metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[bis­­(thio­cyanato-κN)zinc]bis­­[μ-1,3,5-tris­­(1H-1,2,4-triazol-1-yl­meth­yl)benzene-κ2N4:N4′]] mono­hydrate]

aDepartment of Petroleum & Chemical Engineering, Puyang Vocational and Technical College, Puyang 457000, People's Republic of China
*Correspondence e-mail: shixianju@sohu.com

(Received 3 August 2012; accepted 14 September 2012; online 26 September 2012)

In the title complex, {[Zn(NCS)2(C15H15N9)2]·H2O}n, the ZnII ion is located on an inversion centre and is six-coordinated in a distorted octa­hedral geometry, coordinated by N atoms from four bridging 1,3,5-tris­(1,2,4-triazol-1-ylmeth­yl)benzene (ttmb) ligands and two terminal SCN counter-anions. Two of the three triazol groups in each ttmb ligand link the ZnII atoms, forming a looped-chain structure along [0-11]. The lattice water molecule shows half-occupancy due to disorder around an inversion centre.

Related literature

For background to the use of flexible tripodal compounds in the design and construction of compounds with metal-organic framework structures, see: Moon et al. (2006[Moon, D., Kang, S., Park, J., Lee, K., John, R. P., Won, H., Seong, G. H., Kim, Y. S., Kim, G. H., Rhee, H. & Lah, M. S. (2006). J. Am. Chem. Soc. 128, 3530-3531.]); Xu et al. (2009[Xu, G.-C., Ding, Y.-J., Okamura, T., Huang, Y.-Q., Bai, Z.-S., Hua, Q., Liu, G.-X. & Sun, W.-Y. (2009). Cryst. Growth Des. 9, 395-403.]). For similar structures, see: Yin et al. (2009[Yin, X.-J., Zhou, X.-H., Gu, Z.-G., Zuo, J.-L. & You, X.-Z. (2009). Inorg. Chem. Commun. 12, 548-551.]); Shi et al. (2011[Shi, X.-J., Zhang, X.-H., Li, X.-X., Hou, H.-W. & Fan, Y.-T. (2011). J. Mol. Struct. 996, 110-114.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NCS)2(C15H15N9)2]·H2O

  • Mr = 842.27

  • Triclinic, [P \overline 1]

  • a = 8.5766 (17) Å

  • b = 9.5036 (19) Å

  • c = 11.723 (2) Å

  • α = 80.01 (3)°

  • β = 85.40 (3)°

  • γ = 89.55 (3)°

  • V = 938.0 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Rigaku Saturn724 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.852, Tmax = 0.879

  • 11566 measured reflections

  • 4444 independent reflections

  • 3972 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.05

  • 4444 reflections

  • 265 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); data reduction: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]).

Supporting information


Comment top

Flexible tripodal compounds are known to be the versatile structural constructors in the rational design and construction of novel metal-organic frameworks (MOFs), in respect that its three potential coordination groups can bend and rotate freely to satisfy various coordination preferences and facilitate the formation of various complexes with diverse structures and properties (Moon et al., 2006; Xu et al., 2009). Therefore, the prospect of exploring the influential principles of tripodal compounds on the resulting framework structures provides an impetus for further researches on tripodal compounds. We were thus engaged in the synthesis of a flexible tripodal N-heterocyclic compound 1,3,5-tris(1,2,4-triazol-1-ylmethyl)-benzene (ttmb) (Yin et al., 2009; Shi et al., 2011), and employed it as a ligand to construct a new complex {[Zn(SCN)2(ttmb)2].H2O}n. In the title complex, ZnII ion is six-coordinated in a distorted octahedral geometry, coordinated by N2, N2A, N8 and N8A from four ttmb ligands, and N1, N1A from two terminal counter-anion SCN- (Fig. 1). In ttmb, the center of one triazol ring lies inside the benzene plane with the dihedral angle of 89.4 °, and the other two triazol rings lie in the opposite orientation outside the plane to form an infrequent trans conformation. Two of the three triazol groups in each ttmb link the ZnII centers together to form an one-dimensional looped-chain structure (Fig. 2), in which the ZnII ions are collinear with the adjacent Zn···Zn distance of 13.8 Å.

Related literature top

For background to the use of flexible tripodal compounds in the design and construction of compounds with metal-organic framework structures, see: Moon et al. (2006); Xu et al. (2009). For similar structures, see: Yin et al. (2009); Shi et al. (2011).

Experimental top

A reaction mixture of ZnSO4.7H2O (29 mg, 0.1 mmol), 1,3,5-tris(1,2,4-triazol-1-ylmethyl)-benzene (ttmb) (32.1 mg, 0.1 mmol), KSCN (19.4 mg, 0.2 mmol), and 10 ml water was sealed in a Teflon-lined stainless steel vessel, which was heated at 130 °C for 72 h, and then cooled to room temperature, obtaining colorless crystals of the title complex. Yield (based on Zn): 31%.

Refinement top

H atoms were generated geometrically and refined as riding atoms with C-H = 0.93 Å, 0.97 (CH2) Å and Uiso(H) = 1.2 times Ueq(C).

Structure description top

Flexible tripodal compounds are known to be the versatile structural constructors in the rational design and construction of novel metal-organic frameworks (MOFs), in respect that its three potential coordination groups can bend and rotate freely to satisfy various coordination preferences and facilitate the formation of various complexes with diverse structures and properties (Moon et al., 2006; Xu et al., 2009). Therefore, the prospect of exploring the influential principles of tripodal compounds on the resulting framework structures provides an impetus for further researches on tripodal compounds. We were thus engaged in the synthesis of a flexible tripodal N-heterocyclic compound 1,3,5-tris(1,2,4-triazol-1-ylmethyl)-benzene (ttmb) (Yin et al., 2009; Shi et al., 2011), and employed it as a ligand to construct a new complex {[Zn(SCN)2(ttmb)2].H2O}n. In the title complex, ZnII ion is six-coordinated in a distorted octahedral geometry, coordinated by N2, N2A, N8 and N8A from four ttmb ligands, and N1, N1A from two terminal counter-anion SCN- (Fig. 1). In ttmb, the center of one triazol ring lies inside the benzene plane with the dihedral angle of 89.4 °, and the other two triazol rings lie in the opposite orientation outside the plane to form an infrequent trans conformation. Two of the three triazol groups in each ttmb link the ZnII centers together to form an one-dimensional looped-chain structure (Fig. 2), in which the ZnII ions are collinear with the adjacent Zn···Zn distance of 13.8 Å.

For background to the use of flexible tripodal compounds in the design and construction of compounds with metal-organic framework structures, see: Moon et al. (2006); Xu et al. (2009). For similar structures, see: Yin et al. (2009); Shi et al. (2011).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku/MSC, 2006); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Figures top
[Figure 1] Fig. 1. A fragment of the title complex, showing the coordination environment of ZnII center with atom labelling of the non-H atoms and 30% probability ellipsoids. H atoms have been omitted.
[Figure 2] Fig. 2. View of the one-dimensional looped-chain structure of the title complex.
catena-Poly[[[bis(thiocyanato-κN)zinc]bis[µ-1,3,5- tris(1H-1,2,4-triazol-1-ylmethyl)benzene-κ2N4:N4']] monohydrate] top
Crystal data top
[Zn(NCS)2(C15H15N9)2]·H2OZ = 1
Mr = 842.27F(000) = 434
Triclinic, P1Dx = 1.491 Mg m3
a = 8.5766 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5036 (19) ÅCell parameters from 2773 reflections
c = 11.723 (2) Åθ = 2.2–27.9°
α = 80.01 (3)°µ = 0.83 mm1
β = 85.40 (3)°T = 293 K
γ = 89.55 (3)°Prism, colorless
V = 938.0 (3) Å30.20 × 0.18 × 0.16 mm
Data collection top
Rigaku Saturn724
diffractometer
4444 independent reflections
Radiation source: fine-focus sealed tube3972 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 28.5714 pixels mm-1θmax = 27.9°, θmin = 2.2°
ω and φ scansh = 1111
Absorption correction: multi-scank = 1212
Tmin = 0.852, Tmax = 0.879l = 1515
11566 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.3475P]
where P = (Fo2 + 2Fc2)/3
4444 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 0.61 e Å3
9 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Zn(NCS)2(C15H15N9)2]·H2Oγ = 89.55 (3)°
Mr = 842.27V = 938.0 (3) Å3
Triclinic, P1Z = 1
a = 8.5766 (17) ÅMo Kα radiation
b = 9.5036 (19) ŵ = 0.83 mm1
c = 11.723 (2) ÅT = 293 K
α = 80.01 (3)°0.20 × 0.18 × 0.16 mm
β = 85.40 (3)°
Data collection top
Rigaku Saturn724
diffractometer
4444 independent reflections
Absorption correction: multi-scan3972 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.879Rint = 0.024
11566 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0419 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.61 e Å3
4444 reflectionsΔρmin = 0.39 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.00001.00000.00000.03753 (14)
N10.1335 (3)1.0823 (3)0.1368 (2)0.0516 (6)
N20.1925 (2)0.9400 (2)0.11113 (18)0.0398 (5)
N30.3170 (2)0.8611 (2)0.26349 (17)0.0374 (4)
N40.4133 (3)0.8369 (3)0.1727 (2)0.0561 (7)
N50.2223 (3)0.2854 (2)0.3054 (2)0.0431 (5)
N80.0899 (2)1.2105 (2)0.06854 (18)0.0397 (5)
N90.0847 (3)1.4448 (3)0.1391 (2)0.0579 (7)
N100.2207 (3)1.3860 (2)0.17586 (18)0.0395 (5)
O10.5990 (11)0.4298 (9)0.9817 (9)0.135 (3)0.50
C20.1872 (3)0.9224 (3)0.2261 (2)0.0404 (5)
H20.10430.94940.27360.049*
C30.3328 (3)0.8857 (4)0.0833 (2)0.0527 (7)
H30.37010.88290.00700.063*
C40.3613 (4)0.8227 (3)0.3821 (2)0.0444 (6)
H4B0.31590.89130.42730.053*
H4A0.47420.83020.38120.053*
C50.3110 (3)0.6738 (2)0.4421 (2)0.0343 (5)
C60.3413 (3)0.6377 (2)0.5581 (2)0.0350 (5)
H60.39100.70360.59330.042*
C70.2990 (3)0.5056 (3)0.6222 (2)0.0357 (5)
C80.2262 (3)0.4067 (3)0.5681 (2)0.0396 (5)
H80.19820.31710.61030.048*
C90.1954 (3)0.4408 (3)0.4526 (2)0.0385 (5)
C100.2379 (3)0.5756 (3)0.3897 (2)0.0381 (5)
H100.21680.59930.31210.046*
C110.1173 (3)0.3323 (3)0.3945 (3)0.0466 (6)
H11B0.08390.25030.45270.056*
H11A0.02510.37440.35990.056*
C140.3404 (3)0.4707 (3)0.7471 (2)0.0458 (6)
H14A0.43820.41870.74980.055*
H14B0.35640.55920.77530.055*
C150.0108 (4)1.3348 (3)0.0744 (3)0.0528 (7)
H150.08741.34200.03600.063*
C160.2207 (3)1.2478 (3)0.1330 (2)0.0412 (6)
H160.30171.18570.14650.049*
C10.1657 (3)1.0544 (3)0.2354 (2)0.0422 (6)
N60.3491 (3)0.2042 (3)0.3333 (2)0.0560 (6)
N70.3519 (4)0.2694 (3)0.1395 (3)0.0728 (8)
C120.4207 (4)0.1989 (4)0.2304 (3)0.0599 (8)
H120.51340.14900.22170.072*
C130.2266 (5)0.3210 (4)0.1909 (3)0.0661 (9)
H130.15080.37560.15140.079*
H1A0.517 (7)0.391 (8)1.021 (7)0.099*0.50
H1B0.588 (10)0.5203 (18)0.969 (8)0.099*0.50
S10.21123 (13)1.00586 (11)0.37384 (7)0.0710 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0382 (2)0.0368 (2)0.0329 (2)0.00232 (16)0.00183 (16)0.00624 (15)
N10.0540 (14)0.0583 (15)0.0387 (12)0.0090 (11)0.0033 (11)0.0010 (11)
N20.0371 (11)0.0417 (11)0.0377 (11)0.0018 (9)0.0051 (9)0.0024 (9)
N30.0422 (11)0.0363 (10)0.0313 (10)0.0001 (8)0.0048 (8)0.0018 (8)
N40.0436 (13)0.0825 (19)0.0403 (12)0.0183 (12)0.0039 (10)0.0054 (12)
N50.0470 (12)0.0392 (11)0.0464 (12)0.0006 (9)0.0147 (10)0.0112 (9)
N80.0418 (11)0.0370 (11)0.0364 (10)0.0007 (9)0.0020 (9)0.0040 (8)
N90.0670 (16)0.0378 (12)0.0624 (16)0.0086 (11)0.0138 (13)0.0002 (11)
N100.0450 (12)0.0347 (10)0.0358 (10)0.0016 (9)0.0034 (9)0.0023 (8)
O10.147 (7)0.097 (5)0.142 (7)0.010 (5)0.029 (6)0.012 (5)
C20.0390 (13)0.0412 (13)0.0391 (13)0.0037 (10)0.0015 (10)0.0019 (10)
C30.0417 (15)0.079 (2)0.0343 (13)0.0104 (14)0.0010 (11)0.0011 (13)
C40.0587 (16)0.0396 (13)0.0333 (12)0.0075 (12)0.0109 (11)0.0017 (10)
C50.0352 (12)0.0323 (11)0.0340 (11)0.0014 (9)0.0028 (9)0.0019 (9)
C60.0365 (12)0.0337 (11)0.0345 (12)0.0018 (9)0.0060 (9)0.0034 (9)
C70.0360 (12)0.0356 (12)0.0336 (11)0.0013 (9)0.0033 (9)0.0004 (9)
C80.0412 (13)0.0328 (12)0.0425 (13)0.0024 (10)0.0027 (11)0.0003 (10)
C90.0358 (12)0.0368 (12)0.0439 (13)0.0017 (10)0.0028 (10)0.0098 (10)
C100.0435 (13)0.0380 (12)0.0330 (12)0.0014 (10)0.0068 (10)0.0055 (10)
C110.0446 (15)0.0441 (14)0.0535 (16)0.0052 (11)0.0081 (12)0.0131 (12)
C140.0505 (15)0.0461 (14)0.0368 (13)0.0133 (12)0.0084 (11)0.0072 (11)
C150.0564 (17)0.0432 (15)0.0531 (16)0.0054 (12)0.0138 (13)0.0011 (12)
C160.0390 (13)0.0381 (13)0.0426 (13)0.0035 (10)0.0054 (11)0.0050 (10)
C10.0423 (14)0.0388 (13)0.0457 (14)0.0095 (10)0.0019 (11)0.0090 (11)
N60.0552 (15)0.0525 (14)0.0631 (16)0.0080 (11)0.0175 (13)0.0127 (12)
N70.089 (2)0.074 (2)0.0569 (17)0.0002 (17)0.0022 (16)0.0172 (15)
C120.0532 (18)0.0542 (18)0.078 (2)0.0016 (14)0.0063 (16)0.0266 (16)
C130.086 (2)0.063 (2)0.0518 (18)0.0154 (18)0.0215 (17)0.0102 (15)
S10.0963 (6)0.0730 (5)0.0395 (4)0.0230 (5)0.0105 (4)0.0065 (4)
Geometric parameters (Å, º) top
Zn1—N82.146 (2)C4—H4B0.9700
Zn1—N8i2.146 (2)C4—H4A0.9700
Zn1—N12.149 (2)C5—C101.383 (3)
Zn1—N1i2.149 (2)C5—C61.390 (3)
Zn1—N2i2.196 (2)C6—C71.382 (3)
Zn1—N22.196 (2)C6—H60.9300
N1—C11.152 (3)C7—C81.398 (3)
N2—C21.327 (3)C7—C141.515 (3)
N2—C31.344 (3)C8—C91.383 (4)
N3—C21.322 (3)C8—H80.9300
N3—N41.346 (3)C9—C101.398 (3)
N3—C41.455 (3)C9—C111.518 (3)
N4—C31.316 (4)C10—H100.9300
N5—C131.324 (4)C11—H11B0.9700
N5—N61.357 (3)C11—H11A0.9700
N5—C111.452 (4)C14—N10iii1.459 (3)
N8—C161.316 (3)C14—H14A0.9700
N8—C151.353 (4)C14—H14B0.9700
N9—C151.314 (4)C15—H150.9300
N9—N101.361 (3)C16—H160.9300
N10—C161.322 (3)C1—S11.625 (3)
N10—C14ii1.459 (3)N6—C121.317 (4)
O1—H1A0.853 (13)N7—C131.322 (5)
O1—H1B0.853 (13)N7—C121.334 (5)
C2—H20.9300C12—H120.9300
C3—H30.9300C13—H130.9300
C4—C51.516 (3)
N8—Zn1—N8i180.0C10—C5—C6119.5 (2)
N8—Zn1—N189.99 (9)C10—C5—C4124.7 (2)
N8i—Zn1—N190.01 (9)C6—C5—C4115.9 (2)
N8—Zn1—N1i90.01 (9)C7—C6—C5121.1 (2)
N8i—Zn1—N1i89.99 (9)C7—C6—H6119.5
N1—Zn1—N1i180.0C5—C6—H6119.5
N8—Zn1—N2i85.29 (8)C6—C7—C8119.0 (2)
N8i—Zn1—N2i94.71 (8)C6—C7—C14118.5 (2)
N1—Zn1—N2i88.53 (9)C8—C7—C14122.4 (2)
N1i—Zn1—N2i91.47 (9)C9—C8—C7120.6 (2)
N8—Zn1—N294.71 (8)C9—C8—H8119.7
N8i—Zn1—N285.29 (8)C7—C8—H8119.7
N1—Zn1—N291.47 (9)C8—C9—C10119.4 (2)
N1i—Zn1—N288.53 (9)C8—C9—C11120.2 (2)
N2i—Zn1—N2180.00 (11)C10—C9—C11120.4 (2)
C1—N1—Zn1140.3 (2)C5—C10—C9120.4 (2)
C2—N2—C3102.6 (2)C5—C10—H10119.8
C2—N2—Zn1127.61 (18)C9—C10—H10119.8
C3—N2—Zn1128.64 (18)N5—C11—C9111.5 (2)
C2—N3—N4109.9 (2)N5—C11—H11B109.3
C2—N3—C4128.9 (2)C9—C11—H11B109.3
N4—N3—C4121.2 (2)N5—C11—H11A109.3
C3—N4—N3102.6 (2)C9—C11—H11A109.3
C13—N5—N6108.7 (3)H11B—C11—H11A108.0
C13—N5—C11129.8 (3)N10iii—C14—C7113.3 (2)
N6—N5—C11121.1 (2)N10iii—C14—H14A108.9
C16—N8—C15103.1 (2)C7—C14—H14A108.9
C16—N8—Zn1128.82 (18)N10iii—C14—H14B108.9
C15—N8—Zn1126.93 (19)C7—C14—H14B108.9
C15—N9—N10102.7 (2)H14A—C14—H14B107.7
C16—N10—N9109.5 (2)N9—C15—N8114.2 (3)
C16—N10—C14ii128.6 (2)N9—C15—H15122.9
N9—N10—C14ii121.8 (2)N8—C15—H15122.9
H1A—O1—H1B109 (3)N8—C16—N10110.5 (2)
N2—C2—N3110.2 (2)N8—C16—H16124.8
N2—C2—H2124.9N10—C16—H16124.8
N3—C2—H2124.9N1—C1—S1176.9 (3)
N4—C3—N2114.6 (2)C12—N6—N5102.2 (3)
N4—C3—H3122.7C13—N7—C12101.6 (3)
N2—C3—H3122.7N6—C12—N7115.9 (3)
N3—C4—C5114.5 (2)N6—C12—H12122.1
N3—C4—H4B108.6N7—C12—H12122.1
C5—C4—H4B108.6N5—C13—N7111.6 (3)
N3—C4—H4A108.6N5—C13—H13124.2
C5—C4—H4A108.6N7—C13—H13124.2
H4B—C4—H4A107.6
Symmetry codes: (i) x, y+2, z; (ii) x, y+1, z1; (iii) x, y1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(NCS)2(C15H15N9)2]·H2O
Mr842.27
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.5766 (17), 9.5036 (19), 11.723 (2)
α, β, γ (°)80.01 (3), 85.40 (3), 89.55 (3)
V3)938.0 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerRigaku Saturn724
Absorption correctionMulti-scan
Tmin, Tmax0.852, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
11566, 4444, 3972
Rint0.024
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.05
No. of reflections4444
No. of parameters265
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.39

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2006).

 

Acknowledgements

This work was supported financially by the National Natural Science Foundation (No. 20971110) and the program for the construction of Puyang Key Laboratory.

References

First citationMoon, D., Kang, S., Park, J., Lee, K., John, R. P., Won, H., Seong, G. H., Kim, Y. S., Kim, G. H., Rhee, H. & Lah, M. S. (2006). J. Am. Chem. Soc. 128, 3530–3531.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2006). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X.-J., Zhang, X.-H., Li, X.-X., Hou, H.-W. & Fan, Y.-T. (2011). J. Mol. Struct. 996, 110–114.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, G.-C., Ding, Y.-J., Okamura, T., Huang, Y.-Q., Bai, Z.-S., Hua, Q., Liu, G.-X. & Sun, W.-Y. (2009). Cryst. Growth Des. 9, 395–403.  Web of Science CSD CrossRef CAS Google Scholar
First citationYin, X.-J., Zhou, X.-H., Gu, Z.-G., Zuo, J.-L. & You, X.-Z. (2009). Inorg. Chem. Commun. 12, 548–551.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds