organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Ethyl-3-(2-fluoro­phenyl­sulfon­yl)-2-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 7 August 2012; accepted 26 August 2012; online 5 September 2012)

In the title compound, C17H15FO3S, the 2-fluoro­phenyl ring makes a dihedral angle of 89.12 (8)° with the mean plane of the benzofuran fragment. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯π inter­actions.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o2575.], 2011[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o1278.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15FO3S

  • Mr = 318.35

  • Monoclinic, C c

  • a = 11.290 (2) Å

  • b = 16.171 (3) Å

  • c = 8.5612 (14) Å

  • β = 105.045 (11)°

  • V = 1509.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.38 × 0.30 × 0.27 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.545, Tmax = 0.746

  • 7108 measured reflections

  • 3129 independent reflections

  • 2676 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.105

  • S = 1.06

  • 3129 reflections

  • 201 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1271 Friedel pairs

  • Flack parameter: −0.05 (8)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C12–C17 2-fluoro­phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O3i 0.95 2.53 3.420 (3) 156
C16—H16⋯O2ii 0.95 2.49 3.121 (4) 124
C5—H5⋯Cgiii 0.95 2.79 3.692 (3) 159
Symmetry codes: (i) x, y, z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing study of 5-ethyl-2-methyl-1-benzofuran derivatives containing 3-(4-fluorophenylsulfonyl) (Choi et al. , 2010) and 3-(3-fluorophenylsulfonyl) (Choi et al. , 2011) substituents, we report herein the crystal structure of the title compound.

The title compound crystallizes as the non-centrosymmetric space group Cc in spite of having no asymmetric C atoms.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.016 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 2-fluorophenyl ring and the mean plane of the benzofuran fragment is 89.12 (8)°. In the crystal structure (Fig. 2), molecules are connected by weak C—H···O and C—H···π interactions (Table 1, Cg is the centroid of the C12-C17 2-fluorophenyl ring).

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2010, 2011).

Experimental top

3-Chloroperoxybenzoic acid (77%, 515 mg, 2.3 mmol) was added in small portions to a stirred solution of 5-ethyl-3-(2-fluorophenylsulfanyl)-2-methyl-1-benzofuran (315 mg, 1.1 mmol) in dichloromethane (50 mL) at 273 K. After being stirred at room temperature for 10h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (benzene) to afford the title compound as a colorless solid [yield 72%, m.p. 410–411 K; Rf = 0.61 (benzene)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C–H = 0.95 Å for aryl, 0.99 Å for the methylene, and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and methylene, and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Structure description top

As a part of our ongoing study of 5-ethyl-2-methyl-1-benzofuran derivatives containing 3-(4-fluorophenylsulfonyl) (Choi et al. , 2010) and 3-(3-fluorophenylsulfonyl) (Choi et al. , 2011) substituents, we report herein the crystal structure of the title compound.

The title compound crystallizes as the non-centrosymmetric space group Cc in spite of having no asymmetric C atoms.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.016 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 2-fluorophenyl ring and the mean plane of the benzofuran fragment is 89.12 (8)°. In the crystal structure (Fig. 2), molecules are connected by weak C—H···O and C—H···π interactions (Table 1, Cg is the centroid of the C12-C17 2-fluorophenyl ring).

For background information and the crystal structures of related compounds, see: Choi et al. (2010, 2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O and C—H···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x, y, z + 1; (ii) x -1/2, - y + 3/2, z + 1/2; (iii) x + 1/2, y - 1/2, z; (iv) x, y, z - 1; (v) x + 1/2, - y + 3/2, z - 1/2; (vi) x - 1/2, y + 1/2, z.]
5-Ethyl-3-(2-fluorophenylsulfonyl)-2-methyl-1-benzofuran top
Crystal data top
C17H15FO3SF(000) = 664
Mr = 318.35Dx = 1.401 Mg m3
Monoclinic, CcMelting point = 410–411 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 11.290 (2) ÅCell parameters from 2955 reflections
b = 16.171 (3) Åθ = 2.3–27.5°
c = 8.5612 (14) ŵ = 0.24 mm1
β = 105.045 (11)°T = 173 K
V = 1509.4 (5) Å3Block, colourless
Z = 40.38 × 0.30 × 0.27 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3129 independent reflections
Radiation source: rotating anode2676 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.035
Detector resolution: 10.0 pixels mm-1θmax = 28.2°, θmin = 2.3°
φ and ω scansh = 1314
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 2119
Tmin = 0.545, Tmax = 0.746l = 1111
7108 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.5589P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3129 reflectionsΔρmax = 0.61 e Å3
201 parametersΔρmin = 0.35 e Å3
2 restraintsAbsolute structure: Flack (1983), 1271 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (8)
Crystal data top
C17H15FO3SV = 1509.4 (5) Å3
Mr = 318.35Z = 4
Monoclinic, CcMo Kα radiation
a = 11.290 (2) ŵ = 0.24 mm1
b = 16.171 (3) ÅT = 173 K
c = 8.5612 (14) Å0.38 × 0.30 × 0.27 mm
β = 105.045 (11)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3129 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2676 reflections with I > 2σ(I)
Tmin = 0.545, Tmax = 0.746Rint = 0.035
7108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.105Δρmax = 0.61 e Å3
S = 1.06Δρmin = 0.35 e Å3
3129 reflectionsAbsolute structure: Flack (1983), 1271 Friedel pairs
201 parametersAbsolute structure parameter: 0.05 (8)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.14686 (6)0.71642 (4)0.27469 (7)0.03361 (16)
O10.13896 (19)0.47875 (12)0.1852 (2)0.0427 (5)
O20.2615 (2)0.75833 (13)0.2964 (3)0.0462 (5)
O30.0429 (2)0.74224 (14)0.1475 (2)0.0503 (6)
F10.07139 (15)0.64592 (12)0.3612 (2)0.0498 (4)
C10.1696 (2)0.61168 (16)0.2571 (3)0.0316 (5)
C20.2695 (2)0.56448 (15)0.3603 (3)0.0297 (5)
C30.3736 (2)0.58219 (17)0.4846 (3)0.0331 (5)
H30.39360.63770.51760.040*
C40.4472 (3)0.51754 (17)0.5588 (3)0.0366 (6)
C50.4155 (3)0.43570 (18)0.5073 (4)0.0455 (7)
H50.46550.39160.56080.055*
C60.3147 (3)0.41750 (18)0.3825 (4)0.0456 (7)
H60.29490.36230.34740.055*
C70.2437 (3)0.48350 (17)0.3110 (4)0.0364 (6)
C80.0946 (2)0.55781 (18)0.1554 (3)0.0375 (6)
C90.5622 (3)0.5333 (2)0.6926 (3)0.0463 (7)
H9A0.55470.58750.74260.056*
H9B0.56900.49040.77700.056*
C100.6777 (3)0.5328 (3)0.6354 (5)0.0625 (10)
H10A0.68690.47880.58800.094*
H10B0.74850.54330.72720.094*
H10C0.67260.57600.55370.094*
C110.0195 (3)0.5648 (2)0.0229 (4)0.0544 (8)
H11A0.05080.62150.01840.082*
H11B0.08120.52640.04290.082*
H11C0.00190.55100.08030.082*
C120.1073 (2)0.72538 (15)0.4600 (3)0.0278 (5)
C130.1835 (2)0.76928 (16)0.5882 (3)0.0350 (6)
H130.25850.79210.57720.042*
C140.1496 (3)0.77939 (18)0.7304 (3)0.0421 (7)
H140.20100.80960.81710.051*
C150.0410 (3)0.7457 (2)0.7474 (3)0.0427 (7)
H150.01800.75320.84560.051*
C160.0339 (3)0.70139 (18)0.6230 (4)0.0402 (6)
H160.10820.67780.63470.048*
C170.0007 (2)0.69186 (17)0.4819 (3)0.0335 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0419 (3)0.0300 (3)0.0335 (3)0.0059 (3)0.0181 (2)0.0064 (3)
O10.0395 (11)0.0359 (11)0.0531 (11)0.0064 (9)0.0129 (9)0.0118 (9)
O20.0523 (12)0.0343 (11)0.0632 (13)0.0018 (9)0.0352 (11)0.0056 (9)
O30.0683 (16)0.0478 (13)0.0349 (10)0.0197 (11)0.0135 (10)0.0118 (9)
F10.0375 (9)0.0586 (11)0.0550 (9)0.0101 (8)0.0147 (8)0.0151 (8)
C10.0346 (14)0.0315 (12)0.0326 (12)0.0013 (10)0.0158 (10)0.0010 (10)
C20.0329 (12)0.0235 (12)0.0368 (12)0.0006 (10)0.0162 (10)0.0004 (9)
C30.0374 (14)0.0284 (13)0.0360 (12)0.0005 (11)0.0141 (11)0.0004 (10)
C40.0390 (15)0.0349 (14)0.0379 (13)0.0045 (11)0.0137 (11)0.0038 (11)
C50.0484 (17)0.0307 (15)0.0598 (18)0.0084 (13)0.0181 (14)0.0088 (13)
C60.0481 (17)0.0252 (15)0.0667 (19)0.0008 (12)0.0206 (15)0.0022 (12)
C70.0339 (14)0.0309 (13)0.0478 (14)0.0030 (11)0.0170 (11)0.0043 (11)
C80.0373 (14)0.0402 (16)0.0371 (13)0.0011 (11)0.0137 (11)0.0037 (11)
C90.0480 (17)0.0489 (19)0.0385 (14)0.0091 (14)0.0051 (13)0.0054 (13)
C100.0399 (18)0.084 (3)0.058 (2)0.0033 (17)0.0042 (15)0.0094 (18)
C110.0429 (18)0.068 (2)0.0491 (17)0.0014 (16)0.0051 (14)0.0069 (15)
C120.0321 (12)0.0238 (12)0.0297 (11)0.0062 (10)0.0120 (9)0.0045 (8)
C130.0311 (13)0.0289 (13)0.0444 (14)0.0033 (10)0.0087 (10)0.0004 (10)
C140.0450 (16)0.0420 (16)0.0360 (14)0.0112 (13)0.0044 (13)0.0033 (11)
C150.0531 (17)0.0437 (16)0.0353 (13)0.0148 (14)0.0186 (12)0.0055 (12)
C160.0421 (15)0.0374 (15)0.0480 (15)0.0073 (12)0.0241 (13)0.0078 (11)
C170.0308 (13)0.0324 (13)0.0376 (13)0.0035 (10)0.0094 (10)0.0002 (10)
Geometric parameters (Å, º) top
S1—O21.430 (2)C9—C101.507 (5)
S1—O31.440 (2)C9—H9A0.9900
S1—C11.726 (3)C9—H9B0.9900
S1—C121.762 (2)C10—H10A0.9800
O1—C81.373 (4)C10—H10B0.9800
O1—C71.379 (3)C10—H10C0.9800
F1—C171.359 (3)C11—H11A0.9800
C1—C81.361 (4)C11—H11B0.9800
C1—C21.455 (4)C11—H11C0.9800
C2—C71.384 (4)C12—C171.377 (4)
C2—C31.395 (3)C12—C131.400 (3)
C3—C41.383 (4)C13—C141.377 (4)
C3—H30.9500C13—H130.9500
C4—C51.411 (4)C14—C151.383 (4)
C4—C91.513 (4)C14—H140.9500
C5—C61.376 (4)C15—C161.377 (5)
C5—H50.9500C15—H150.9500
C6—C71.379 (4)C16—C171.371 (4)
C6—H60.9500C16—H160.9500
C8—C111.484 (4)
O2—S1—O3119.56 (14)C10—C9—H9B108.9
O2—S1—C1109.03 (12)C4—C9—H9B108.9
O3—S1—C1109.23 (13)H9A—C9—H9B107.7
O2—S1—C12106.06 (13)C9—C10—H10A109.5
O3—S1—C12108.04 (12)C9—C10—H10B109.5
C1—S1—C12103.74 (11)H10A—C10—H10B109.5
C8—O1—C7106.9 (2)C9—C10—H10C109.5
C8—C1—C2108.0 (2)H10A—C10—H10C109.5
C8—C1—S1127.0 (2)H10B—C10—H10C109.5
C2—C1—S1124.86 (18)C8—C11—H11A109.5
C7—C2—C3119.7 (2)C8—C11—H11B109.5
C7—C2—C1104.0 (2)H11A—C11—H11B109.5
C3—C2—C1136.2 (2)C8—C11—H11C109.5
C4—C3—C2118.8 (2)H11A—C11—H11C109.5
C4—C3—H3120.6H11B—C11—H11C109.5
C2—C3—H3120.6C17—C12—C13118.3 (2)
C3—C4—C5119.4 (3)C17—C12—S1121.71 (19)
C3—C4—C9121.0 (3)C13—C12—S1120.02 (19)
C5—C4—C9119.5 (2)C14—C13—C12119.9 (3)
C6—C5—C4122.3 (3)C14—C13—H13120.0
C6—C5—H5118.8C12—C13—H13120.0
C4—C5—H5118.8C13—C14—C15120.2 (3)
C5—C6—C7116.6 (3)C13—C14—H14119.9
C5—C6—H6121.7C15—C14—H14119.9
C7—C6—H6121.7C16—C15—C14120.5 (3)
C6—C7—O1125.8 (3)C16—C15—H15119.8
C6—C7—C2123.0 (3)C14—C15—H15119.8
O1—C7—C2111.1 (2)C17—C16—C15118.8 (3)
C1—C8—O1109.9 (2)C17—C16—H16120.6
C1—C8—C11135.5 (3)C15—C16—H16120.6
O1—C8—C11114.5 (3)F1—C17—C16118.7 (2)
C10—C9—C4113.4 (3)F1—C17—C12118.9 (2)
C10—C9—H9A108.9C16—C17—C12122.4 (2)
C4—C9—H9A108.9
O2—S1—C1—C8140.5 (2)C2—C1—C8—O10.1 (3)
O3—S1—C1—C88.2 (3)S1—C1—C8—O1175.45 (18)
C12—S1—C1—C8106.8 (2)C2—C1—C8—C11179.2 (3)
O2—S1—C1—C244.9 (2)S1—C1—C8—C115.5 (5)
O3—S1—C1—C2177.2 (2)C7—O1—C8—C11.0 (3)
C12—S1—C1—C267.8 (2)C7—O1—C8—C11179.7 (2)
C8—C1—C2—C70.8 (3)C3—C4—C9—C1098.5 (4)
S1—C1—C2—C7174.68 (19)C5—C4—C9—C1080.6 (4)
C8—C1—C2—C3179.4 (3)O2—S1—C12—C17179.8 (2)
S1—C1—C2—C35.1 (4)O3—S1—C12—C1750.5 (2)
C7—C2—C3—C41.7 (4)C1—S1—C12—C1765.4 (2)
C1—C2—C3—C4178.1 (3)O2—S1—C12—C131.4 (2)
C2—C3—C4—C50.0 (4)O3—S1—C12—C13127.9 (2)
C2—C3—C4—C9179.1 (2)C1—S1—C12—C13116.3 (2)
C3—C4—C5—C61.5 (5)C17—C12—C13—C141.3 (3)
C9—C4—C5—C6177.6 (3)S1—C12—C13—C14177.1 (2)
C4—C5—C6—C71.2 (5)C12—C13—C14—C150.5 (4)
C5—C6—C7—O1179.6 (3)C13—C14—C15—C160.4 (4)
C5—C6—C7—C20.5 (5)C14—C15—C16—C170.5 (4)
C8—O1—C7—C6177.7 (3)C15—C16—C17—F1178.0 (2)
C8—O1—C7—C21.5 (3)C15—C16—C17—C120.4 (4)
C3—C2—C7—C62.0 (4)C13—C12—C17—F1177.1 (2)
C1—C2—C7—C6177.8 (3)S1—C12—C17—F14.6 (3)
C3—C2—C7—O1178.8 (2)C13—C12—C17—C161.3 (4)
C1—C2—C7—O11.4 (3)S1—C12—C17—C16177.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 2-fluorophenyl ring.
D—H···AD—HH···AD···AD—H···A
C15—H15···O3i0.952.533.420 (3)156
C16—H16···O2ii0.952.493.121 (4)124
C5—H5···Cgiii0.952.793.692 (3)159
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+3/2, z+1/2; (iii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC17H15FO3S
Mr318.35
Crystal system, space groupMonoclinic, Cc
Temperature (K)173
a, b, c (Å)11.290 (2), 16.171 (3), 8.5612 (14)
β (°) 105.045 (11)
V3)1509.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.38 × 0.30 × 0.27
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.545, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
7108, 3129, 2676
Rint0.035
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.105, 1.06
No. of reflections3129
No. of parameters201
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.35
Absolute structureFlack (1983), 1271 Friedel pairs
Absolute structure parameter0.05 (8)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 2-fluorophenyl ring.
D—H···AD—HH···AD···AD—H···A
C15—H15···O3i0.952.533.420 (3)156
C16—H16···O2ii0.952.493.121 (4)124
C5—H5···Cgiii0.952.793.692 (3)159
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+3/2, z+1/2; (iii) x+1/2, y1/2, z.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan City.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o2575.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o1278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds