metal-organic compounds
catena-Poly[[[bis(thiocyanato-κN)zinc]bis[μ-1,3,5-tris(1H-1,2,4-triazol-1-ylmethyl)benzene-κ2N4:N4′]] monohydrate]
aDepartment of Petroleum & Chemical Engineering, Puyang Vocational and Technical College, Puyang 457000, People's Republic of China
*Correspondence e-mail: shixianju@sohu.com
In the title complex, {[Zn(NCS)2(C15H15N9)2]·H2O}n, the ZnII ion is located on an inversion centre and is six-coordinated in a distorted octahedral geometry, coordinated by N atoms from four bridging 1,3,5-tris(1,2,4-triazol-1-ylmethyl)benzene (ttmb) ligands and two terminal SCN− counter-anions. Two of the three triazol groups in each ttmb ligand link the ZnII atoms, forming a looped-chain structure along [0-11]. The lattice water molecule shows half-occupancy due to disorder around an inversion centre.
Related literature
For background to the use of flexible tripodal compounds in the design and construction of compounds with metal-organic framework structures, see: Moon et al. (2006); Xu et al. (2009). For similar structures, see: Yin et al. (2009); Shi et al. (2011).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku/MSC, 2006); cell CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku/MSC, 2006); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).
Supporting information
https://doi.org/10.1107/S1600536812039256/ds2211sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812039256/ds2211Isup2.hkl
A reaction mixture of ZnSO4.7H2O (29 mg, 0.1 mmol), 1,3,5-tris(1,2,4-triazol-1-ylmethyl)-benzene (ttmb) (32.1 mg, 0.1 mmol), KSCN (19.4 mg, 0.2 mmol), and 10 ml water was sealed in a Teflon-lined stainless steel vessel, which was heated at 130 °C for 72 h, and then cooled to room temperature, obtaining colorless crystals of the title complex. Yield (based on Zn): 31%.
H atoms were generated geometrically and refined as riding atoms with C-H = 0.93 Å, 0.97 (CH2) Å and Uiso(H) = 1.2 times Ueq(C).
Flexible tripodal compounds are known to be the versatile structural constructors in the rational design and construction of novel metal-organic frameworks (MOFs), in respect that its three potential coordination groups can bend and rotate freely to satisfy various coordination preferences and facilitate the formation of various complexes with diverse structures and properties (Moon et al., 2006; Xu et al., 2009). Therefore, the prospect of exploring the influential principles of tripodal compounds on the resulting framework structures provides an impetus for further researches on tripodal compounds. We were thus engaged in the synthesis of a flexible tripodal N-heterocyclic compound 1,3,5-tris(1,2,4-triazol-1-ylmethyl)-benzene (ttmb) (Yin et al., 2009; Shi et al., 2011), and employed it as a ligand to construct a new complex {[Zn(SCN)2(ttmb)2].H2O}n. In the title complex, ZnII ion is six-coordinated in a distorted octahedral geometry, coordinated by N2, N2A, N8 and N8A from four ttmb ligands, and N1, N1A from two terminal counter-anion SCN- (Fig. 1). In ttmb, the center of one triazol ring lies inside the benzene plane with the dihedral angle of 89.4 °, and the other two triazol rings lie in the opposite orientation outside the plane to form an infrequent
conformation. Two of the three triazol groups in each ttmb link the ZnII centers together to form an one-dimensional looped-chain structure (Fig. 2), in which the ZnII ions are collinear with the adjacent Zn···Zn distance of 13.8 Å.For background to the use of flexible tripodal compounds in the design and construction of compounds with metal-organic framework structures, see: Moon et al. (2006); Xu et al. (2009). For similar structures, see: Yin et al. (2009); Shi et al. (2011).
Data collection: CrystalClear (Rigaku/MSC, 2006); cell
CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku/MSC, 2006); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).[Zn(NCS)2(C15H15N9)2]·H2O | Z = 1 |
Mr = 842.27 | F(000) = 434 |
Triclinic, P1 | Dx = 1.491 Mg m−3 |
a = 8.5766 (17) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.5036 (19) Å | Cell parameters from 2773 reflections |
c = 11.723 (2) Å | θ = 2.2–27.9° |
α = 80.01 (3)° | µ = 0.83 mm−1 |
β = 85.40 (3)° | T = 293 K |
γ = 89.55 (3)° | Prism, colorless |
V = 938.0 (3) Å3 | 0.20 × 0.18 × 0.16 mm |
Rigaku Saturn724 diffractometer | 4444 independent reflections |
Radiation source: fine-focus sealed tube | 3972 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 27.9°, θmin = 2.2° |
ω and φ scans | h = −11→11 |
Absorption correction: multi-scan | k = −12→12 |
Tmin = 0.852, Tmax = 0.879 | l = −15→15 |
11566 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0517P)2 + 0.3475P] where P = (Fo2 + 2Fc2)/3 |
4444 reflections | (Δ/σ)max < 0.001 |
265 parameters | Δρmax = 0.61 e Å−3 |
9 restraints | Δρmin = −0.39 e Å−3 |
[Zn(NCS)2(C15H15N9)2]·H2O | γ = 89.55 (3)° |
Mr = 842.27 | V = 938.0 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.5766 (17) Å | Mo Kα radiation |
b = 9.5036 (19) Å | µ = 0.83 mm−1 |
c = 11.723 (2) Å | T = 293 K |
α = 80.01 (3)° | 0.20 × 0.18 × 0.16 mm |
β = 85.40 (3)° |
Rigaku Saturn724 diffractometer | 4444 independent reflections |
Absorption correction: multi-scan | 3972 reflections with I > 2σ(I) |
Tmin = 0.852, Tmax = 0.879 | Rint = 0.024 |
11566 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 9 restraints |
wR(F2) = 0.108 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.61 e Å−3 |
4444 reflections | Δρmin = −0.39 e Å−3 |
265 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.0000 | 1.0000 | 0.0000 | 0.03753 (14) | |
N1 | −0.1335 (3) | 1.0823 (3) | 0.1368 (2) | 0.0516 (6) | |
N2 | 0.1925 (2) | 0.9400 (2) | 0.11113 (18) | 0.0398 (5) | |
N3 | 0.3170 (2) | 0.8611 (2) | 0.26349 (17) | 0.0374 (4) | |
N4 | 0.4133 (3) | 0.8369 (3) | 0.1727 (2) | 0.0561 (7) | |
N5 | 0.2223 (3) | 0.2854 (2) | 0.3054 (2) | 0.0431 (5) | |
N8 | 0.0899 (2) | 1.2105 (2) | −0.06854 (18) | 0.0397 (5) | |
N9 | 0.0847 (3) | 1.4448 (3) | −0.1391 (2) | 0.0579 (7) | |
N10 | 0.2207 (3) | 1.3860 (2) | −0.17586 (18) | 0.0395 (5) | |
O1 | 0.5990 (11) | 0.4298 (9) | 0.9817 (9) | 0.135 (3) | 0.50 |
C2 | 0.1872 (3) | 0.9224 (3) | 0.2261 (2) | 0.0404 (5) | |
H2 | 0.1043 | 0.9494 | 0.2736 | 0.049* | |
C3 | 0.3328 (3) | 0.8857 (4) | 0.0833 (2) | 0.0527 (7) | |
H3 | 0.3701 | 0.8829 | 0.0070 | 0.063* | |
C4 | 0.3613 (4) | 0.8227 (3) | 0.3821 (2) | 0.0444 (6) | |
H4B | 0.3159 | 0.8913 | 0.4273 | 0.053* | |
H4A | 0.4742 | 0.8302 | 0.3812 | 0.053* | |
C5 | 0.3110 (3) | 0.6738 (2) | 0.4421 (2) | 0.0343 (5) | |
C6 | 0.3413 (3) | 0.6377 (2) | 0.5581 (2) | 0.0350 (5) | |
H6 | 0.3910 | 0.7036 | 0.5933 | 0.042* | |
C7 | 0.2990 (3) | 0.5056 (3) | 0.6222 (2) | 0.0357 (5) | |
C8 | 0.2262 (3) | 0.4067 (3) | 0.5681 (2) | 0.0396 (5) | |
H8 | 0.1982 | 0.3171 | 0.6103 | 0.048* | |
C9 | 0.1954 (3) | 0.4408 (3) | 0.4526 (2) | 0.0385 (5) | |
C10 | 0.2379 (3) | 0.5756 (3) | 0.3897 (2) | 0.0381 (5) | |
H10 | 0.2168 | 0.5993 | 0.3121 | 0.046* | |
C11 | 0.1173 (3) | 0.3323 (3) | 0.3945 (3) | 0.0466 (6) | |
H11B | 0.0839 | 0.2503 | 0.4527 | 0.056* | |
H11A | 0.0251 | 0.3744 | 0.3599 | 0.056* | |
C14 | 0.3404 (3) | 0.4707 (3) | 0.7471 (2) | 0.0458 (6) | |
H14A | 0.4382 | 0.4187 | 0.7498 | 0.055* | |
H14B | 0.3564 | 0.5592 | 0.7753 | 0.055* | |
C15 | 0.0108 (4) | 1.3348 (3) | −0.0744 (3) | 0.0528 (7) | |
H15 | −0.0874 | 1.3420 | −0.0360 | 0.063* | |
C16 | 0.2207 (3) | 1.2478 (3) | −0.1330 (2) | 0.0412 (6) | |
H16 | 0.3017 | 1.1857 | −0.1465 | 0.049* | |
C1 | −0.1657 (3) | 1.0544 (3) | 0.2354 (2) | 0.0422 (6) | |
N6 | 0.3491 (3) | 0.2042 (3) | 0.3333 (2) | 0.0560 (6) | |
N7 | 0.3519 (4) | 0.2694 (3) | 0.1395 (3) | 0.0728 (8) | |
C12 | 0.4207 (4) | 0.1989 (4) | 0.2304 (3) | 0.0599 (8) | |
H12 | 0.5134 | 0.1490 | 0.2217 | 0.072* | |
C13 | 0.2266 (5) | 0.3210 (4) | 0.1909 (3) | 0.0661 (9) | |
H13 | 0.1508 | 0.3756 | 0.1514 | 0.079* | |
H1A | 0.517 (7) | 0.391 (8) | 1.021 (7) | 0.099* | 0.50 |
H1B | 0.588 (10) | 0.5203 (18) | 0.969 (8) | 0.099* | 0.50 |
S1 | −0.21123 (13) | 1.00586 (11) | 0.37384 (7) | 0.0710 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0382 (2) | 0.0368 (2) | 0.0329 (2) | 0.00232 (16) | −0.00183 (16) | 0.00624 (15) |
N1 | 0.0540 (14) | 0.0583 (15) | 0.0387 (12) | 0.0090 (11) | 0.0033 (11) | −0.0010 (11) |
N2 | 0.0371 (11) | 0.0417 (11) | 0.0377 (11) | 0.0018 (9) | −0.0051 (9) | 0.0024 (9) |
N3 | 0.0422 (11) | 0.0363 (10) | 0.0313 (10) | 0.0001 (8) | −0.0048 (8) | 0.0018 (8) |
N4 | 0.0436 (13) | 0.0825 (19) | 0.0403 (12) | 0.0183 (12) | −0.0039 (10) | −0.0054 (12) |
N5 | 0.0470 (12) | 0.0392 (11) | 0.0464 (12) | 0.0006 (9) | −0.0147 (10) | −0.0112 (9) |
N8 | 0.0418 (11) | 0.0370 (11) | 0.0364 (10) | 0.0007 (9) | −0.0020 (9) | 0.0040 (8) |
N9 | 0.0670 (16) | 0.0378 (12) | 0.0624 (16) | 0.0086 (11) | 0.0138 (13) | 0.0002 (11) |
N10 | 0.0450 (12) | 0.0347 (10) | 0.0358 (10) | −0.0016 (9) | −0.0034 (9) | 0.0023 (8) |
O1 | 0.147 (7) | 0.097 (5) | 0.142 (7) | −0.010 (5) | 0.029 (6) | 0.012 (5) |
C2 | 0.0390 (13) | 0.0412 (13) | 0.0391 (13) | 0.0037 (10) | −0.0015 (10) | −0.0019 (10) |
C3 | 0.0417 (15) | 0.079 (2) | 0.0343 (13) | 0.0104 (14) | −0.0010 (11) | −0.0011 (13) |
C4 | 0.0587 (16) | 0.0396 (13) | 0.0333 (12) | −0.0075 (12) | −0.0109 (11) | 0.0017 (10) |
C5 | 0.0352 (12) | 0.0323 (11) | 0.0340 (11) | 0.0014 (9) | −0.0028 (9) | −0.0019 (9) |
C6 | 0.0365 (12) | 0.0337 (11) | 0.0345 (12) | −0.0018 (9) | −0.0060 (9) | −0.0034 (9) |
C7 | 0.0360 (12) | 0.0356 (12) | 0.0336 (11) | −0.0013 (9) | −0.0033 (9) | −0.0004 (9) |
C8 | 0.0412 (13) | 0.0328 (12) | 0.0425 (13) | −0.0024 (10) | −0.0027 (11) | −0.0003 (10) |
C9 | 0.0358 (12) | 0.0368 (12) | 0.0439 (13) | −0.0017 (10) | −0.0028 (10) | −0.0098 (10) |
C10 | 0.0435 (13) | 0.0380 (12) | 0.0330 (12) | 0.0014 (10) | −0.0068 (10) | −0.0055 (10) |
C11 | 0.0446 (15) | 0.0441 (14) | 0.0535 (16) | −0.0052 (11) | −0.0081 (12) | −0.0131 (12) |
C14 | 0.0505 (15) | 0.0461 (14) | 0.0368 (13) | −0.0133 (12) | −0.0084 (11) | 0.0072 (11) |
C15 | 0.0564 (17) | 0.0432 (15) | 0.0531 (16) | 0.0054 (12) | 0.0138 (13) | −0.0011 (12) |
C16 | 0.0390 (13) | 0.0381 (13) | 0.0426 (13) | 0.0035 (10) | −0.0054 (11) | 0.0050 (10) |
C1 | 0.0423 (14) | 0.0388 (13) | 0.0457 (14) | 0.0095 (10) | −0.0019 (11) | −0.0090 (11) |
N6 | 0.0552 (15) | 0.0525 (14) | 0.0631 (16) | 0.0080 (11) | −0.0175 (13) | −0.0127 (12) |
N7 | 0.089 (2) | 0.074 (2) | 0.0569 (17) | 0.0002 (17) | 0.0022 (16) | −0.0172 (15) |
C12 | 0.0532 (18) | 0.0542 (18) | 0.078 (2) | −0.0016 (14) | −0.0063 (16) | −0.0266 (16) |
C13 | 0.086 (2) | 0.063 (2) | 0.0518 (18) | 0.0154 (18) | −0.0215 (17) | −0.0102 (15) |
S1 | 0.0963 (6) | 0.0730 (5) | 0.0395 (4) | 0.0230 (5) | 0.0105 (4) | −0.0065 (4) |
Zn1—N8 | 2.146 (2) | C4—H4B | 0.9700 |
Zn1—N8i | 2.146 (2) | C4—H4A | 0.9700 |
Zn1—N1 | 2.149 (2) | C5—C10 | 1.383 (3) |
Zn1—N1i | 2.149 (2) | C5—C6 | 1.390 (3) |
Zn1—N2i | 2.196 (2) | C6—C7 | 1.382 (3) |
Zn1—N2 | 2.196 (2) | C6—H6 | 0.9300 |
N1—C1 | 1.152 (3) | C7—C8 | 1.398 (3) |
N2—C2 | 1.327 (3) | C7—C14 | 1.515 (3) |
N2—C3 | 1.344 (3) | C8—C9 | 1.383 (4) |
N3—C2 | 1.322 (3) | C8—H8 | 0.9300 |
N3—N4 | 1.346 (3) | C9—C10 | 1.398 (3) |
N3—C4 | 1.455 (3) | C9—C11 | 1.518 (3) |
N4—C3 | 1.316 (4) | C10—H10 | 0.9300 |
N5—C13 | 1.324 (4) | C11—H11B | 0.9700 |
N5—N6 | 1.357 (3) | C11—H11A | 0.9700 |
N5—C11 | 1.452 (4) | C14—N10iii | 1.459 (3) |
N8—C16 | 1.316 (3) | C14—H14A | 0.9700 |
N8—C15 | 1.353 (4) | C14—H14B | 0.9700 |
N9—C15 | 1.314 (4) | C15—H15 | 0.9300 |
N9—N10 | 1.361 (3) | C16—H16 | 0.9300 |
N10—C16 | 1.322 (3) | C1—S1 | 1.625 (3) |
N10—C14ii | 1.459 (3) | N6—C12 | 1.317 (4) |
O1—H1A | 0.853 (13) | N7—C13 | 1.322 (5) |
O1—H1B | 0.853 (13) | N7—C12 | 1.334 (5) |
C2—H2 | 0.9300 | C12—H12 | 0.9300 |
C3—H3 | 0.9300 | C13—H13 | 0.9300 |
C4—C5 | 1.516 (3) | ||
N8—Zn1—N8i | 180.0 | C10—C5—C6 | 119.5 (2) |
N8—Zn1—N1 | 89.99 (9) | C10—C5—C4 | 124.7 (2) |
N8i—Zn1—N1 | 90.01 (9) | C6—C5—C4 | 115.9 (2) |
N8—Zn1—N1i | 90.01 (9) | C7—C6—C5 | 121.1 (2) |
N8i—Zn1—N1i | 89.99 (9) | C7—C6—H6 | 119.5 |
N1—Zn1—N1i | 180.0 | C5—C6—H6 | 119.5 |
N8—Zn1—N2i | 85.29 (8) | C6—C7—C8 | 119.0 (2) |
N8i—Zn1—N2i | 94.71 (8) | C6—C7—C14 | 118.5 (2) |
N1—Zn1—N2i | 88.53 (9) | C8—C7—C14 | 122.4 (2) |
N1i—Zn1—N2i | 91.47 (9) | C9—C8—C7 | 120.6 (2) |
N8—Zn1—N2 | 94.71 (8) | C9—C8—H8 | 119.7 |
N8i—Zn1—N2 | 85.29 (8) | C7—C8—H8 | 119.7 |
N1—Zn1—N2 | 91.47 (9) | C8—C9—C10 | 119.4 (2) |
N1i—Zn1—N2 | 88.53 (9) | C8—C9—C11 | 120.2 (2) |
N2i—Zn1—N2 | 180.00 (11) | C10—C9—C11 | 120.4 (2) |
C1—N1—Zn1 | 140.3 (2) | C5—C10—C9 | 120.4 (2) |
C2—N2—C3 | 102.6 (2) | C5—C10—H10 | 119.8 |
C2—N2—Zn1 | 127.61 (18) | C9—C10—H10 | 119.8 |
C3—N2—Zn1 | 128.64 (18) | N5—C11—C9 | 111.5 (2) |
C2—N3—N4 | 109.9 (2) | N5—C11—H11B | 109.3 |
C2—N3—C4 | 128.9 (2) | C9—C11—H11B | 109.3 |
N4—N3—C4 | 121.2 (2) | N5—C11—H11A | 109.3 |
C3—N4—N3 | 102.6 (2) | C9—C11—H11A | 109.3 |
C13—N5—N6 | 108.7 (3) | H11B—C11—H11A | 108.0 |
C13—N5—C11 | 129.8 (3) | N10iii—C14—C7 | 113.3 (2) |
N6—N5—C11 | 121.1 (2) | N10iii—C14—H14A | 108.9 |
C16—N8—C15 | 103.1 (2) | C7—C14—H14A | 108.9 |
C16—N8—Zn1 | 128.82 (18) | N10iii—C14—H14B | 108.9 |
C15—N8—Zn1 | 126.93 (19) | C7—C14—H14B | 108.9 |
C15—N9—N10 | 102.7 (2) | H14A—C14—H14B | 107.7 |
C16—N10—N9 | 109.5 (2) | N9—C15—N8 | 114.2 (3) |
C16—N10—C14ii | 128.6 (2) | N9—C15—H15 | 122.9 |
N9—N10—C14ii | 121.8 (2) | N8—C15—H15 | 122.9 |
H1A—O1—H1B | 109 (3) | N8—C16—N10 | 110.5 (2) |
N2—C2—N3 | 110.2 (2) | N8—C16—H16 | 124.8 |
N2—C2—H2 | 124.9 | N10—C16—H16 | 124.8 |
N3—C2—H2 | 124.9 | N1—C1—S1 | 176.9 (3) |
N4—C3—N2 | 114.6 (2) | C12—N6—N5 | 102.2 (3) |
N4—C3—H3 | 122.7 | C13—N7—C12 | 101.6 (3) |
N2—C3—H3 | 122.7 | N6—C12—N7 | 115.9 (3) |
N3—C4—C5 | 114.5 (2) | N6—C12—H12 | 122.1 |
N3—C4—H4B | 108.6 | N7—C12—H12 | 122.1 |
C5—C4—H4B | 108.6 | N5—C13—N7 | 111.6 (3) |
N3—C4—H4A | 108.6 | N5—C13—H13 | 124.2 |
C5—C4—H4A | 108.6 | N7—C13—H13 | 124.2 |
H4B—C4—H4A | 107.6 |
Symmetry codes: (i) −x, −y+2, −z; (ii) x, y+1, z−1; (iii) x, y−1, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Zn(NCS)2(C15H15N9)2]·H2O |
Mr | 842.27 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.5766 (17), 9.5036 (19), 11.723 (2) |
α, β, γ (°) | 80.01 (3), 85.40 (3), 89.55 (3) |
V (Å3) | 938.0 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.83 |
Crystal size (mm) | 0.20 × 0.18 × 0.16 |
Data collection | |
Diffractometer | Rigaku Saturn724 |
Absorption correction | Multi-scan |
Tmin, Tmax | 0.852, 0.879 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11566, 4444, 3972 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.659 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.108, 1.05 |
No. of reflections | 4444 |
No. of parameters | 265 |
No. of restraints | 9 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.61, −0.39 |
Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2006).
Acknowledgements
This work was supported financially by the National Natural Science Foundation (No. 20971110) and the program for the construction of Puyang Key Laboratory.
References
Moon, D., Kang, S., Park, J., Lee, K., John, R. P., Won, H., Seong, G. H., Kim, Y. S., Kim, G. H., Rhee, H. & Lah, M. S. (2006). J. Am. Chem. Soc. 128, 3530–3531. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rigaku/MSC (2006). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, X.-J., Zhang, X.-H., Li, X.-X., Hou, H.-W. & Fan, Y.-T. (2011). J. Mol. Struct. 996, 110–114. Web of Science CSD CrossRef CAS Google Scholar
Xu, G.-C., Ding, Y.-J., Okamura, T., Huang, Y.-Q., Bai, Z.-S., Hua, Q., Liu, G.-X. & Sun, W.-Y. (2009). Cryst. Growth Des. 9, 395–403. Web of Science CSD CrossRef CAS Google Scholar
Yin, X.-J., Zhou, X.-H., Gu, Z.-G., Zuo, J.-L. & You, X.-Z. (2009). Inorg. Chem. Commun. 12, 548–551. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Flexible tripodal compounds are known to be the versatile structural constructors in the rational design and construction of novel metal-organic frameworks (MOFs), in respect that its three potential coordination groups can bend and rotate freely to satisfy various coordination preferences and facilitate the formation of various complexes with diverse structures and properties (Moon et al., 2006; Xu et al., 2009). Therefore, the prospect of exploring the influential principles of tripodal compounds on the resulting framework structures provides an impetus for further researches on tripodal compounds. We were thus engaged in the synthesis of a flexible tripodal N-heterocyclic compound 1,3,5-tris(1,2,4-triazol-1-ylmethyl)-benzene (ttmb) (Yin et al., 2009; Shi et al., 2011), and employed it as a ligand to construct a new complex {[Zn(SCN)2(ttmb)2].H2O}n. In the title complex, ZnII ion is six-coordinated in a distorted octahedral geometry, coordinated by N2, N2A, N8 and N8A from four ttmb ligands, and N1, N1A from two terminal counter-anion SCN- (Fig. 1). In ttmb, the center of one triazol ring lies inside the benzene plane with the dihedral angle of 89.4 °, and the other two triazol rings lie in the opposite orientation outside the plane to form an infrequent trans conformation. Two of the three triazol groups in each ttmb link the ZnII centers together to form an one-dimensional looped-chain structure (Fig. 2), in which the ZnII ions are collinear with the adjacent Zn···Zn distance of 13.8 Å.