent molecules [centroid-centroid (1.5 - x, 0.5 - y,-z) distance = 3.593 (10) Å, C6···C6 (1.5 - x, 0.5 - y, -z) distance is 3.381 (10) Å] and [C6···C2 (1 - x, 1 - y, -z) distance is 3.361 (10) Å]. In the known polymorph I stacking interactions are not observed. The crystal structure of the title compound is further stabilized via C—H···O interactions [C2···O2 = 3.365 (3) Å; angle C2—H2···O2 = 148°, C7···O1 = 3.387 (3) Å; angle C7—H7A···O1 = 154°, C7···O2 = 3.268 (3) Å; angle C7—H7B···O2 = 150°] (Fig. 2).

Related literature top

For general background to the biological activity of benzotriazole derivatives, see: Hirokawa et al. (1998); Yu et al. (2003); Kopanska et al. (2004). For the previously reported polymorph, see: Giordano & Zagari (1978).

Experimental top

Solid benzotriazol-2-yl-acetic acid was dissolved in dimethylformamide, filtered and left for crystallization by slow evaporation of the solvent at 30°C temperature. Colourless block crystals were obtained after two weeks.

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 Å (for OH) and C—H = 0.93 and 0.97 Å for aromatic and methylene H, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Structure description top

Benzotriazol derivatives exhibit a good degree of analgesic, diuretic, anti-inflammatory, antiviral and antihypertensive activities (Kopanska et al., 2004; Yu et al., 2003; Hirokawa et al., 1998).

In the known polymorphic form (polymorph I) of the title compound reported by Giordano et al.(1978) [J. Chem. Soc., Perkin Trans. 2, 312–315] the molecules are linked in helices parallel to b axis by a strong O—H···N hydrogen bond [D···A =2.6995 Å; angle D—H···A =168.08°]. We have now obtained a new polymorph of benzotriazol-2-yl-acetic acid (II), which crystallizes in the space group C2/c and its crystal structure is reported here. The asymmetric unit comprises a non-planar independent molecule with a synplanar conformation of the carboxyl group (Fig. 1). Carboxyl group is twisted away from the plane of the 1,2,3-benzotriazol fragment (C1/C2/C3/C4/C5/C6/N1/N2/N3) by 88.41 (15)°. There are helices parallel to b axis forming by intermolecular O—H···N hydrogen bonds [D···A =2.7273 (17) Å; D—H···A =171°] as in polymorph I (Table 1). Columns form by π-π stacking interactions between benzotriazol fragments of centrosymmetrically related adjacent molecules [centroid-centroid (1.5 - x, 0.5 - y,-z) distance = 3.593 (10) Å, C6···C6 (1.5 - x, 0.5 - y, -z) distance is 3.381 (10) Å] and [C6···C2 (1 - x, 1 - y, -z) distance is 3.361 (10) Å]. In the known polymorph I stacking interactions are not observed. The crystal structure of the title compound is further stabilized via C—H···O interactions [C2···O2 = 3.365 (3) Å; angle C2—H2···O2 = 148°, C7···O1 = 3.387 (3) Å; angle C7—H7A···O1 = 154°, C7···O2 = 3.268 (3) Å; angle C7—H7B···O2 = 150°] (Fig. 2).

For general background to the biological activity of benzotriazole derivatives, see: Hirokawa et al. (1998); Yu et al. (2003); Kopanska et al. (2004). For the previously reported polymorph, see: Giordano & Zagari (1978).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (II), showing the atom-labelling scheme. Displacements ellipsoids are at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (II). Hydrogen bonds are shown as dashed lines.
2-(2H-benzotriazol-2-yl)acetic acid top
Crystal data top
C8H7N3O2F(000) = 736
Mr = 177.17Dx = 1.411 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 408 reflections
a = 11.719 (9) Åθ = 5.2–43.7°
b = 8.308 (3) ŵ = 0.89 mm1
c = 17.246 (5) ÅT = 293 K
β = 96.703 (5)°Block, colourless
V = 1667.6 (15) Å30.40 × 0.32 × 0.28 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur, Ruby
diffractometer
1488 independent reflections
Radiation source: fine-focus sealed tube1235 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10.2576 pixels mm-1θmax = 67.1°, θmin = 5.2°
ω scansh = 1213
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 99
Tmin = 0.181, Tmax = 1.000l = 2019
4907 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.4124P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1488 reflectionsΔρmax = 0.15 e Å3
120 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0012 (3)
Crystal data top
C8H7N3O2V = 1667.6 (15) Å3
Mr = 177.17Z = 8
Monoclinic, C2/cCu Kα radiation
a = 11.719 (9) ŵ = 0.89 mm1
b = 8.308 (3) ÅT = 293 K
c = 17.246 (5) Å0.40 × 0.32 × 0.28 mm
β = 96.703 (5)°
Data collection top
Oxford Diffraction Xcalibur, Ruby
diffractometer
1488 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1235 reflections with I > 2σ(I)
Tmin = 0.181, Tmax = 1.000Rint = 0.022
4907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.04Δρmax = 0.15 e Å3
1488 reflectionsΔρmin = 0.12 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.55191 (14)0.2934 (2)0.01273 (10)0.0573 (4)
H10.51070.21460.01030.069*
C20.52406 (16)0.3401 (2)0.08830 (10)0.0713 (6)
H20.46170.29150.11750.086*
C30.58612 (18)0.4597 (3)0.12416 (10)0.0763 (6)
H30.56320.48680.17600.092*
C40.67792 (18)0.5361 (2)0.08543 (9)0.0682 (5)
H40.71860.61420.10940.082*
C50.70856 (14)0.49131 (18)0.00695 (8)0.0511 (4)
C60.64717 (12)0.37216 (17)0.02830 (8)0.0454 (4)
C70.85382 (12)0.48491 (19)0.18123 (8)0.0517 (4)
H7A0.92960.51790.17010.062*
H7B0.86180.38400.20960.062*
C80.80584 (12)0.61084 (19)0.23154 (8)0.0480 (4)
N10.79426 (11)0.54651 (15)0.04583 (7)0.0542 (4)
N20.78104 (10)0.46083 (14)0.10872 (7)0.0468 (3)
N30.69527 (10)0.35514 (14)0.10293 (6)0.0457 (3)
O10.87531 (9)0.63393 (16)0.29596 (6)0.0666 (4)
H1A0.84810.70250.32270.100*
O20.71669 (10)0.67914 (16)0.21507 (6)0.0672 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0544 (9)0.0607 (10)0.0547 (9)0.0124 (7)0.0024 (7)0.0122 (7)
C20.0694 (11)0.0844 (13)0.0551 (10)0.0264 (10)0.0136 (8)0.0231 (9)
C30.1008 (15)0.0870 (13)0.0384 (9)0.0391 (12)0.0026 (9)0.0039 (9)
C40.0975 (13)0.0652 (10)0.0433 (9)0.0255 (10)0.0145 (9)0.0059 (8)
C50.0650 (9)0.0475 (8)0.0414 (8)0.0153 (7)0.0087 (6)0.0012 (6)
C60.0507 (8)0.0468 (8)0.0383 (7)0.0133 (6)0.0031 (6)0.0038 (6)
C70.0471 (8)0.0582 (9)0.0482 (9)0.0004 (7)0.0008 (6)0.0039 (7)
C80.0475 (8)0.0574 (9)0.0386 (7)0.0016 (7)0.0026 (6)0.0013 (6)
N10.0677 (8)0.0487 (7)0.0479 (7)0.0021 (6)0.0132 (6)0.0007 (5)
N20.0512 (7)0.0488 (7)0.0403 (6)0.0007 (5)0.0046 (5)0.0023 (5)
N30.0477 (7)0.0483 (7)0.0403 (6)0.0032 (5)0.0027 (5)0.0008 (5)
O10.0524 (6)0.0924 (9)0.0518 (7)0.0143 (6)0.0069 (5)0.0215 (6)
O20.0643 (7)0.0858 (9)0.0482 (6)0.0216 (6)0.0072 (5)0.0114 (6)
Geometric parameters (Å, º) top
C1—C21.362 (3)C6—N31.3510 (17)
C1—C61.411 (2)C7—N21.4431 (18)
C1—H10.9300C7—C81.509 (2)
C2—C31.415 (3)C7—H7A0.9700
C2—H20.9300C7—H7B0.9700
C3—C41.356 (3)C8—O21.1937 (19)
C3—H30.9300C8—O11.3126 (17)
C4—C51.409 (2)N1—N21.3214 (17)
C4—H40.9300N2—N31.3296 (17)
C5—N11.354 (2)O1—H1A0.8200
C5—C61.403 (2)
C2—C1—C6115.77 (18)C5—C6—C1121.70 (14)
C2—C1—H1122.1N2—C7—C8111.85 (12)
C6—C1—H1122.1N2—C7—H7A109.2
C1—C2—C3122.69 (18)C8—C7—H7A109.2
C1—C2—H2118.7N2—C7—H7B109.2
C3—C2—H2118.7C8—C7—H7B109.2
C4—C3—C2122.14 (17)H7A—C7—H7B107.9
C4—C3—H3118.9O2—C8—O1124.82 (14)
C2—C3—H3118.9O2—C8—C7124.56 (13)
C3—C4—C5116.61 (18)O1—C8—C7110.62 (13)
C3—C4—H4121.7N2—N1—C5102.73 (13)
C5—C4—H4121.7N1—N2—N3117.02 (11)
N1—C5—C6108.97 (13)N1—N2—C7121.50 (13)
N1—C5—C4129.93 (17)N3—N2—C7121.45 (12)
C6—C5—C4121.10 (16)N2—N3—C6103.30 (11)
N3—C6—C5107.98 (13)C8—O1—H1A109.5
N3—C6—C1130.32 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N3i0.821.912.7273 (17)171
C2—H2···O2ii0.932.543.365 (3)148
C7—H7A···O1iii0.972.493.387 (3)154
C7—H7B···O2iv0.972.393.268 (3)150
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+2, y, z+1/2; (iv) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H7N3O2
Mr177.17
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)11.719 (9), 8.308 (3), 17.246 (5)
β (°) 96.703 (5)
V3)1667.6 (15)
Z8
Radiation typeCu Kα
µ (mm1)0.89
Crystal size (mm)0.40 × 0.32 × 0.28
Data collection
DiffractometerOxford Diffraction Xcalibur, Ruby
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.181, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4907, 1488, 1235
Rint0.022
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.04
No. of reflections1488
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.12

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N3i0.821.912.7273 (17)170.9
C2—H2···O2ii0.932.543.365 (3)148.00
C7—H7A···O1iii0.972.493.387 (3)154.00
C7—H7B···O2iv0.972.393.268 (3)150.00
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+2, y, z+1/2; (iv) x+3/2, y1/2, z+1/2.
 

Acknowledgements

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grants FA–F3–T045 and FA–F3–T047)

References

First citationGiordano, F. & Zagari, A. (1978). J. Chem. Soc. Perkin Trans. 2, pp. 312–315.  CrossRef Google Scholar
First citationHirokawa, Y., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. Med. Chem. Lett. 8, 1973–1978.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKopanska, K., Najda, A., Zebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2004). Bioorg. Med. Chem. 12, 2617–2624.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, K. L., Zhang, Y., Civiello, R. L., Kadow, K. F., Cianci, C., Krystal, M. & Meanwell, N. A. (2003). Bioorg. Med. Chem. Lett. 13, 2141–2144.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds