organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Meth­­oxy-N-[(E)-(5-nitro­thio­phen-2-yl)methyl­­idene]aniline

aDepartment of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey, and bDepartment of Chemistry, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: takbal@omu.edu.tr

(Received 3 July 2012; accepted 1 August 2012; online 29 September 2012)

The title mol­ecule, C12H10N2O3S, is nonplanar with an inter­planar angle of 33.44 (7)° between the benzene and thio­phene rings. In the crystal there exist only weak inter­molecular C—H⋯O inter­actions, ππ inter­actions between the benzene rings [centroid–centroid distance = 3.7465 (14) Å] and XYπ inter­actions to the thio­phene and benzene rings [N⋯centroid distances = 3.718 (3) and 3.355 (3) Å, respectively]. Inter­molecular C—H⋯O inter­actions link the mol­ecules into chains parallel to the a axis.

Related literature

For the biological properties of Schiff bases, see Layer (1963[Layer, R. W. (1963). Chem. Rev. 63, 489-510.]); Ingold (1969[Ingold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd ed., pp. 386-387, 435. Ithaca: Cornell University Press.]); Barton & Ollis (1979[Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol. 2, pp. 61, 219, 1023, 1127. Oxford: Pergamon.]). For the application of Schiff bases in industry, see Taggi et al. (2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]). For related structures, see Ceylan et al. (2011[Ceylan, Ü., Tanak, H., Gümüş, S. & Ağar, E. (2011). Acta Cryst. E67, o2004.]); Özdemir & Işık (2012[Özdemir Tarı, G. & Işık, Ş. (2012). Acta Cryst. E68, o415.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O3S

  • Mr = 262.28

  • Monoclinic, P 21 /c

  • a = 12.5641 (7) Å

  • b = 13.1441 (5) Å

  • c = 7.7896 (4) Å

  • β = 106.012 (4)°

  • V = 1236.50 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.69 × 0.51 × 0.28 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.873, Tmax = 0.938

  • 20097 measured reflections

  • 2841 independent reflections

  • 2076 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.125

  • S = 1.15

  • 2841 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.93 2.48 3.292 (3) 146
C9—H9⋯O3ii 0.93 2.40 3.273 (3) 156
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: WinGX (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The Schiff bases, i. e. the compounds having a double CN bond, are used as starting materials in the synthesis of important drugs, such as antibiotics and antiallergic, antiphlogistic, and antitumor substances (Layer, 1963; Ingold, 1969; Barton & Ollis, 1979). On the industrial scale, they have a wide range of applications, such as dyes and pigments (Taggi et al., 2002).

The title molecule is shown in Fig. 1. The molecule is non-planar, with an interplanar angle of 33.44 (7)° between the benzene and the substituted thiophene rings. The length of the C11N2 double bond is 1.268 (3) Å. This value agrees well with the analogous bond reported elsewhere (Ceylan et al. 2011; Özdemir Tari & Işık, 2012). In the crystal (Fig. 2), two different C—H···O intermolecular interactions (Table 1) generate chains of molecules extending along the a axis. The distance 3.7465 (14) Å between the centroids of the neighbouring benzene rings related by the symmetry operation 1-x, -y, 1-z indicates a π-electron—π-electron ring interaction. Intermolecular X—Y···π-electron ring interactions are also present in the crystal structure (N1—O1···Cg1i=3.718 (3) Å and N1—O2···Cg2ii=3.355 (3) Å where Cg1 and Cg2 are the centroids of the rings C7—C10/S1 (substituted thiophene) and C1—C6 (benzene), respectively, and the symmetry codes i and ii correspond to 2-x, -y, -z and x, 1/2-y, -1/2+z, respectively.

Related literature top

For the biological properties of Schiff bases, see Layer (1963); Ingold (1969); Barton & Ollis (1979). For the application of Schiff bases in industry, see Taggi et al. (2002). For related structures, see Ceylan et al. (2011); Özdemir Tari & Işık (2012).

Experimental top

The title compound was prepared under reflux at room temperature of a mixture of two solutions: One contained 5-nitro-2-thiophene-carboxaldehyde (0.016 g, 0.100 mmol) in 20 ml of absolute ethanol, while the other 4-methoxyaniline (0.012 g, 0.100 mmol) in 20 ml of absolute ethanol. The reaction mixture was stirred for 1 h under reflux. Yellow, transparent crystals were obtained by slow evaporation from ethanol solution at room temperature (yield 68 wt. %; m.p. 414–417 K). The average size of the prismatic crystals was about 0.12 × 0.45 × 0.80 mm.

Refinement top

All the hydrogen atoms appeared in the difference electron density map, nevertheless, they were situated into the idealized positions and refined in the riding atom formalism. The applied constraints: Cmethyl—Hmethyl=0.96, Caryl—Haryl=0.93 Å. Uiso(Hmethyl) = 1.5Ueq(Cmethyl), Uiso(Haryl) = 1.2Ueq(Caryl).

Structure description top

The Schiff bases, i. e. the compounds having a double CN bond, are used as starting materials in the synthesis of important drugs, such as antibiotics and antiallergic, antiphlogistic, and antitumor substances (Layer, 1963; Ingold, 1969; Barton & Ollis, 1979). On the industrial scale, they have a wide range of applications, such as dyes and pigments (Taggi et al., 2002).

The title molecule is shown in Fig. 1. The molecule is non-planar, with an interplanar angle of 33.44 (7)° between the benzene and the substituted thiophene rings. The length of the C11N2 double bond is 1.268 (3) Å. This value agrees well with the analogous bond reported elsewhere (Ceylan et al. 2011; Özdemir Tari & Işık, 2012). In the crystal (Fig. 2), two different C—H···O intermolecular interactions (Table 1) generate chains of molecules extending along the a axis. The distance 3.7465 (14) Å between the centroids of the neighbouring benzene rings related by the symmetry operation 1-x, -y, 1-z indicates a π-electron—π-electron ring interaction. Intermolecular X—Y···π-electron ring interactions are also present in the crystal structure (N1—O1···Cg1i=3.718 (3) Å and N1—O2···Cg2ii=3.355 (3) Å where Cg1 and Cg2 are the centroids of the rings C7—C10/S1 (substituted thiophene) and C1—C6 (benzene), respectively, and the symmetry codes i and ii correspond to 2-x, -y, -z and x, 1/2-y, -1/2+z, respectively.

For the biological properties of Schiff bases, see Layer (1963); Ingold (1969); Barton & Ollis (1979). For the application of Schiff bases in industry, see Taggi et al. (2002). For related structures, see Ceylan et al. (2011); Özdemir Tari & Işık (2012).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: WinGX (Farrugia, 1997) and SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound.
4-Methoxy-N-[(E)-(5-nitrothiophen-2-yl)methylidene]aniline top
Crystal data top
C12H10N2O3SF(000) = 544
Mr = 262.28Dx = 1.409 Mg m3
Monoclinic, P21/cMelting point = 414–417 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.5641 (7) ÅCell parameters from 20097 reflections
b = 13.1441 (5) Åθ = 2.3–27.6°
c = 7.7896 (4) ŵ = 0.26 mm1
β = 106.012 (4)°T = 296 K
V = 1236.50 (10) Å3Prism, yellow
Z = 40.69 × 0.51 × 0.28 mm
Data collection top
Stoe IPDS 2
diffractometer
2841 independent reflections
Radiation source: fine-focus sealed tube2076 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
w–scan rotationθmax = 27.6°, θmin = 2.3°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1616
Tmin = 0.873, Tmax = 0.938k = 1717
20097 measured reflectionsl = 109
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.3031P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
2841 reflectionsΔρmax = 0.29 e Å3
164 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
39 constraintsExtinction coefficient: 0
Primary atom site location: structure-invariant direct methods
Crystal data top
C12H10N2O3SV = 1236.50 (10) Å3
Mr = 262.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5641 (7) ŵ = 0.26 mm1
b = 13.1441 (5) ÅT = 296 K
c = 7.7896 (4) Å0.69 × 0.51 × 0.28 mm
β = 106.012 (4)°
Data collection top
Stoe IPDS 2
diffractometer
2841 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2076 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.938Rint = 0.053
20097 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.15Δρmax = 0.29 e Å3
2841 reflectionsΔρmin = 0.22 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.77562 (5)0.12622 (5)0.06150 (7)0.05989 (19)
C10.51607 (18)0.11596 (17)0.3360 (3)0.0561 (5)
N20.60693 (16)0.11489 (15)0.2619 (3)0.0597 (5)
C110.70493 (19)0.11725 (18)0.3637 (3)0.0586 (5)
H110.71680.11760.48700.070*
C90.97699 (19)0.1197 (2)0.2631 (3)0.0658 (6)
H91.05400.11860.30030.079*
O30.23334 (13)0.11016 (14)0.5127 (2)0.0722 (5)
N10.95778 (19)0.12583 (16)0.0612 (3)0.0693 (5)
C100.91555 (18)0.12453 (18)0.0913 (3)0.0576 (5)
C40.32882 (18)0.11543 (17)0.4617 (3)0.0572 (5)
O11.05738 (18)0.12534 (19)0.0377 (3)0.0968 (7)
O20.88984 (18)0.12695 (18)0.2095 (2)0.0922 (6)
C70.79851 (18)0.11941 (18)0.2889 (3)0.0554 (5)
C80.90855 (19)0.1166 (2)0.3776 (3)0.0657 (6)
H80.93530.11310.50130.079*
C20.5164 (2)0.1630 (2)0.4951 (3)0.0660 (6)
H20.58040.19560.56070.079*
C30.4248 (2)0.1628 (2)0.5585 (3)0.0661 (6)
H30.42730.19440.66630.079*
C50.32604 (19)0.0703 (2)0.3006 (3)0.0643 (6)
H50.26140.03900.23390.077*
C60.41788 (18)0.0713 (2)0.2382 (3)0.0616 (6)
H60.41440.04160.12850.074*
C120.2326 (3)0.1537 (3)0.6792 (4)0.0895 (9)
H12A0.16270.14020.70230.134*
H12B0.24350.22590.67540.134*
H12C0.29110.12450.77250.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0572 (3)0.0756 (4)0.0446 (3)0.0047 (3)0.0102 (2)0.0023 (3)
C10.0560 (12)0.0581 (13)0.0533 (12)0.0017 (10)0.0132 (10)0.0017 (10)
N20.0581 (11)0.0657 (12)0.0558 (11)0.0027 (9)0.0163 (9)0.0021 (9)
C110.0615 (13)0.0663 (14)0.0499 (12)0.0029 (11)0.0184 (10)0.0034 (11)
C90.0530 (12)0.0927 (18)0.0504 (13)0.0001 (12)0.0120 (10)0.0022 (12)
O30.0560 (9)0.0878 (12)0.0758 (11)0.0055 (8)0.0235 (8)0.0134 (9)
N10.0777 (14)0.0796 (14)0.0574 (13)0.0052 (12)0.0302 (11)0.0056 (11)
C100.0595 (12)0.0671 (13)0.0487 (12)0.0024 (11)0.0193 (10)0.0034 (11)
C40.0505 (11)0.0578 (13)0.0617 (14)0.0034 (10)0.0129 (10)0.0004 (11)
O10.0818 (13)0.1392 (19)0.0829 (14)0.0052 (13)0.0452 (11)0.0052 (13)
O20.1034 (14)0.1289 (18)0.0462 (10)0.0080 (13)0.0236 (10)0.0058 (11)
C70.0579 (12)0.0619 (13)0.0471 (12)0.0052 (10)0.0158 (9)0.0001 (10)
C80.0590 (13)0.0936 (18)0.0433 (12)0.0005 (12)0.0122 (10)0.0002 (12)
C20.0553 (13)0.0729 (15)0.0680 (15)0.0135 (11)0.0141 (11)0.0142 (12)
C30.0628 (14)0.0727 (15)0.0639 (15)0.0098 (12)0.0192 (12)0.0175 (12)
C50.0508 (12)0.0765 (16)0.0612 (15)0.0081 (11)0.0082 (10)0.0097 (12)
C60.0572 (13)0.0746 (16)0.0500 (13)0.0030 (11)0.0099 (10)0.0063 (11)
C120.0811 (18)0.106 (2)0.094 (2)0.0108 (16)0.0447 (16)0.0271 (17)
Geometric parameters (Å, º) top
S1—C101.709 (2)N1—C101.429 (3)
S1—C71.717 (2)C4—C51.380 (3)
C1—C21.384 (3)C4—C31.381 (3)
C1—C61.389 (3)C7—C81.365 (3)
C1—N21.414 (3)C8—H80.9300
N2—C111.268 (3)C2—C31.372 (3)
C11—C71.449 (3)C2—H20.9300
C11—H110.9300C3—H30.9300
C9—C101.350 (3)C5—C61.370 (3)
C9—C81.400 (3)C5—H50.9300
C9—H90.9300C6—H60.9300
O3—C41.366 (3)C12—H12A0.9600
O3—C121.420 (3)C12—H12B0.9600
N1—O11.214 (3)C12—H12C0.9600
N1—O21.232 (3)
C10—S1—C789.19 (10)C11—C7—S1119.49 (17)
C2—C1—C6117.6 (2)C7—C8—C9113.0 (2)
C2—C1—N2124.5 (2)C7—C8—H8123.5
C6—C1—N2117.8 (2)C9—C8—H8123.5
C11—N2—C1119.9 (2)C3—C2—C1121.7 (2)
N2—C11—C7120.3 (2)C3—C2—H2119.2
N2—C11—H11119.9C1—C2—H2119.2
C7—C11—H11119.9C2—C3—C4119.8 (2)
C10—C9—C8110.4 (2)C2—C3—H3120.1
C10—C9—H9124.8C4—C3—H3120.1
C8—C9—H9124.8C6—C5—C4120.4 (2)
C4—O3—C12118.2 (2)C6—C5—H5119.8
O1—N1—O2124.1 (2)C4—C5—H5119.8
O1—N1—C10118.6 (2)C5—C6—C1121.2 (2)
O2—N1—C10117.3 (2)C5—C6—H6119.4
C9—C10—N1125.7 (2)C1—C6—H6119.4
C9—C10—S1114.89 (17)O3—C12—H12A109.5
N1—C10—S1119.41 (18)O3—C12—H12B109.5
O3—C4—C5116.0 (2)H12A—C12—H12B109.5
O3—C4—C3124.7 (2)O3—C12—H12C109.5
C5—C4—C3119.3 (2)H12A—C12—H12C109.5
C8—C7—C11128.1 (2)H12B—C12—H12C109.5
C8—C7—S1112.44 (16)
C2—C1—N2—C1130.4 (4)C10—S1—C7—C80.3 (2)
C6—C1—N2—C11153.0 (2)C10—S1—C7—C11179.7 (2)
C1—N2—C11—C7178.1 (2)C11—C7—C8—C9179.8 (2)
C8—C9—C10—N1178.2 (2)S1—C7—C8—C90.2 (3)
C8—C9—C10—S10.3 (3)C10—C9—C8—C70.1 (3)
O1—N1—C10—C92.1 (4)C6—C1—C2—C32.4 (4)
O2—N1—C10—C9177.6 (3)N2—C1—C2—C3178.9 (2)
O1—N1—C10—S1179.5 (2)C1—C2—C3—C40.6 (4)
O2—N1—C10—S10.8 (3)O3—C4—C3—C2179.6 (2)
C7—S1—C10—C90.4 (2)C5—C4—C3—C21.0 (4)
C7—S1—C10—N1178.2 (2)O3—C4—C5—C6179.8 (2)
C12—O3—C4—C5178.8 (2)C3—C4—C5—C60.8 (4)
C12—O3—C4—C31.8 (4)C4—C5—C6—C11.0 (4)
N2—C11—C7—C8176.2 (2)C2—C1—C6—C52.6 (4)
N2—C11—C7—S13.8 (3)N2—C1—C6—C5179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.483.292 (3)146
C9—H9···O3ii0.932.403.273 (3)156
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H10N2O3S
Mr262.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.5641 (7), 13.1441 (5), 7.7896 (4)
β (°) 106.012 (4)
V3)1236.50 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.69 × 0.51 × 0.28
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.873, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
20097, 2841, 2076
Rint0.053
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.15
No. of reflections2841
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.22

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), WinGX (Farrugia, 1997) and SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.483.292 (3)146
C9—H9···O3ii0.932.403.273 (3)156
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the Ondokuz Mayis University Research Fund for financial support of the project.

References

First citationBarton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol. 2, pp. 61, 219, 1023, 1127. Oxford: Pergamon.  Google Scholar
First citationCeylan, Ü., Tanak, H., Gümüş, S. & Ağar, E. (2011). Acta Cryst. E67, o2004.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationIngold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd ed., pp. 386–387, 435. Ithaca: Cornell University Press.  Google Scholar
First citationLayer, R. W. (1963). Chem. Rev. 63, 489–510.  CrossRef CAS Web of Science Google Scholar
First citationÖzdemir Tarı, G. & Işık, Ş. (2012). Acta Cryst. E68, o415.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds