organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(8aR,9R)-9-Hy­dr­oxy-7,8,8a,9-tetra­hydro­furo[3,2-f]indolizin-6(4H)-one

aInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic 81237, bInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic 81237, and cInstitute of Mathematics and Physics, Faculty of Mechanical Engineering STU, Námestie slobody 17, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: viktor.vrabel@stuba.sk

(Received 19 September 2012; accepted 24 September 2012; online 29 September 2012)

The title compound, C10H11NO3, crystallizes with four independent mol­ecules in the asymmetric unit. Their geometries are very similar and corresponding bond distances are almost identical. The central six-membered ring of the indolizine moiety adopts a envelope conformation [the displacement of the flap atom (the C atom opposite the N atom) being 0.539 (2), 0.548 (3), 0.509 (3) and 0.544 (3) Å in the four molecules], while the conformation of the oxopyrrolidine ring is close to that of a flat envelope. The displacements of the non-fused C atom opposite the C=O group of the pyrrolidine ring of the four mol­ecules are 0.366 (3), 0.335 (3), 0.173 (3) and −0.310 (3) Å. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into chains, which run parallel to the c axis. The absolute configuration was assigned from the synthesis.

Related literature

For background to indolizines and their biological activity, see: Gubin et al. (1992[Gubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981-988.]); Gundersen et al. (2007[Gundersen, L.-L., Charnock, C., Negussie, A. H., Rise, F. & Teklu, S. (2007). Eur. J. Pharm. Sci. 30, 26-30.]); Gupta et al. (2003[Gupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867-873.]); Mikael (1999[Mikael, J. P. (1999). Nat. Prod. Rep. 16, 675-709.]); Pyne (2005[Pyne, S. G. (2005). Curr. Org. Synth. 2, 39-57.]); Teklu et al. (2005[Teklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127-3139.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11NO3

  • Mr = 193.20

  • Orthorhombic, P 21 21 21

  • a = 14.7603 (10) Å

  • b = 15.1301 (17) Å

  • c = 16.2847 (9) Å

  • V = 3636.8 (5) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.58 × 0.34 × 0.09 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: analytical (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.953, Tmax = 0.989

  • 55202 measured reflections

  • 3581 independent reflections

  • 3168 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.086

  • S = 1.04

  • 3581 reflections

  • 522 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A;
O3—H3O⋯O2i 0.84 (2) 1.90 (2) 2.681 (2) 154 (3)
O6—H6O⋯O8ii 0.86 (2) 1.93 (2) 2.766 (3) 166 (4)
O9—H9O⋯O5ii 0.85 (2) 1.92 (2) 2.737 (3) 161 (3)
O12—H12O⋯O11iii 0.83 (2) 1.98 (2) 2.797 (3) 167 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+2, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Indolizines are electron-rich heterocycles with very low oxidation potential. Functionalized indolizines are common substructures found in biologically important natural products and synthetic pharmaceuticals. Due to the various biological functions associated with this skeleton, it has been frequently employed as a key scaffold in the drug industry (Gundersen et al., 2007). Indolizine alkaloids are excellent inhibitors of biologically important pathways. These include the binding and processing of glycoproteins, potent glycosidase inhibitory activities (Pyne, 2005), activity against AIDS virus HIV and some carcinogenic cells (Mikael, 1999). They have also shown to be calcium entry blockers (Gupta et al., 2003) and potent antioxidants inhibiting lipid peroxidation in vitro (Teklu et al., 2005). As such, indolizines are important synthetic targets in view of developing new pharmaceuticals for the treatment of cardiovascular diseases (Gubin et al., 1992). Based on these facts and in contitutation of our interest in developing simple and efficient route for the synthesis of novel indolizine derivatives. The molecular structure and the atom labeling scheme of four independent molecules in the asymmetric unit are shown in Fig. 1. The absolute configuration was established by synthesis and is depicted in the scheme and Fig.1. The expected stereochemistry of atoms C4 and C10, C14 and C20, C24 and C30, C34 and C40 in the four molecules was confirmed as R, R, respectively (Fig. 1). The central six-membered rings of the four molecules according to Nardelli (Nardelli, 1983) is not planar and adopts an envelope conformation, with atoms C10, C20, C30 and C40 as the flaps. The displacements of atoms C10, C20, C30 and C40 from the mean planes of the remaining five atoms are 0.539 (2), 0.548 (3), 0.509 (3) and 0.544 (3) Å, respectively. The bond lengths of the carbonyl groups C=O in the four molecules are somewhat longer than typical carbonyl bonds. This may be due to the fact that atoms O2, O5, O8 and O11 participates in intermolecular hydrogen bonds, they seem to be effective in the stabilization of the structure. The central six-membered rings form dihedral angles of 21.8 (1), 20.1 (1), 24.9 (1) and 22.5 (1)° with the oxopyrrolidine rings, in the four independent molecules, respectively. Intermolecular O–H···O hydrogen bonds link the molecules into extended chains, which run parallel to the c axis (Fig.2).

Related literature top

For background to indolizines and their biological activity, see: Gubin et al. (1992); Gundersen et al. (2007); Gupta et al. (2003); Mikael (1999); Pyne (2005); Teklu et al. (2005). For asymmetry parameters, see: Nardelli (1983).

Experimental top

The title compound (8aR,RS)-9-hydroxy-7,8,8a,9-tetrahydrofuro[3,2-f] indolizin-6(4H)-one was prepared by a reduction of (R)-8,8a-dihydrofuro[3,2-f]indolizine-6,9(4H,7H)-dione with sodium borohydride. To a solution of a freshly crystallized keto-lactam (191 mg, 1 mmoL) in methanol (10 ml) was added in a small portions sodium borohydride (42 mg, 1,1 mmoL) at 0–5°C. The mixture was then stirred at 0°C for 10 h, until total disappearance of starting materials was observed (TLC). The solution was carefully neutralized with 36% HCl, and the solvent was removed under vacuum. The obtained solution was then extracted with dichloromethane (3 x 25 ml). The organic layer was dried over MgSO4, concentrated in vacuo to afford a colourless oil, which quickly crystallized on standing in a fridge. Recrystallization from n-hexane/ethylacetate (9:1) gave colourless crystals of the title compound (150 mg, 78%).

Refinement top

All H atoms bonded to C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93 - 0.98 Å and Uiso set at 1.2Ueq of the parent atom. H atoms of the hidroxyl groups were located in a difference map and finally refined with O—H distance fixed at 0.84 Å. In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

Structure description top

Indolizines are electron-rich heterocycles with very low oxidation potential. Functionalized indolizines are common substructures found in biologically important natural products and synthetic pharmaceuticals. Due to the various biological functions associated with this skeleton, it has been frequently employed as a key scaffold in the drug industry (Gundersen et al., 2007). Indolizine alkaloids are excellent inhibitors of biologically important pathways. These include the binding and processing of glycoproteins, potent glycosidase inhibitory activities (Pyne, 2005), activity against AIDS virus HIV and some carcinogenic cells (Mikael, 1999). They have also shown to be calcium entry blockers (Gupta et al., 2003) and potent antioxidants inhibiting lipid peroxidation in vitro (Teklu et al., 2005). As such, indolizines are important synthetic targets in view of developing new pharmaceuticals for the treatment of cardiovascular diseases (Gubin et al., 1992). Based on these facts and in contitutation of our interest in developing simple and efficient route for the synthesis of novel indolizine derivatives. The molecular structure and the atom labeling scheme of four independent molecules in the asymmetric unit are shown in Fig. 1. The absolute configuration was established by synthesis and is depicted in the scheme and Fig.1. The expected stereochemistry of atoms C4 and C10, C14 and C20, C24 and C30, C34 and C40 in the four molecules was confirmed as R, R, respectively (Fig. 1). The central six-membered rings of the four molecules according to Nardelli (Nardelli, 1983) is not planar and adopts an envelope conformation, with atoms C10, C20, C30 and C40 as the flaps. The displacements of atoms C10, C20, C30 and C40 from the mean planes of the remaining five atoms are 0.539 (2), 0.548 (3), 0.509 (3) and 0.544 (3) Å, respectively. The bond lengths of the carbonyl groups C=O in the four molecules are somewhat longer than typical carbonyl bonds. This may be due to the fact that atoms O2, O5, O8 and O11 participates in intermolecular hydrogen bonds, they seem to be effective in the stabilization of the structure. The central six-membered rings form dihedral angles of 21.8 (1), 20.1 (1), 24.9 (1) and 22.5 (1)° with the oxopyrrolidine rings, in the four independent molecules, respectively. Intermolecular O–H···O hydrogen bonds link the molecules into extended chains, which run parallel to the c axis (Fig.2).

For background to indolizines and their biological activity, see: Gubin et al. (1992); Gundersen et al. (2007); Gupta et al. (2003); Mikael (1999); Pyne (2005); Teklu et al. (2005). For asymmetry parameters, see: Nardelli (1983).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with the atomic numbering scheme of the four independent molecules. Displacement ellipsoids are drawn at the 50% probability level (Brandenburg, 2001).
[Figure 2] Fig. 2. Packing view of (I) and showing the formation of the hydrogen-bonded chains running along the c axis. H atoms have been omitted for clarity.
(8aR,9R)-9-Hydroxy-7,8,8a,9- tetrahydrofuro[3,2-f]indolizin-6(4H)-one top
Crystal data top
C10H11NO3F(000) = 1632
Mr = 193.20Dx = 1.411 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 13239 reflections
a = 14.7603 (10) Åθ = 2.3–29.5°
b = 15.1301 (17) ŵ = 0.11 mm1
c = 16.2847 (9) ÅT = 298 K
V = 3636.8 (5) Å3Prism, colourless
Z = 160.58 × 0.34 × 0.09 mm
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
3581 independent reflections
Radiation source: fine-focus sealed tube3168 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 10.4340 pixels mm-1θmax = 25.0°, θmin = 3.0°
Rotation method data acquisition using ω and φ scansh = 1717
Absorption correction: analytical
(Clark & Reid, 1995)
k = 1818
Tmin = 0.953, Tmax = 0.989l = 1819
55202 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.6847P]
where P = (Fo2 + 2Fc2)/3
3581 reflections(Δ/σ)max < 0.001
522 parametersΔρmax = 0.17 e Å3
4 restraintsΔρmin = 0.15 e Å3
Crystal data top
C10H11NO3V = 3636.8 (5) Å3
Mr = 193.20Z = 16
Orthorhombic, P212121Mo Kα radiation
a = 14.7603 (10) ŵ = 0.11 mm1
b = 15.1301 (17) ÅT = 298 K
c = 16.2847 (9) Å0.58 × 0.34 × 0.09 mm
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
3581 independent reflections
Absorption correction: analytical
(Clark & Reid, 1995)
3168 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.989Rint = 0.036
55202 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0344 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.17 e Å3
3581 reflectionsΔρmin = 0.15 e Å3
522 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.37091 (18)0.0319 (2)0.96600 (15)0.0505 (7)
H1B0.39350.08110.99820.061*
H1A0.40140.02150.98410.061*
C20.4725 (2)0.0647 (2)0.83402 (17)0.0564 (8)
H20.52990.07060.85690.068*
C30.4509 (2)0.0705 (2)0.75510 (19)0.0687 (9)
H30.49240.08050.71310.082*
C40.22570 (19)0.02846 (19)0.83141 (14)0.0460 (6)
H40.19290.08480.83070.055*
C50.12006 (19)0.0081 (2)0.95377 (15)0.0493 (7)
H5B0.08370.05980.94150.059*
H5A0.08890.04410.93360.059*
C60.1382 (2)0.0008 (2)1.04619 (15)0.0552 (8)
H6B0.12930.05741.07300.066*
H6A0.09850.04251.07130.066*
C70.2351 (2)0.02766 (19)1.05206 (15)0.0475 (7)
C80.38974 (18)0.04746 (18)0.87672 (14)0.0435 (6)
C90.32426 (19)0.04454 (19)0.81992 (14)0.0458 (6)
C100.21457 (17)0.01593 (17)0.91544 (14)0.0401 (6)
H100.22960.07870.90990.048*
C110.85665 (16)0.2162 (2)0.71399 (14)0.0440 (6)
H11A0.82320.25690.74860.053*
H11B0.83990.15640.72930.053*
C120.74899 (17)0.2316 (2)0.58353 (16)0.0467 (6)
H120.69250.21810.60540.056*
C130.76729 (17)0.2542 (2)0.50606 (17)0.0524 (7)
H130.72420.25860.46460.063*
C140.99586 (16)0.26724 (19)0.58311 (14)0.0424 (6)
H141.00860.33020.59140.051*
C151.11005 (17)0.2440 (2)0.70238 (15)0.0488 (7)
H15A1.15940.20570.68560.059*
H15B1.12560.30460.68880.059*
C161.09142 (17)0.2346 (2)0.79415 (15)0.0510 (7)
H16A1.11890.18110.81550.061*
H16B1.11530.28490.82410.061*
C170.99049 (17)0.2306 (2)0.80141 (14)0.0454 (6)
C180.83367 (16)0.23212 (18)0.62607 (14)0.0392 (6)
C190.89690 (16)0.25498 (17)0.57055 (13)0.0391 (6)
C201.02126 (16)0.21675 (18)0.66021 (14)0.0397 (6)
H201.02460.15370.64680.048*
C210.38642 (19)0.6723 (3)0.70964 (15)0.0648 (9)
H21B0.34920.69940.75180.078*
H21A0.37540.60910.71020.078*
C220.27775 (19)0.7229 (2)0.58750 (17)0.0563 (8)
H220.22090.70860.60820.068*
C230.29579 (18)0.7594 (2)0.51509 (18)0.0544 (7)
H230.25220.77510.47650.065*
C240.52638 (17)0.74252 (19)0.58671 (14)0.0446 (6)
H240.54540.80360.59700.054*
C250.63795 (18)0.7101 (2)0.70505 (15)0.0539 (7)
H25B0.68540.66790.69250.065*
H25A0.65800.76850.68830.065*
C260.61646 (19)0.7090 (2)0.79567 (16)0.0577 (8)
H26B0.64830.66110.82280.069*
H26A0.63400.76430.82110.069*
C270.51560 (17)0.69575 (19)0.80162 (14)0.0435 (6)
C280.36308 (17)0.7098 (2)0.62739 (14)0.0477 (7)
C290.42635 (16)0.73930 (18)0.57528 (14)0.0416 (6)
C300.55016 (17)0.68515 (18)0.66060 (14)0.0402 (6)
H300.55490.62360.64230.048*
C310.88814 (18)0.9793 (2)0.52818 (16)0.0516 (7)
H31A0.92011.02810.50250.062*
H31B0.90820.92480.50270.062*
C320.99215 (19)0.9749 (2)0.66191 (17)0.0540 (7)
H321.05000.97130.63950.065*
C330.9707 (2)0.9787 (2)0.74150 (17)0.0605 (8)
H331.01270.97860.78410.073*
C340.74269 (18)0.98715 (19)0.66276 (14)0.0427 (6)
H340.72291.04860.66950.051*
C350.63366 (19)0.9893 (2)0.53834 (17)0.0559 (8)
H35B0.58750.94390.54220.067*
H35A0.61261.04160.56700.067*
C360.6542 (2)1.0103 (3)0.45011 (17)0.0644 (9)
H36B0.62681.06600.43440.077*
H36A0.63120.96420.41430.077*
C370.7559 (2)1.0157 (2)0.44446 (16)0.0495 (7)
C380.90826 (17)0.97727 (18)0.61805 (14)0.0432 (6)
C390.84266 (18)0.98120 (18)0.67511 (14)0.0431 (6)
C400.72346 (17)0.95645 (18)0.57500 (14)0.0420 (6)
H400.72420.89170.57360.050*
N10.27316 (15)0.02275 (15)0.97777 (12)0.0438 (5)
N20.95392 (13)0.22898 (15)0.72598 (11)0.0394 (5)
N30.48159 (14)0.69005 (16)0.72568 (11)0.0445 (5)
N40.79082 (14)0.99003 (15)0.51692 (12)0.0443 (5)
O10.35925 (14)0.05982 (16)0.74337 (11)0.0643 (6)
O20.27650 (15)0.05083 (16)1.11433 (10)0.0666 (6)
O30.18597 (15)0.03090 (19)0.77435 (11)0.0726 (7)
O40.85804 (12)0.27000 (15)0.49559 (10)0.0526 (5)
O50.94469 (13)0.22702 (18)0.86442 (10)0.0684 (7)
O61.04954 (13)0.23539 (19)0.51857 (11)0.0707 (7)
O70.38731 (13)0.77089 (14)0.50474 (11)0.0534 (5)
O80.46942 (13)0.69031 (16)0.86436 (10)0.0597 (8)0.997 (7)
O90.57598 (15)0.7075 (2)0.51995 (11)0.0767 (8)
O100.87864 (13)0.98284 (15)0.75233 (10)0.0565 (5)
O110.80178 (14)1.03788 (18)0.38476 (11)0.0695 (7)
O120.69166 (14)0.93163 (16)0.71545 (11)0.0595 (6)
H3O0.2085 (19)0.024 (2)0.7273 (13)0.063 (9)*
H6O1.034 (3)0.260 (3)0.4732 (16)0.096 (13)*
H9O0.557 (2)0.726 (2)0.4740 (14)0.080 (11)*
H12O0.702 (2)0.944 (2)0.7642 (12)0.070 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0463 (16)0.0713 (19)0.0337 (13)0.0001 (14)0.0075 (12)0.0001 (13)
C20.0521 (17)0.0692 (19)0.0479 (16)0.0176 (15)0.0010 (14)0.0049 (14)
C30.062 (2)0.095 (3)0.0485 (18)0.0281 (19)0.0087 (15)0.0073 (17)
C40.0547 (16)0.0569 (17)0.0265 (12)0.0028 (14)0.0044 (12)0.0008 (11)
C50.0492 (16)0.0630 (19)0.0356 (14)0.0012 (14)0.0005 (12)0.0059 (13)
C60.0585 (18)0.074 (2)0.0334 (13)0.0039 (16)0.0067 (13)0.0082 (13)
C70.0586 (17)0.0567 (17)0.0270 (13)0.0024 (14)0.0016 (13)0.0011 (11)
C80.0487 (14)0.0469 (15)0.0351 (13)0.0049 (13)0.0013 (11)0.0021 (11)
C90.0570 (16)0.0523 (16)0.0282 (12)0.0073 (13)0.0005 (12)0.0037 (12)
C100.0459 (15)0.0437 (14)0.0307 (12)0.0004 (12)0.0002 (11)0.0046 (11)
C110.0381 (13)0.0650 (18)0.0290 (12)0.0092 (12)0.0016 (11)0.0032 (12)
C120.0360 (13)0.0655 (17)0.0385 (14)0.0063 (13)0.0021 (11)0.0033 (13)
C130.0383 (13)0.081 (2)0.0377 (14)0.0044 (14)0.0066 (12)0.0073 (14)
C140.0354 (13)0.0597 (16)0.0322 (12)0.0023 (12)0.0064 (10)0.0050 (12)
C150.0366 (13)0.0696 (19)0.0402 (13)0.0038 (13)0.0027 (11)0.0058 (13)
C160.0423 (14)0.074 (2)0.0364 (13)0.0063 (14)0.0072 (12)0.0018 (13)
C170.0441 (14)0.0644 (18)0.0276 (12)0.0036 (13)0.0016 (11)0.0057 (12)
C180.0388 (13)0.0489 (15)0.0300 (12)0.0025 (12)0.0002 (10)0.0016 (11)
C190.0379 (13)0.0526 (16)0.0269 (11)0.0010 (12)0.0013 (10)0.0008 (11)
C200.0390 (13)0.0499 (15)0.0301 (12)0.0048 (12)0.0037 (10)0.0016 (11)
C210.0465 (16)0.120 (3)0.0282 (13)0.0248 (18)0.0024 (12)0.0046 (15)
C220.0431 (15)0.084 (2)0.0418 (15)0.0075 (15)0.0009 (13)0.0131 (15)
C230.0444 (15)0.0708 (19)0.0479 (16)0.0022 (14)0.0079 (13)0.0037 (15)
C240.0411 (14)0.0574 (17)0.0354 (13)0.0020 (13)0.0113 (11)0.0114 (12)
C250.0425 (14)0.080 (2)0.0389 (14)0.0026 (14)0.0057 (12)0.0023 (14)
C260.0455 (16)0.091 (2)0.0362 (14)0.0039 (15)0.0000 (12)0.0066 (15)
C270.0448 (14)0.0570 (17)0.0286 (12)0.0020 (13)0.0011 (12)0.0025 (12)
C280.0405 (14)0.0725 (19)0.0302 (12)0.0109 (14)0.0048 (11)0.0070 (12)
C290.0426 (14)0.0518 (15)0.0303 (12)0.0005 (12)0.0036 (11)0.0008 (12)
C300.0437 (14)0.0469 (15)0.0299 (12)0.0004 (12)0.0091 (11)0.0011 (11)
C310.0430 (15)0.079 (2)0.0326 (13)0.0029 (15)0.0030 (12)0.0012 (13)
C320.0477 (16)0.0695 (19)0.0447 (15)0.0013 (14)0.0052 (13)0.0083 (14)
C330.0527 (18)0.089 (2)0.0401 (15)0.0074 (17)0.0116 (14)0.0112 (15)
C340.0466 (15)0.0508 (16)0.0306 (12)0.0007 (12)0.0057 (11)0.0020 (11)
C350.0421 (15)0.081 (2)0.0444 (15)0.0020 (15)0.0015 (13)0.0031 (15)
C360.0514 (17)0.096 (3)0.0458 (16)0.0099 (17)0.0055 (14)0.0108 (17)
C370.0520 (16)0.0674 (19)0.0291 (13)0.0057 (14)0.0016 (12)0.0018 (13)
C380.0450 (14)0.0519 (16)0.0327 (12)0.0028 (13)0.0006 (11)0.0034 (11)
C390.0502 (15)0.0506 (15)0.0286 (12)0.0000 (13)0.0017 (12)0.0002 (11)
C400.0439 (14)0.0519 (16)0.0303 (12)0.0004 (12)0.0023 (11)0.0014 (11)
N10.0482 (12)0.0587 (14)0.0245 (10)0.0018 (11)0.0029 (9)0.0027 (10)
N20.0350 (11)0.0571 (13)0.0262 (10)0.0029 (10)0.0009 (8)0.0008 (9)
N30.0382 (12)0.0712 (15)0.0241 (10)0.0083 (11)0.0047 (9)0.0022 (10)
N40.0414 (12)0.0622 (14)0.0293 (10)0.0036 (11)0.0028 (10)0.0040 (10)
O10.0657 (13)0.0953 (17)0.0320 (9)0.0244 (13)0.0005 (9)0.0092 (10)
O20.0790 (14)0.0961 (16)0.0246 (9)0.0203 (13)0.0032 (9)0.0025 (10)
O30.0677 (14)0.123 (2)0.0269 (10)0.0363 (14)0.0015 (10)0.0122 (11)
O40.0398 (9)0.0880 (15)0.0299 (8)0.0008 (10)0.0017 (8)0.0116 (10)
O50.0515 (11)0.127 (2)0.0270 (9)0.0015 (13)0.0019 (9)0.0075 (11)
O60.0462 (11)0.134 (2)0.0322 (10)0.0249 (13)0.0103 (9)0.0193 (13)
O70.0500 (11)0.0663 (13)0.0440 (10)0.0019 (10)0.0007 (9)0.0168 (10)
O80.0482 (12)0.1068 (18)0.0241 (10)0.0013 (11)0.0046 (8)0.0012 (10)
O90.0595 (13)0.140 (2)0.0310 (10)0.0296 (14)0.0184 (10)0.0243 (12)
O100.0582 (13)0.0843 (15)0.0270 (9)0.0078 (11)0.0046 (8)0.0028 (9)
O110.0577 (12)0.1188 (19)0.0319 (10)0.0001 (13)0.0015 (9)0.0169 (11)
O120.0626 (12)0.0833 (15)0.0326 (10)0.0202 (11)0.0071 (9)0.0007 (10)
Geometric parameters (Å, º) top
C1—N11.462 (3)C21—H21B0.9700
C1—C81.499 (3)C21—H21A0.9700
C1—H1B0.9700C22—C231.329 (4)
C1—H1A0.9700C22—C281.431 (4)
C2—C31.327 (4)C22—H220.9300
C2—C81.429 (4)C23—O71.372 (3)
C2—H20.9300C23—H230.9300
C3—O11.376 (4)C24—O91.414 (3)
C3—H30.9300C24—C291.489 (3)
C4—O31.419 (3)C24—C301.525 (3)
C4—C91.487 (4)C24—H240.9800
C4—C101.533 (3)C25—C261.509 (4)
C4—H40.9800C25—C301.532 (4)
C5—C61.533 (4)C25—H25B0.9700
C5—C101.533 (4)C25—H25A0.9700
C5—H5B0.9700C26—C271.505 (4)
C5—H5A0.9700C26—H26B0.9700
C6—C71.496 (4)C26—H26A0.9700
C6—H6B0.9700C27—O81.231 (3)
C6—H6A0.9700C27—N31.337 (3)
C7—O21.235 (3)C28—C291.339 (3)
C7—N11.336 (3)C29—O71.371 (3)
C8—C91.338 (3)C30—N31.467 (3)
C9—O11.369 (3)C30—H300.9800
C10—N11.456 (3)C31—N41.457 (3)
C10—H100.9800C31—C381.494 (3)
C11—N21.462 (3)C31—H31A0.9700
C11—C181.491 (3)C31—H31B0.9700
C11—H11A0.9700C32—C331.336 (4)
C11—H11B0.9700C32—C381.430 (4)
C12—C131.335 (4)C32—H320.9300
C12—C181.429 (3)C33—O101.371 (3)
C12—H120.9300C33—H330.9300
C13—O41.371 (3)C34—O121.417 (3)
C13—H130.9300C34—C391.492 (4)
C14—O61.402 (3)C34—C401.529 (3)
C14—C191.487 (3)C34—H340.9800
C14—C201.517 (3)C35—C361.502 (4)
C14—H140.9800C35—C401.536 (4)
C15—C161.526 (3)C35—H35B0.9700
C15—C201.536 (4)C35—H35A0.9700
C15—H15A0.9700C36—C371.506 (4)
C15—H15B0.9700C36—H36B0.9700
C16—C171.496 (4)C36—H36A0.9700
C16—H16A0.9700C37—O111.232 (3)
C16—H16B0.9700C37—N41.345 (3)
C17—O51.230 (3)C38—C391.343 (3)
C17—N21.342 (3)C39—O101.365 (3)
C18—C191.345 (3)C40—N41.463 (3)
C19—O41.368 (3)C40—H400.9800
C20—N21.473 (3)O3—H3O0.842 (18)
C20—H200.9800O6—H6O0.855 (19)
C21—N31.454 (3)O9—H9O0.848 (19)
C21—C281.494 (4)O12—H12O0.829 (18)
N1—C1—C8109.0 (2)C22—C23—H23124.5
N1—C1—H1B109.9O7—C23—H23124.5
C8—C1—H1B109.9O9—C24—C29113.9 (2)
N1—C1—H1A109.9O9—C24—C30105.9 (2)
C8—C1—H1A109.9C29—C24—C30108.0 (2)
H1B—C1—H1A108.3O9—C24—H24109.6
C3—C2—C8106.1 (3)C29—C24—H24109.6
C3—C2—H2126.9C30—C24—H24109.6
C8—C2—H2126.9C26—C25—C30106.3 (2)
C2—C3—O1111.3 (3)C26—C25—H25B110.5
C2—C3—H3124.4C30—C25—H25B110.5
O1—C3—H3124.4C26—C25—H25A110.5
O3—C4—C9115.2 (2)C30—C25—H25A110.5
O3—C4—C10105.2 (2)H25B—C25—H25A108.7
C9—C4—C10106.8 (2)C27—C26—C25105.8 (2)
O3—C4—H4109.8C27—C26—H26B110.6
C9—C4—H4109.8C25—C26—H26B110.6
C10—C4—H4109.8C27—C26—H26A110.6
C6—C5—C10104.2 (2)C25—C26—H26A110.6
C6—C5—H5B110.9H26B—C26—H26A108.7
C10—C5—H5B110.9O8—C27—N3123.7 (2)
C6—C5—H5A110.9O8—C27—C26127.6 (2)
C10—C5—H5A110.9N3—C27—C26108.7 (2)
H5B—C5—H5A108.9C29—C28—C22106.3 (2)
C7—C6—C5104.5 (2)C29—C28—C21122.3 (2)
C7—C6—H6B110.8C22—C28—C21131.5 (2)
C5—C6—H6B110.8C28—C29—O7110.8 (2)
C7—C6—H6A110.8C28—C29—C24128.6 (2)
C5—C6—H6A110.8O7—C29—C24120.7 (2)
H6B—C6—H6A108.9N3—C30—C24112.5 (2)
O2—C7—N1123.4 (3)N3—C30—C25103.28 (18)
O2—C7—C6127.4 (2)C24—C30—C25115.3 (2)
N1—C7—C6109.2 (2)N3—C30—H30108.5
C9—C8—C2106.7 (2)C24—C30—H30108.5
C9—C8—C1122.1 (2)C25—C30—H30108.5
C2—C8—C1131.2 (2)N4—C31—C38108.8 (2)
C8—C9—O1110.6 (2)N4—C31—H31A109.9
C8—C9—C4128.7 (2)C38—C31—H31A109.9
O1—C9—C4120.8 (2)N4—C31—H31B109.9
N1—C10—C5103.03 (18)C38—C31—H31B109.9
N1—C10—C4112.5 (2)H31A—C31—H31B108.3
C5—C10—C4115.3 (2)C33—C32—C38106.1 (3)
N1—C10—H10108.6C33—C32—H32126.9
C5—C10—H10108.6C38—C32—H32126.9
C4—C10—H10108.6C32—C33—O10111.2 (2)
N2—C11—C18109.3 (2)C32—C33—H33124.4
N2—C11—H11A109.8O10—C33—H33124.4
C18—C11—H11A109.8O12—C34—C39114.1 (2)
N2—C11—H11B109.8O12—C34—C40106.7 (2)
C18—C11—H11B109.8C39—C34—C40106.9 (2)
H11A—C11—H11B108.3O12—C34—H34109.7
C13—C12—C18106.3 (2)C39—C34—H34109.7
C13—C12—H12126.9C40—C34—H34109.7
C18—C12—H12126.9C36—C35—C40105.4 (2)
C12—C13—O4111.1 (2)C36—C35—H35B110.7
C12—C13—H13124.5C40—C35—H35B110.7
O4—C13—H13124.5C36—C35—H35A110.7
O6—C14—C19114.2 (2)C40—C35—H35A110.7
O6—C14—C20107.9 (2)H35B—C35—H35A108.8
C19—C14—C20107.1 (2)C35—C36—C37105.7 (2)
O6—C14—H14109.2C35—C36—H36B110.6
C19—C14—H14109.2C37—C36—H36B110.6
C20—C14—H14109.2C35—C36—H36A110.6
C16—C15—C20105.0 (2)C37—C36—H36A110.6
C16—C15—H15A110.7H36B—C36—H36A108.7
C20—C15—H15A110.7O11—C37—N4124.1 (3)
C16—C15—H15B110.7O11—C37—C36127.7 (3)
C20—C15—H15B110.7N4—C37—C36108.2 (2)
H15A—C15—H15B108.8C39—C38—C32106.2 (2)
C17—C16—C15105.1 (2)C39—C38—C31122.2 (2)
C17—C16—H16A110.7C32—C38—C31131.5 (2)
C15—C16—H16A110.7C38—C39—O10110.9 (2)
C17—C16—H16B110.7C38—C39—C34128.5 (2)
C15—C16—H16B110.7O10—C39—C34120.5 (2)
H16A—C16—H16B108.8N4—C40—C34111.9 (2)
O5—C17—N2122.8 (2)N4—C40—C35102.9 (2)
O5—C17—C16128.0 (2)C34—C40—C35115.2 (2)
N2—C17—C16109.2 (2)N4—C40—H40108.9
C19—C18—C12106.4 (2)C34—C40—H40108.9
C19—C18—C11122.0 (2)C35—C40—H40108.9
C12—C18—C11131.6 (2)C7—N1—C10113.8 (2)
C18—C19—O4110.6 (2)C7—N1—C1121.9 (2)
C18—C19—C14128.4 (2)C10—N1—C1122.2 (2)
O4—C19—C14120.9 (2)C17—N2—C11121.3 (2)
N2—C20—C14111.8 (2)C17—N2—C20113.4 (2)
N2—C20—C15102.53 (19)C11—N2—C20123.30 (19)
C14—C20—C15116.5 (2)C27—N3—C21122.7 (2)
N2—C20—H20108.6C27—N3—C30114.3 (2)
C14—C20—H20108.6C21—N3—C30121.8 (2)
C15—C20—H20108.6C37—N4—C31121.4 (2)
N3—C21—C28108.3 (2)C37—N4—C40114.0 (2)
N3—C21—H21B110.0C31—N4—C40123.4 (2)
C28—C21—H21B110.0C9—O1—C3105.3 (2)
N3—C21—H21A110.0C4—O3—H3O111 (2)
C28—C21—H21A110.0C19—O4—C13105.65 (19)
H21B—C21—H21A108.4C14—O6—H6O111 (3)
C23—C22—C28106.5 (2)C29—O7—C23105.5 (2)
C23—C22—H22126.8C24—O9—H9O112 (2)
C28—C22—H22126.8C39—O10—C33105.4 (2)
C22—C23—O7111.0 (2)C34—O12—H12O111 (2)
C8—C2—C3—O11.1 (4)C33—C32—C38—C390.8 (3)
C10—C5—C6—C719.8 (3)C33—C32—C38—C31176.7 (3)
C5—C6—C7—O2171.7 (3)N4—C31—C38—C392.6 (4)
C5—C6—C7—N19.6 (4)N4—C31—C38—C32174.6 (3)
C3—C2—C8—C90.2 (4)C32—C38—C39—O100.9 (3)
C3—C2—C8—C1178.1 (3)C31—C38—C39—O10176.8 (3)
N1—C1—C8—C95.4 (4)C32—C38—C39—C34178.4 (3)
N1—C1—C8—C2176.6 (3)C31—C38—C39—C340.6 (5)
C2—C8—C9—O10.7 (3)O12—C34—C39—C38136.9 (3)
C1—C8—C9—O1179.2 (3)C40—C34—C39—C3819.2 (4)
C2—C8—C9—C4179.8 (3)O12—C34—C39—O1045.9 (4)
C1—C8—C9—C41.4 (5)C40—C34—C39—O10163.6 (2)
O3—C4—C9—C8135.7 (3)O12—C34—C40—N4163.2 (2)
C10—C4—C9—C819.3 (4)C39—C34—C40—N440.8 (3)
O3—C4—C9—O144.9 (4)O12—C34—C40—C3579.8 (3)
C10—C4—C9—O1161.3 (2)C39—C34—C40—C35157.8 (2)
C6—C5—C10—N122.5 (3)C36—C35—C40—N419.1 (3)
C6—C5—C10—C4145.4 (2)C36—C35—C40—C34141.1 (3)
O3—C4—C10—N1163.7 (2)O2—C7—N1—C10173.1 (3)
C9—C4—C10—N140.8 (3)C6—C7—N1—C105.6 (3)
O3—C4—C10—C578.6 (3)O2—C7—N1—C19.3 (5)
C9—C4—C10—C5158.5 (2)C6—C7—N1—C1169.4 (3)
C18—C12—C13—O40.5 (4)C5—C10—N1—C718.2 (3)
C20—C15—C16—C1716.8 (3)C4—C10—N1—C7142.9 (2)
C15—C16—C17—O5176.4 (3)C5—C10—N1—C1178.0 (3)
C15—C16—C17—N25.2 (4)C4—C10—N1—C153.3 (3)
C13—C12—C18—C190.1 (3)C8—C1—N1—C7165.1 (3)
C13—C12—C18—C11177.2 (3)C8—C1—N1—C1032.4 (4)
N2—C11—C18—C190.3 (4)O5—C17—N2—C114.6 (5)
N2—C11—C18—C12177.3 (3)C16—C17—N2—C11173.8 (3)
C12—C18—C19—O40.7 (3)O5—C17—N2—C20168.9 (3)
C11—C18—C19—O4177.0 (2)C16—C17—N2—C209.5 (3)
C12—C18—C19—C14178.5 (3)C18—C11—N2—C17170.8 (3)
C11—C18—C19—C140.9 (5)C18—C11—N2—C2026.5 (4)
O6—C14—C19—C18140.8 (3)C14—C20—N2—C17145.3 (2)
C20—C14—C19—C1821.4 (4)C15—C20—N2—C1719.8 (3)
O6—C14—C19—O441.6 (4)C14—C20—N2—C1150.7 (3)
C20—C14—C19—O4161.0 (2)C15—C20—N2—C11176.3 (2)
O6—C14—C20—N2165.6 (2)O8—C27—N3—C213.2 (5)
C19—C14—C20—N242.3 (3)C26—C27—N3—C21176.5 (3)
O6—C14—C20—C1577.0 (3)O8—C27—N3—C30171.4 (3)
C19—C14—C20—C15159.7 (2)C26—C27—N3—C308.3 (3)
C16—C15—C20—N221.4 (3)C28—C21—N3—C27154.5 (3)
C16—C15—C20—C14143.8 (2)C28—C21—N3—C3038.1 (4)
C28—C22—C23—O70.2 (4)C24—C30—N3—C27137.6 (3)
C30—C25—C26—C277.4 (4)C25—C30—N3—C2712.7 (3)
C25—C26—C27—O8179.6 (3)C24—C30—N3—C2154.1 (4)
C25—C26—C27—N30.1 (4)C25—C30—N3—C21179.0 (3)
C23—C22—C28—C290.3 (3)O11—C37—N4—C315.3 (5)
C23—C22—C28—C21179.4 (3)C36—C37—N4—C31173.6 (3)
N3—C21—C28—C2910.5 (4)O11—C37—N4—C40172.8 (3)
N3—C21—C28—C22169.1 (3)C36—C37—N4—C406.1 (4)
C22—C28—C29—O70.3 (3)C38—C31—N4—C37163.3 (3)
C21—C28—C29—O7179.4 (3)C38—C31—N4—C4030.4 (4)
C22—C28—C29—C24178.9 (3)C34—C40—N4—C37140.3 (2)
C21—C28—C29—C240.8 (5)C35—C40—N4—C3716.1 (3)
O9—C24—C29—C28131.2 (3)C34—C40—N4—C3152.5 (4)
C30—C24—C29—C2813.9 (4)C35—C40—N4—C31176.7 (3)
O9—C24—C29—O750.3 (4)C8—C9—O1—C31.3 (3)
C30—C24—C29—O7167.6 (2)C4—C9—O1—C3179.2 (3)
O9—C24—C30—N3158.5 (2)C2—C3—O1—C91.5 (4)
C29—C24—C30—N336.1 (3)C18—C19—O4—C130.9 (3)
O9—C24—C30—C2583.4 (3)C14—C19—O4—C13179.0 (3)
C29—C24—C30—C25154.2 (2)C12—C13—O4—C190.9 (4)
C26—C25—C30—N311.5 (3)C28—C29—O7—C230.2 (3)
C26—C25—C30—C24134.6 (3)C24—C29—O7—C23178.9 (3)
C38—C32—C33—O100.4 (4)C22—C23—O7—C290.0 (3)
C40—C35—C36—C3716.3 (4)C38—C39—O10—C330.7 (3)
C35—C36—C37—O11174.2 (3)C34—C39—O10—C33178.4 (3)
C35—C36—C37—N47.0 (4)C32—C33—O10—C390.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.84 (2)1.90 (2)2.681 (2)154 (3)
O6—H6O···O8ii0.86 (2)1.93 (2)2.766 (3)166 (4)
O9—H9O···O5ii0.85 (2)1.92 (2)2.737 (3)161 (3)
O12—H12O···O11iii0.83 (2)1.98 (2)2.797 (3)167 (3)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+3/2, y+1, z1/2; (iii) x+3/2, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H11NO3
Mr193.20
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)14.7603 (10), 15.1301 (17), 16.2847 (9)
V3)3636.8 (5)
Z16
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.58 × 0.34 × 0.09
Data collection
DiffractometerOxford Diffraction Gemini R CCD
Absorption correctionAnalytical
(Clark & Reid, 1995)
Tmin, Tmax0.953, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
55202, 3581, 3168
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.086, 1.04
No. of reflections3581
No. of parameters522
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.842 (18)1.90 (2)2.681 (2)154 (3)
O6—H6O···O8ii0.855 (19)1.93 (2)2.766 (3)166 (4)
O9—H9O···O5ii0.848 (19)1.92 (2)2.737 (3)161 (3)
O12—H12O···O11iii0.829 (18)1.98 (2)2.797 (3)167 (3)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+3/2, y+1, z1/2; (iii) x+3/2, y+2, z+1/2.
 

Acknowledgements

The authors thank the Grant Agency of Slovak Republic (grant Nos. 1/0429/11, 1/0679/11) and the Slovak Research and Development Agency (under contract Nos. APVV-0797–11 and APVV-0204–10) for financial support of these research programs.

References

First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981–988.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGundersen, L.-L., Charnock, C., Negussie, A. H., Rise, F. & Teklu, S. (2007). Eur. J. Pharm. Sci. 30, 26–30.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867–873.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMikael, J. P. (1999). Nat. Prod. Rep. 16, 675–709.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPyne, S. G. (2005). Curr. Org. Synth. 2, 39–57.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127–3139.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds