metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[2-(pyridin-2-yl)-N-(pyridin-2-yl­methyl­­idene)ethanamine-κ3N,N′,N′′]manganese(II) monohydrate

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bCentre de Recherche de Gif sur Yvette, Institut de Chimie des Substances Naturelles, UPR2301-CNRS, 1 Avenue la Terrasse, 91198 Gif sur Yvette cédex, France
*Correspondence e-mail: mlgayeastou@yahoo.fr

(Received 9 August 2012; accepted 3 September 2012; online 8 September 2012)

In the title complex, [MnCl2(C13H13N3)]·H2O, the MnII atom is in a distorted square-pyramidal environment, with an Addison τ parameter of 0.037. The coordination geometry is defined by three N-atom donors from the tridentate 2-(pyridin-2-yl)-N-(pyridin-2-yl­methyl­idene)ethanamine ligand and two terminal Cl atoms. Although the H atoms of the lattice water molecule were not located, O⋯O distances of 3.103 (7) Å and O⋯Cl distances of 3.240 (3) and 3.482 (4) Å suggest that hydrogen bonding is responsible for the stabilization of the crystal packing.

Related literature

For the computation of the τ parameter describing the distortion of a square-pyramidal geometry, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). For a related structure, see: Marzec et al. (2011[Marzec, B., Mahimaidoss, M., Zhang, L., McCabe, T. & Schmitt, W. (2011). Acta Cryst. E67, m1676.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl2(C13H13N3)]·H2O

  • Mr = 355.12

  • Monoclinic, C 2/c

  • a = 19.173 (3) Å

  • b = 8.826 (1) Å

  • c = 18.088 (2) Å

  • β = 94.009 (2)°

  • V = 3053.4 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 293 K

  • 0.26 × 0.24 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan [SCALEPACK in CrystalClear-SM Expert (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.])] Tmin = 0.69, Tmax = 0.79

  • 13865 measured reflections

  • 2774 independent reflections

  • 2039 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.113

  • S = 1.02

  • 2773 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: CrystalClear-SM Expert (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CRYSTALBUILDER (Welter, 2006[Welter, R. (2006). Acta Cryst. A62, s252.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the title compound, the MnII ion displays a fivefold coordination geometry by three nitrogen atoms from the ligand molecule and two chloride atoms in terminal positions. A non-coordinated solvent water molecule is present. The bond lengths between the N atoms and the metal ion vary between 2.226 (3) Å [Mn1—N2] and 2.259 (3) Å [Mn1—N1]. These values are comparable to the bond lengths in similar manganese complex [2.2227 (16)–2.2628 (16) Å] (Marzec et al., 2011). The Mn—Cl bond distances are 2.4554 (11) Å for Mn1—Cl1 and 2.4338 (10) Å for Mn1—Cl2. The Cl1—Mn1—Cl2 measures 99.89 (4)° and the angles between the MnII ion and the coordinating N atoms located in the basal plane vary between 74.40 (11) ° [N2—Mn1—N3] and 159.28 (11)° [N3—Mn1—N1]. The largest angles around the MnII center are: β=N2—Mn—Cl2=161.52 (8)° and α = N1—Mn—N3=159.28 (11)°. Since the distortion value of the coordination polyhedron, τ=(β-α)/60, is evaluated by the two largest angles a in five-coordination geometry (Addison et al., 1984), the value of τ=0.037 which can be compared with the ideal value of 1 for a trigonal-bipyramidal environment and 0 for a square-pyramidal environment, indicates a distorted square-pyramidal geometry around the Mn center with N1, N2, N3, and Cl2 in the plane. The apical position is occupied by Cl1. The configuration around C8 is assigned to be E, as the torsion angles N2—C8—C9—C10 and C7—N2—C8—C9 are 178.9 (3)° and -178.7 (3)°, respectively.

Related literature top

For related structure see: Addison et al. (1984); Marzec et al. (2011).

Experimental top

[(2-pyridyl)-N-(2-pyridylmethyl)ethanamine] (0.2133 g, 1 mmol) was dissolved in 20 ml of methanol. To the resulting solution, MnCl2.4H2O (0.1979 g, 1 mmol) was added. Immediate color change was observed. The mixture was stirred at room temperature during 2 h. The solution was filtered off and concentrated to tenth. Crystals that separated from the brown solution were filtered off and recrystallized in methanol. On standing for two weeks, suitable X-ray crystals were obtained. Yield: 65%. Anal. Calc. for [C13H15Cl2N3OMn] (%): C, 43.97; H, 4.26; N, 11.83. Found: C, 43.72; H, 4.80; N, 11.77. Selected IR data (cm-1, KBr pellet): 1635.

Refinement top

All H(C) atoms were located in difference maps. They were then treated as riding in geometrically idealized positions, with C—H = 0.93 (aryl), or 0.97 Å (CH2), and with Uiso(H)=1.2 Ueq(C). Water-H atoms could not be detected reliably. One low-resolution reflection (111) was omitted due to beamstop shading (OMIT instruction in SHELX97-L)).

Structure description top

In the title compound, the MnII ion displays a fivefold coordination geometry by three nitrogen atoms from the ligand molecule and two chloride atoms in terminal positions. A non-coordinated solvent water molecule is present. The bond lengths between the N atoms and the metal ion vary between 2.226 (3) Å [Mn1—N2] and 2.259 (3) Å [Mn1—N1]. These values are comparable to the bond lengths in similar manganese complex [2.2227 (16)–2.2628 (16) Å] (Marzec et al., 2011). The Mn—Cl bond distances are 2.4554 (11) Å for Mn1—Cl1 and 2.4338 (10) Å for Mn1—Cl2. The Cl1—Mn1—Cl2 measures 99.89 (4)° and the angles between the MnII ion and the coordinating N atoms located in the basal plane vary between 74.40 (11) ° [N2—Mn1—N3] and 159.28 (11)° [N3—Mn1—N1]. The largest angles around the MnII center are: β=N2—Mn—Cl2=161.52 (8)° and α = N1—Mn—N3=159.28 (11)°. Since the distortion value of the coordination polyhedron, τ=(β-α)/60, is evaluated by the two largest angles a in five-coordination geometry (Addison et al., 1984), the value of τ=0.037 which can be compared with the ideal value of 1 for a trigonal-bipyramidal environment and 0 for a square-pyramidal environment, indicates a distorted square-pyramidal geometry around the Mn center with N1, N2, N3, and Cl2 in the plane. The apical position is occupied by Cl1. The configuration around C8 is assigned to be E, as the torsion angles N2—C8—C9—C10 and C7—N2—C8—C9 are 178.9 (3)° and -178.7 (3)°, respectively.

For related structure see: Addison et al. (1984); Marzec et al. (2011).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell refinement: CrystalClear-SM Expert (Rigaku, 2009); data reduction: CrystalClear-SM Expert (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and CRYSTALBUILDER (Welter, 2006); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with anisotropic displacement ellipsoids at the 50% probability level.
Dichlorido[2-(pyridin-2-yl)-N-(pyridin-2-ylmethylidene)ethanamine- κ3N,N',N'']manganese(II) monohydrate top
Crystal data top
[MnCl2(C13H13N3)]·H2OF(000) = 1448
Mr = 355.12Dx = 1.545 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 4419 reflections
a = 19.173 (3) Åθ = 0.4–25.4°
b = 8.826 (1) ŵ = 1.21 mm1
c = 18.088 (2) ÅT = 293 K
β = 94.009 (2)°Block, brown
V = 3053.4 (7) Å30.26 × 0.24 × 0.20 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
2774 independent reflections
Radiation source: fine-focus sealed tube, Nonius KappaCCD2039 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 9 pixels mm-1θmax = 25.3°, θmin = 3.0°
phi and ω scansh = 2220
Absorption correction: multi-scan
[SCALEPACK in CrystalClear-SM Expert (Rigaku, 2009)]
k = 1010
Tmin = 0.69, Tmax = 0.79l = 2120
13865 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.113H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0548P)2 + 3.8894P]
where P = (Fo2 + 2Fc2)/3
2773 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[MnCl2(C13H13N3)]·H2OV = 3053.4 (7) Å3
Mr = 355.12Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.173 (3) ŵ = 1.21 mm1
b = 8.826 (1) ÅT = 293 K
c = 18.088 (2) Å0.26 × 0.24 × 0.20 mm
β = 94.009 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2774 independent reflections
Absorption correction: multi-scan
[SCALEPACK in CrystalClear-SM Expert (Rigaku, 2009)]
2039 reflections with I > 2σ(I)
Tmin = 0.69, Tmax = 0.79Rint = 0.058
13865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.02Δρmax = 0.49 e Å3
2773 reflectionsΔρmin = 0.43 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.08475 (2)0.08118 (6)0.45536 (3)0.04179 (19)
Cl10.17062 (4)0.04014 (11)0.36281 (5)0.0530 (3)
Cl20.01984 (4)0.15558 (10)0.44268 (5)0.0488 (3)
N10.16088 (13)0.0210 (3)0.55189 (15)0.0442 (7)
N20.11199 (14)0.3215 (3)0.48114 (17)0.0486 (7)
N30.01099 (13)0.2207 (3)0.38141 (15)0.0416 (7)
C10.18382 (19)0.1219 (4)0.5525 (2)0.0543 (9)
H10.16420.18820.51690.065*
C20.2348 (2)0.1764 (5)0.6028 (3)0.0664 (11)
H20.24920.27700.60180.080*
C30.2634 (2)0.0776 (5)0.6541 (3)0.0781 (14)
H30.29840.10960.68880.094*
C40.2405 (2)0.0689 (5)0.6543 (3)0.0713 (12)
H40.25970.13620.68960.086*
C50.18906 (16)0.1179 (4)0.6027 (2)0.0465 (8)
C60.16231 (18)0.2766 (4)0.6053 (2)0.0556 (10)
H6A0.18880.32930.64510.067*
H6B0.11410.27270.61820.067*
C70.16495 (18)0.3695 (5)0.5364 (2)0.0565 (10)
H7A0.15800.47540.54810.068*
H7B0.21070.35930.51710.068*
C80.07445 (18)0.4208 (4)0.4444 (2)0.0515 (9)
H80.08220.52350.45290.062*
C90.01888 (16)0.3713 (4)0.38865 (19)0.0433 (8)
C100.02351 (19)0.4727 (4)0.3488 (2)0.0554 (10)
H100.01680.57650.35460.066*
C110.0758 (2)0.4180 (5)0.3002 (2)0.0597 (10)
H110.10530.48430.27310.072*
C120.08389 (19)0.2653 (5)0.2925 (2)0.0572 (10)
H120.11870.22590.25970.069*
C130.03961 (17)0.1700 (4)0.33402 (19)0.0476 (8)
H130.04550.06590.32860.057*
O1W0.08035 (19)0.2122 (4)0.76769 (19)0.0981 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0446 (3)0.0303 (3)0.0486 (3)0.0041 (2)0.0107 (2)0.0010 (2)
Cl10.0494 (5)0.0530 (6)0.0562 (6)0.0021 (4)0.0006 (4)0.0027 (4)
Cl20.0553 (5)0.0368 (5)0.0541 (5)0.0117 (4)0.0031 (4)0.0055 (4)
N10.0427 (15)0.0465 (18)0.0425 (17)0.0020 (13)0.0028 (12)0.0024 (14)
N20.0428 (15)0.0470 (19)0.0566 (19)0.0089 (13)0.0068 (13)0.0112 (15)
N30.0437 (15)0.0407 (17)0.0400 (16)0.0006 (12)0.0002 (12)0.0004 (13)
C10.059 (2)0.045 (2)0.057 (2)0.0075 (17)0.0052 (17)0.0016 (18)
C20.068 (2)0.049 (3)0.080 (3)0.0153 (19)0.008 (2)0.010 (2)
C30.072 (3)0.073 (3)0.084 (3)0.010 (2)0.036 (2)0.011 (3)
C40.067 (3)0.073 (3)0.070 (3)0.001 (2)0.027 (2)0.007 (2)
C50.0398 (18)0.050 (2)0.048 (2)0.0010 (15)0.0028 (15)0.0024 (18)
C60.046 (2)0.054 (2)0.066 (3)0.0038 (16)0.0080 (17)0.006 (2)
C70.047 (2)0.055 (2)0.067 (3)0.0068 (17)0.0008 (17)0.013 (2)
C80.055 (2)0.035 (2)0.064 (3)0.0050 (15)0.0012 (18)0.0003 (18)
C90.0438 (18)0.0358 (19)0.050 (2)0.0047 (14)0.0014 (15)0.0023 (16)
C100.060 (2)0.042 (2)0.062 (3)0.0116 (17)0.0054 (18)0.0003 (19)
C110.057 (2)0.067 (3)0.053 (2)0.0220 (19)0.0087 (17)0.003 (2)
C120.049 (2)0.071 (3)0.050 (2)0.0048 (18)0.0077 (17)0.005 (2)
C130.0491 (19)0.047 (2)0.046 (2)0.0033 (16)0.0023 (15)0.0049 (17)
O1W0.115 (3)0.091 (3)0.087 (2)0.012 (2)0.001 (2)0.023 (2)
Geometric parameters (Å, º) top
Mn1—N22.226 (3)C4—H40.9300
Mn1—N32.245 (3)C5—C61.494 (5)
Mn1—N12.259 (3)C6—C71.495 (5)
Mn1—Cl22.4348 (10)C6—H6A0.9700
Mn1—Cl12.4554 (11)C6—H6B0.9700
N1—C11.336 (5)C7—H7A0.9700
N1—C51.341 (4)C7—H7B0.9700
N2—C81.288 (5)C8—C91.481 (5)
N2—C71.438 (4)C8—H80.9300
N3—C131.327 (4)C9—C101.378 (5)
N3—C91.343 (4)C10—C111.373 (5)
C1—C21.376 (5)C10—H100.9300
C1—H10.9300C11—C121.363 (5)
C2—C31.360 (6)C11—H110.9300
C2—H20.9300C12—C131.380 (5)
C3—C41.366 (6)C12—H120.9300
C3—H30.9300C13—H130.9300
C4—C51.379 (5)
N2—Mn1—N374.40 (11)N1—C5—C6119.8 (3)
N2—Mn1—N186.14 (11)C4—C5—C6120.3 (3)
N3—Mn1—N1159.28 (11)C5—C6—C7117.2 (3)
N2—Mn1—Cl2161.52 (8)C5—C6—H6A108.0
N3—Mn1—Cl296.78 (7)C7—C6—H6A108.0
N1—Mn1—Cl299.75 (8)C5—C6—H6B108.0
N2—Mn1—Cl197.16 (8)C7—C6—H6B108.0
N3—Mn1—Cl195.69 (7)H6A—C6—H6B107.2
N1—Mn1—Cl193.70 (7)N2—C7—C6110.8 (3)
Cl2—Mn1—Cl199.89 (4)N2—C7—H7A109.5
C1—N1—C5118.7 (3)C6—C7—H7A109.5
C1—N1—Mn1115.0 (2)N2—C7—H7B109.5
C5—N1—Mn1126.0 (2)C6—C7—H7B109.5
C8—N2—C7120.0 (3)H7A—C7—H7B108.1
C8—N2—Mn1115.2 (2)N2—C8—C9120.0 (3)
C7—N2—Mn1124.8 (3)N2—C8—H8120.0
C13—N3—C9118.0 (3)C9—C8—H8120.0
C13—N3—Mn1127.0 (2)N3—C9—C10122.2 (3)
C9—N3—Mn1115.0 (2)N3—C9—C8115.4 (3)
N1—C1—C2123.7 (4)C10—C9—C8122.3 (3)
N1—C1—H1118.2C11—C10—C9118.9 (4)
C2—C1—H1118.2C11—C10—H10120.5
C3—C2—C1117.4 (4)C9—C10—H10120.5
C3—C2—H2121.3C12—C11—C10119.1 (4)
C1—C2—H2121.3C12—C11—H11120.5
C2—C3—C4119.6 (4)C10—C11—H11120.5
C2—C3—H3120.2C11—C12—C13119.1 (4)
C4—C3—H3120.2C11—C12—H12120.5
C3—C4—C5120.7 (4)C13—C12—H12120.5
C3—C4—H4119.6N3—C13—C12122.7 (3)
C5—C4—H4119.6N3—C13—H13118.6
N1—C5—C4119.9 (4)C12—C13—H13118.6
N2—Mn1—N1—C1160.9 (3)C2—C3—C4—C50.6 (8)
N3—Mn1—N1—C1179.2 (3)C1—N1—C5—C40.2 (5)
Cl2—Mn1—N1—C136.8 (2)Mn1—N1—C5—C4173.2 (3)
Cl1—Mn1—N1—C163.9 (2)C1—N1—C5—C6177.5 (3)
N2—Mn1—N1—C512.3 (3)Mn1—N1—C5—C69.5 (5)
N3—Mn1—N1—C57.6 (5)C3—C4—C5—N10.3 (7)
Cl2—Mn1—N1—C5150.0 (3)C3—C4—C5—C6177.6 (4)
Cl1—Mn1—N1—C5109.3 (3)N1—C5—C6—C757.7 (4)
N3—Mn1—N2—C80.7 (2)C4—C5—C6—C7125.1 (4)
N1—Mn1—N2—C8172.1 (3)C8—N2—C7—C6135.2 (4)
Cl2—Mn1—N2—C862.6 (4)Mn1—N2—C7—C642.0 (4)
Cl1—Mn1—N2—C894.7 (2)C5—C6—C7—N273.8 (4)
N3—Mn1—N2—C7178.0 (3)C7—N2—C8—C9178.7 (3)
N1—Mn1—N2—C75.2 (3)Mn1—N2—C8—C91.2 (4)
Cl2—Mn1—N2—C7114.7 (3)C13—N3—C9—C100.0 (5)
Cl1—Mn1—N2—C788.0 (3)Mn1—N3—C9—C10178.2 (3)
N2—Mn1—N3—C13178.1 (3)C13—N3—C9—C8177.8 (3)
N1—Mn1—N3—C13157.4 (3)Mn1—N3—C9—C80.4 (4)
Cl2—Mn1—N3—C1314.7 (3)N2—C8—C9—N31.1 (5)
Cl1—Mn1—N3—C1386.0 (3)N2—C8—C9—C10178.9 (3)
N2—Mn1—N3—C90.1 (2)N3—C9—C10—C110.3 (5)
N1—Mn1—N3—C920.5 (4)C8—C9—C10—C11177.3 (3)
Cl2—Mn1—N3—C9163.3 (2)C9—C10—C11—C120.6 (6)
Cl1—Mn1—N3—C996.0 (2)C10—C11—C12—C130.5 (6)
C5—N1—C1—C20.4 (6)C9—N3—C13—C120.1 (5)
Mn1—N1—C1—C2174.1 (3)Mn1—N3—C13—C12177.9 (3)
N1—C1—C2—C30.6 (7)C11—C12—C13—N30.2 (6)
C1—C2—C3—C40.7 (7)

Experimental details

Crystal data
Chemical formula[MnCl2(C13H13N3)]·H2O
Mr355.12
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)19.173 (3), 8.826 (1), 18.088 (2)
β (°) 94.009 (2)
V3)3053.4 (7)
Z8
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.26 × 0.24 × 0.20
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
[SCALEPACK in CrystalClear-SM Expert (Rigaku, 2009)]
Tmin, Tmax0.69, 0.79
No. of measured, independent and
observed [I > 2σ(I)] reflections
13865, 2774, 2039
Rint0.058
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.113, 1.02
No. of reflections2773
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.43

Computer programs: CrystalClear-SM Expert (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and CRYSTALBUILDER (Welter, 2006), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008).

 

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationMarzec, B., Mahimaidoss, M., Zhang, L., McCabe, T. & Schmitt, W. (2011). Acta Cryst. E67, m1676.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWelter, R. (2006). Acta Cryst. A62, s252.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds