organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Amino-1H-1,2,4-triazole-5(4H)-thione–4,4′-bi­pyridine (1/1)

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and bKey Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: jinqh204@163.com

(Received 13 August 2012; accepted 1 September 2012; online 8 September 2012)

The title two-component mol­ecular crystal, C10H8N2·C2H4N4S, was obtained unexpectedly by reaction of Zn(NO3)2·6H2O, NH4BF4 with 3-amino-1,2,4-triazole-5-thione (3-AMT) and 4,4′-bipyridine in water. The dihedral angle between the pyridine rings in the 4,4′-bipyridine molecule is 17.00 (13)°. In the crystal, N—H⋯N and N—H⋯S hydrogen bonds between the components lead to the formation of a three-dimensional network. Furthermore, the structure features face-to-face ππ stacking inter­actions between the 4,4′-bipyridine and triazole rings, with a centroid–centroid distance of 2.976 (2) Å.

Related literature

For background to the 3-amino-1,2,4-triazole-5-thione ligand, see: Hao et al. (2010[Hao, Z. M., Guo, C. H., Wu, H. S. & Zhang, X. M. (2010). CrystEngComm, 12, 55-58.]); Ma et al. (2008[Ma, C., Li, Y., Han, Y. & Zhang, R. (2008). Inorg. Chim. Acta, 361, 380-386.]); Rakova et al. (2003[Rakova, O. A., Sanina, N. A., Aldoshin, S. M., Goncharova, N. V., Shilov, G. V., Shulga, Y. M. & Ovanesyan, N. S. (2003). Inorg. Chem. Commun. 6, 145-148.]). For related structures, see: Deng et al. (2005[Deng, Q.-J., Yao, M.-X. & Zeng, M.-H. (2005). Acta Cryst. E61, o2239-o2240.]); Downie et al. (1972[Downie, T. C., Harrison, W., Raper, E. S. & Hepworth, M. A. (1972). Acta Cryst. B28, 1584-1590.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2·C2H4N4S

  • Mr = 272.34

  • Monoclinic, P 21 /c

  • a = 13.5151 (12) Å

  • b = 6.9680 (5) Å

  • c = 16.5529 (14) Å

  • β = 122.385 (2)°

  • V = 1316.39 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.]) Tmin = 0.910, Tmax = 0.951

  • 6507 measured reflections

  • 2315 independent reflections

  • 1725 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.114

  • S = 1.09

  • 2315 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N6i 0.86 1.98 2.828 (3) 171
N2—H2⋯N5ii 0.86 2.00 2.829 (3) 163
N4—H4A⋯N3iii 0.86 2.33 3.151 (3) 159
N4—H4B⋯S1iv 0.86 2.82 3.424 (2) 129
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+2; (iii) -x+1, -y+1, -z+2; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Supramolecular compounds have received much attention due to their structural diversities and potential applications as new materials. The ligand 3-amino-1,2,4-triazole-5-thione(3-AMT), with one –SH, one –NH2 group and three potential coordination nitrogen atoms of triazole, is excellent in building metal-organic supramolecular structures (Hao et al., 2010; Ma et al., 2008; Rakova et al., 2003). Moreover, its nitrogen atom and sulfur atom may be involved in hydrogen bonding (Deng et al., 2005; Downie et al., 1972).

The title compound was unexpectedly obtained in the course of synthesizing 3-AMT-Zn(II) complexes. The molecular structure of the title compound is shown in Fig.1. The crystal structure of C2H2N4S.C10H8N2 has been determined at room temperature. The compound has the space group P2(1)/c, with a = 13.5151 (12), b = 6.9680 (5), c = 16.5529 (14) Å and beta = 122.385 (2)°. The hydrogen bonds are formed between the N—H donors of 3-AMT and the nitrogen atoms from 4,4'-bipyridine and 3-AMT, and the atoms N6, N5 and N3 act as acceptors with d(N1···O6) = 2.828 (3) Å, d(N2···N5) = 2.829 (3) Å, d(N4···N3) = 3.151 (3) Å, N1—H1···N6 =171°, N2—H2···N5 =163° and N4—H4A···N3 =159°, which are just similar to the corresponding distances and angles in the compound of C10H8N2.2C2H3N3S2 (Deng et al., 2005). Intermolecular hydrogen bonds N—H···N and N—H···S between the components lead to the formation of a three-dimensional network (Fig.2). Furthermore, the structure is stabilized by the face to face π-π stacking interactions between 4,4'-bipyridine and triazole ring, with the centroid-centroid distance of 2.976 (2) Å.

Related literature top

For background to the 3-amino-1,2,4-triazole-5-thione ligand, see: Hao et al. (2010); Ma et al. (2008); Rakova et al. (2003). For related structures, see: Deng et al. (2005); Downie et al. (1972).

Experimental top

A mixture of 3-AMT (0.6 mmol), NaOH (0.6 mmol), NH4BF4 (0.6 mmol), Zn(NO3)2.6H2O (0.3 mmol), 4,4'-bipyridine (0.3 mmol) and water (10 mL) was placed in a Teflon-lined stainless steel vessel (20 mL) and heated at 150°C for 72 h and then cooled to room temperature at a rate of 5°C/h.The filtrate was evaporated slowly at room temperature for 2 weeks to yield yellow crystalline products.

Refinement top

The final refinements were performed by full matrix least-squares methods with anisotropic thermal parameters for non-hydrogen atoms on F2. All hydrogen atoms were located in the calculated sites and included in the final refinement in the riding model approximation with displacement parameters derived from the parent atoms to which they were bonded (Uiso(H) = 1.2Ueq).

Structure description top

Supramolecular compounds have received much attention due to their structural diversities and potential applications as new materials. The ligand 3-amino-1,2,4-triazole-5-thione(3-AMT), with one –SH, one –NH2 group and three potential coordination nitrogen atoms of triazole, is excellent in building metal-organic supramolecular structures (Hao et al., 2010; Ma et al., 2008; Rakova et al., 2003). Moreover, its nitrogen atom and sulfur atom may be involved in hydrogen bonding (Deng et al., 2005; Downie et al., 1972).

The title compound was unexpectedly obtained in the course of synthesizing 3-AMT-Zn(II) complexes. The molecular structure of the title compound is shown in Fig.1. The crystal structure of C2H2N4S.C10H8N2 has been determined at room temperature. The compound has the space group P2(1)/c, with a = 13.5151 (12), b = 6.9680 (5), c = 16.5529 (14) Å and beta = 122.385 (2)°. The hydrogen bonds are formed between the N—H donors of 3-AMT and the nitrogen atoms from 4,4'-bipyridine and 3-AMT, and the atoms N6, N5 and N3 act as acceptors with d(N1···O6) = 2.828 (3) Å, d(N2···N5) = 2.829 (3) Å, d(N4···N3) = 3.151 (3) Å, N1—H1···N6 =171°, N2—H2···N5 =163° and N4—H4A···N3 =159°, which are just similar to the corresponding distances and angles in the compound of C10H8N2.2C2H3N3S2 (Deng et al., 2005). Intermolecular hydrogen bonds N—H···N and N—H···S between the components lead to the formation of a three-dimensional network (Fig.2). Furthermore, the structure is stabilized by the face to face π-π stacking interactions between 4,4'-bipyridine and triazole ring, with the centroid-centroid distance of 2.976 (2) Å.

For background to the 3-amino-1,2,4-triazole-5-thione ligand, see: Hao et al. (2010); Ma et al. (2008); Rakova et al. (2003). For related structures, see: Deng et al. (2005); Downie et al. (1972).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular entities of the title compound, showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Three-dimensional structure formed by Intermolecular N—H···N and N—H···S hydrogen bonds.
3-Amino-1H-1,2,4-triazole-5(4H)-thione–4,4'-bipyridine (1/1) top
Crystal data top
C10H8N2·C2H4N4SF(000) = 568
Mr = 272.34Dx = 1.374 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.5151 (12) ÅCell parameters from 2519 reflections
b = 6.9680 (5) Åθ = 2.9–27.9°
c = 16.5529 (14) ŵ = 0.24 mm1
β = 122.385 (2)°T = 298 K
V = 1316.39 (19) Å3Block, yellow
Z = 40.40 × 0.30 × 0.21 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2315 independent reflections
Radiation source: fine-focus sealed tube1725 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
phi and ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1616
Tmin = 0.910, Tmax = 0.951k = 86
6507 measured reflectionsl = 1915
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.5763P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2315 reflectionsΔρmax = 0.40 e Å3
173 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (2)
Crystal data top
C10H8N2·C2H4N4SV = 1316.39 (19) Å3
Mr = 272.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.5151 (12) ŵ = 0.24 mm1
b = 6.9680 (5) ÅT = 298 K
c = 16.5529 (14) Å0.40 × 0.30 × 0.21 mm
β = 122.385 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2315 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1725 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.951Rint = 0.034
6507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.09Δρmax = 0.40 e Å3
2315 reflectionsΔρmin = 0.29 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.54234 (15)0.3890 (3)0.81338 (12)0.0356 (5)
H10.49530.39480.75230.043*
N20.69266 (15)0.3516 (3)0.95219 (12)0.0377 (5)
H20.76320.32730.99820.045*
N30.60324 (16)0.3979 (3)0.96667 (13)0.0377 (5)
N40.40154 (16)0.4607 (3)0.85462 (14)0.0487 (6)
H4A0.38590.47560.89820.058*
H4B0.34690.47220.79530.058*
N51.08698 (16)0.6753 (3)0.87403 (13)0.0420 (5)
N60.62173 (17)0.6303 (3)0.38615 (13)0.0451 (5)
S10.74194 (6)0.31020 (11)0.81472 (5)0.0535 (3)
C10.65892 (18)0.3483 (3)0.86103 (15)0.0345 (5)
C20.51320 (19)0.4188 (3)0.87965 (15)0.0342 (5)
C30.9754 (2)0.6751 (4)0.84854 (17)0.0480 (6)
H30.95950.67700.89670.058*
C40.8821 (2)0.6721 (4)0.75504 (16)0.0438 (6)
H40.80580.67550.74140.053*
C50.90223 (18)0.6640 (3)0.68118 (15)0.0310 (5)
C61.01851 (19)0.6645 (4)0.70791 (16)0.0417 (6)
H61.03750.66060.66160.050*
C71.1056 (2)0.6709 (4)0.80326 (17)0.0460 (6)
H71.18280.67210.81910.055*
C80.7294 (2)0.6805 (4)0.41216 (18)0.0546 (7)
H80.74370.70760.36430.065*
C90.8213 (2)0.6949 (4)0.50561 (17)0.0509 (7)
H90.89480.73240.51930.061*
C100.80481 (18)0.6537 (3)0.57918 (15)0.0328 (5)
C110.6921 (2)0.6022 (4)0.55197 (16)0.0444 (6)
H110.67520.57370.59820.053*
C120.6055 (2)0.5932 (4)0.45693 (17)0.0495 (6)
H120.53060.55890.44100.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0317 (10)0.0518 (12)0.0198 (9)0.0015 (8)0.0114 (8)0.0012 (8)
N20.0271 (10)0.0541 (12)0.0266 (10)0.0016 (8)0.0109 (8)0.0015 (8)
N30.0343 (10)0.0523 (12)0.0273 (10)0.0052 (9)0.0170 (9)0.0023 (9)
N40.0319 (11)0.0795 (16)0.0330 (11)0.0092 (10)0.0162 (9)0.0050 (10)
N50.0352 (11)0.0506 (13)0.0296 (10)0.0007 (9)0.0102 (9)0.0000 (9)
N60.0417 (12)0.0526 (13)0.0265 (10)0.0024 (9)0.0086 (9)0.0008 (9)
S10.0467 (4)0.0750 (5)0.0509 (4)0.0104 (3)0.0342 (4)0.0130 (3)
C10.0324 (12)0.0398 (13)0.0284 (12)0.0063 (10)0.0145 (10)0.0040 (9)
C20.0344 (12)0.0412 (13)0.0264 (12)0.0010 (10)0.0157 (10)0.0019 (10)
C30.0418 (14)0.0716 (18)0.0290 (13)0.0008 (12)0.0178 (11)0.0008 (12)
C40.0313 (12)0.0660 (17)0.0316 (13)0.0017 (11)0.0152 (11)0.0021 (11)
C50.0308 (11)0.0312 (12)0.0268 (11)0.0009 (9)0.0125 (9)0.0011 (9)
C60.0348 (13)0.0588 (16)0.0328 (13)0.0009 (11)0.0190 (11)0.0007 (11)
C70.0275 (12)0.0640 (17)0.0391 (14)0.0004 (11)0.0129 (11)0.0008 (12)
C80.0579 (17)0.0742 (19)0.0285 (13)0.0081 (14)0.0211 (13)0.0033 (12)
C90.0401 (14)0.0761 (19)0.0322 (13)0.0137 (13)0.0165 (12)0.0004 (12)
C100.0333 (12)0.0336 (12)0.0266 (11)0.0004 (9)0.0128 (10)0.0005 (9)
C110.0353 (13)0.0659 (17)0.0298 (12)0.0015 (11)0.0160 (11)0.0011 (11)
C120.0324 (13)0.0705 (18)0.0352 (14)0.0017 (12)0.0113 (11)0.0038 (12)
Geometric parameters (Å, º) top
N1—C11.362 (3)C3—H30.9300
N1—C21.365 (3)C4—C51.388 (3)
N1—H10.8600C4—H40.9300
N2—C11.322 (3)C5—C61.386 (3)
N2—N31.390 (2)C5—C101.486 (3)
N2—H20.8600C6—C71.374 (3)
N3—C21.304 (3)C6—H60.9300
N4—C21.365 (3)C7—H70.9300
N4—H4A0.8600C8—C91.374 (3)
N4—H4B0.8600C8—H80.9300
N5—C71.323 (3)C9—C101.380 (3)
N5—C31.331 (3)C9—H90.9300
N6—C81.324 (3)C10—C111.384 (3)
N6—C121.328 (3)C11—C121.370 (3)
S1—C11.685 (2)C11—H110.9300
C3—C41.376 (3)C12—H120.9300
C1—N1—C2107.97 (17)C6—C5—C4116.2 (2)
C1—N1—H1126.0C6—C5—C10121.74 (19)
C2—N1—H1126.0C4—C5—C10122.03 (19)
C1—N2—N3113.61 (18)C7—C6—C5119.6 (2)
C1—N2—H2123.2C7—C6—H6120.2
N3—N2—H2123.2C5—C6—H6120.2
C2—N3—N2102.64 (17)N5—C7—C6124.5 (2)
C2—N4—H4A120.0N5—C7—H7117.8
C2—N4—H4B120.0C6—C7—H7117.8
H4A—N4—H4B120.0N6—C8—C9123.9 (2)
C7—N5—C3116.07 (19)N6—C8—H8118.0
C8—N6—C12115.9 (2)C9—C8—H8118.0
N2—C1—N1104.02 (18)C8—C9—C10120.2 (2)
N2—C1—S1127.97 (17)C8—C9—H9119.9
N1—C1—S1127.98 (16)C10—C9—H9119.9
N3—C2—N1111.74 (18)C9—C10—C11115.8 (2)
N3—C2—N4125.82 (19)C9—C10—C5121.9 (2)
N1—C2—N4122.42 (19)C11—C10—C5122.21 (19)
N5—C3—C4123.8 (2)C12—C11—C10120.0 (2)
N5—C3—H3118.1C12—C11—H11120.0
C4—C3—H3118.1C10—C11—H11120.0
C3—C4—C5119.8 (2)N6—C12—C11124.1 (2)
C3—C4—H4120.1N6—C12—H12117.9
C5—C4—H4120.1C11—C12—H12117.9
C1—N2—N3—C21.2 (3)C3—N5—C7—C60.6 (4)
N3—N2—C1—N11.6 (2)C5—C6—C7—N50.5 (4)
N3—N2—C1—S1176.54 (17)C12—N6—C8—C90.1 (4)
C2—N1—C1—N21.4 (2)N6—C8—C9—C100.8 (4)
C2—N1—C1—S1176.79 (18)C8—C9—C10—C111.0 (4)
N2—N3—C2—N10.3 (2)C8—C9—C10—C5178.9 (2)
N2—N3—C2—N4178.2 (2)C6—C5—C10—C917.5 (3)
C1—N1—C2—N30.7 (3)C4—C5—C10—C9163.0 (2)
C1—N1—C2—N4179.3 (2)C6—C5—C10—C11162.4 (2)
C7—N5—C3—C40.6 (4)C4—C5—C10—C1117.1 (3)
N5—C3—C4—C51.7 (4)C9—C10—C11—C120.5 (4)
C3—C4—C5—C61.6 (3)C5—C10—C11—C12179.4 (2)
C3—C4—C5—C10177.8 (2)C8—N6—C12—C110.7 (4)
C4—C5—C6—C70.6 (3)C10—C11—C12—N60.4 (4)
C10—C5—C6—C7178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N6i0.861.982.828 (3)171
N2—H2···N5ii0.862.002.829 (3)163
N4—H4A···N3iii0.862.333.151 (3)159
N4—H4B···S1iv0.862.823.424 (2)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+2; (iv) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H8N2·C2H4N4S
Mr272.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.5151 (12), 6.9680 (5), 16.5529 (14)
β (°) 122.385 (2)
V3)1316.39 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.40 × 0.30 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.910, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
6507, 2315, 1725
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 1.09
No. of reflections2315
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.29

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N6i0.861.982.828 (3)171
N2—H2···N5ii0.862.002.829 (3)163
N4—H4A···N3iii0.862.333.151 (3)159
N4—H4B···S1iv0.862.823.424 (2)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+2; (iv) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.21171119), the National High Technology Research and Development Program 863 of China (2012 A A063201), the Beijing Personnel Bureau, the National Keystone Basic Research Program (973 Program) under grant Nos. 2007CB310408 and 2006CB302901, and the Committee of Education of the Beijing Foundation of China (grant No. KM201210028020.

References

First citationBruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.  Google Scholar
First citationDeng, Q.-J., Yao, M.-X. & Zeng, M.-H. (2005). Acta Cryst. E61, o2239–o2240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDownie, T. C., Harrison, W., Raper, E. S. & Hepworth, M. A. (1972). Acta Cryst. B28, 1584–1590.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHao, Z. M., Guo, C. H., Wu, H. S. & Zhang, X. M. (2010). CrystEngComm, 12, 55–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, C., Li, Y., Han, Y. & Zhang, R. (2008). Inorg. Chim. Acta, 361, 380–386.  Web of Science CSD CrossRef CAS Google Scholar
First citationRakova, O. A., Sanina, N. A., Aldoshin, S. M., Goncharova, N. V., Shilov, G. V., Shulga, Y. M. & Ovanesyan, N. S. (2003). Inorg. Chem. Commun. 6, 145–148.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds