organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-N-Ethyl-2-(5-fluoro-2-oxoindolin-3-yl­­idene)hydrazinecarbo­thio­amide

aSchool of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia, bFaculty of Science, Sabha University, Libya, cDepartment of Chemistry, International University of Africa, Khartoum, Sudan, and dX-ray Crystallography Unit, School of Physics,Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: sgteoh@usm.my

(Received 7 June 2012; accepted 21 August 2012; online 8 September 2012)

In the title compound, C11H11FN4OS, an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, mol­ecules form chains through N—H⋯O hydrogen bonds, which are extended by N—H⋯S hydrogen bonds into an infinite three-dimensional network.

Related literature

For related structures, see: Ali et al. (2012a[Ali, A. Q., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012a). Acta Cryst. E68, m538-m539.],b[Ali, A. Q., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012b). Acta Cryst. E68, o285-o286.]); Qasem Ali et al. (2011[Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011). Acta Cryst. E67, o3476-o3477.]; 2012a[Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012a). Acta Cryst. E68, o953-o954.],b[Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012b). Acta Cryst. E68, o955-o956.],c[Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012c). Acta Cryst. E68, o962-o963.],d[Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012d). Acta Cryst. E68, o964-o965.]). For graph-set analysis, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the biological activity of isatin and its derivatives, see: Suryavanshi & Pai (2006[Suryavanshi, J. P. & Pai, N. R. (2006). Indian J. Chem. Sect. B, 45, 1227-1230.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Indian J. Pharm. Sci. 61, 358-361.]); Bhandari et al. (2008[Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822-1831.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11FN4OS

  • Mr = 266.30

  • Orthorhombic, P 21 21 21

  • a = 4.5151 (1) Å

  • b = 11.6102 (3) Å

  • c = 22.3255 (7) Å

  • V = 1170.33 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.43 × 0.09 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.887, Tmax = 0.987

  • 8163 measured reflections

  • 3384 independent reflections

  • 2558 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.098

  • S = 1.09

  • 3384 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1367 Friedel pairs

  • Flack parameter: −0.12 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.84 (2) 2.01 (2) 2.836 (3) 168 (3)
N3—H1N3⋯O1 0.88 (2) 2.06 (2) 2.747 (3) 134 (2)
N4—H1N4⋯S1ii 0.80 (3) 2.86 (2) 3.541 (2) 144 (2)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isatin (2,3-dioxindole) is an endogenous compound identified in humans, and its effect has been studied in a variety of systems. The biological properties of isatin and its derivatives include a range of actions in the brain, they offer protection against bacterial (Suryavanshi & Pai, 2006) and fungal infections and they confer anticonvulsant, anti-HIV (Pandeya et al., 1999), anti-depressant and anti-inflammatory activities (Bhandari et al., 2008). In the present paper we describe the single-crystal X-ray diffraction study of title compound, Fig. 1.

In the title compound C11H11FN4OS, (Fig. 1), the intramolecular N3—H1N3···O1 hydrogen-bonding interaction generates a ring motif [graph set S(6)]. In the crystal the molecules form chains through intermolecular N1—H1N1···O1 hydrogen bonds, which are extended by the N4—H1N4···S1 hydrogen bonding interaction into an infinite three-dimensional network (Fig. 2, Table 1).

Related literature top

For related structures, see: Ali et al. (2012a,b); Qasem Ali et al. (2011; 2012a,b,c,d). For graph-set analysis, see Bernstein et al. (1995). For the biological activity of isatin and its derivatives, see: Suryavanshi & Pai (2006); Pandeya et al. (1999); Bhandari et al. (2008).

Experimental top

The Schiff base has been synthesized by refluxing the reaction mixture of a hot ethanolic solution (30 ml) of 4-ethyl-3-thiosemicarbazide (0.01 mol) and a hot ethanolic solution (30 ml) of 5-flouroisatin (0.01 mol) for 2 hrs. The precipitate formed on cooling of the reaction mixture was filtered, washed with cold EtOH and recrystallized from hot EtOH. Yield: 80%; m.p.: 521.3–522.1 K. The yellow crystals were grown in ethanol-DMF (4:1) by slow evaporation at room temperature.

Refinement top

N-bound H atoms were located in a difference Fourier map and were refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic ring, C—H = 0.98 Å for methyl group and C—H = 0.99 Å for methylene group H atoms, and with Uiso(H) = 1.2 Ueq(C), 1.2Ueq(C) and 1.5Ueq(C) for aromatic ring, methylene group and methyl group H atoms, respectively. The highest residual electron density peak is located at 0.11 Å from S1 and the deepest hole is located at 0.47 Å from S1.

Structure description top

Isatin (2,3-dioxindole) is an endogenous compound identified in humans, and its effect has been studied in a variety of systems. The biological properties of isatin and its derivatives include a range of actions in the brain, they offer protection against bacterial (Suryavanshi & Pai, 2006) and fungal infections and they confer anticonvulsant, anti-HIV (Pandeya et al., 1999), anti-depressant and anti-inflammatory activities (Bhandari et al., 2008). In the present paper we describe the single-crystal X-ray diffraction study of title compound, Fig. 1.

In the title compound C11H11FN4OS, (Fig. 1), the intramolecular N3—H1N3···O1 hydrogen-bonding interaction generates a ring motif [graph set S(6)]. In the crystal the molecules form chains through intermolecular N1—H1N1···O1 hydrogen bonds, which are extended by the N4—H1N4···S1 hydrogen bonding interaction into an infinite three-dimensional network (Fig. 2, Table 1).

For related structures, see: Ali et al. (2012a,b); Qasem Ali et al. (2011; 2012a,b,c,d). For graph-set analysis, see Bernstein et al. (1995). For the biological activity of isatin and its derivatives, see: Suryavanshi & Pai (2006); Pandeya et al. (1999); Bhandari et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the a axis. Hydrogen bonds are shown as dashed lines.
(Z)-N-Ethyl-2-(5-fluoro-2-oxoindolin-3- ylidene)hydrazinecarbothioamide top
Crystal data top
C11H11FN4OSDx = 1.511 Mg m3
Mr = 266.30Melting point = 521.3–522.1 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1888 reflections
a = 4.5151 (1) Åθ = 3.3–26.6°
b = 11.6102 (3) ŵ = 0.28 mm1
c = 22.3255 (7) ÅT = 100 K
V = 1170.33 (5) Å3Needle, yellow
Z = 40.43 × 0.09 × 0.05 mm
F(000) = 552
Data collection top
Bruker APEXII CCD
diffractometer
3384 independent reflections
Radiation source: fine-focus sealed tube2558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 63
Tmin = 0.887, Tmax = 0.987k = 1616
8163 measured reflectionsl = 3119
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0233P)2 + 0.3031P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3384 reflectionsΔρmax = 0.48 e Å3
176 parametersΔρmin = 0.40 e Å3
0 restraintsAbsolute structure: Flack (1983), 1367 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (12)
Crystal data top
C11H11FN4OSV = 1170.33 (5) Å3
Mr = 266.30Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.5151 (1) ŵ = 0.28 mm1
b = 11.6102 (3) ÅT = 100 K
c = 22.3255 (7) Å0.43 × 0.09 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
3384 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2558 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.987Rint = 0.047
8163 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098Δρmax = 0.48 e Å3
S = 1.09Δρmin = 0.40 e Å3
3384 reflectionsAbsolute structure: Flack (1983), 1367 Friedel pairs
176 parametersAbsolute structure parameter: 0.12 (12)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.24481 (17)0.73593 (5)0.74840 (3)0.01960 (16)
F10.1405 (4)0.22456 (12)0.90756 (7)0.0262 (4)
O10.7062 (4)0.74520 (13)0.92210 (7)0.0173 (4)
N10.3500 (6)0.63660 (18)0.97059 (10)0.0169 (5)
N20.6774 (5)0.54684 (16)0.83437 (9)0.0146 (5)
N30.8668 (5)0.63110 (18)0.81930 (9)0.0143 (5)
N41.0264 (6)0.5213 (2)0.74068 (10)0.0181 (5)
C10.2029 (7)0.5313 (2)0.96080 (11)0.0149 (6)
C20.0082 (7)0.4801 (2)0.99618 (11)0.0173 (6)
H2A0.07320.51491.03240.021*
C30.1231 (7)0.3755 (2)0.97690 (12)0.0180 (6)
H3A0.26990.33700.99990.022*
C40.0221 (7)0.3275 (2)0.92389 (12)0.0188 (7)
C50.1898 (7)0.3770 (2)0.88805 (11)0.0171 (6)
H5A0.25500.34120.85210.021*
C60.3043 (6)0.48216 (19)0.90700 (11)0.0131 (6)
C70.5237 (6)0.5616 (2)0.88265 (11)0.0124 (6)
C80.5425 (7)0.6604 (2)0.92589 (11)0.0138 (6)
C91.0386 (6)0.6223 (2)0.76802 (11)0.0153 (6)
C101.1774 (7)0.4928 (2)0.68493 (11)0.0205 (7)
H10A1.28880.42000.69010.025*
H10B1.32110.55440.67510.025*
C110.9584 (7)0.4796 (2)0.63365 (12)0.0211 (7)
H11A1.06630.46360.59650.032*
H11B0.84450.55090.62910.032*
H11C0.82320.41570.64230.032*
H1N10.326 (7)0.679 (2)1.0006 (11)0.026 (9)*
H1N30.866 (6)0.696 (2)0.8394 (10)0.009 (7)*
H1N40.928 (7)0.473 (2)0.7566 (12)0.018 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0212 (4)0.0175 (3)0.0201 (3)0.0010 (3)0.0025 (3)0.0015 (3)
F10.0337 (11)0.0178 (7)0.0269 (9)0.0080 (8)0.0005 (8)0.0005 (7)
O10.0213 (12)0.0156 (8)0.0150 (9)0.0033 (9)0.0001 (8)0.0028 (7)
N10.0218 (14)0.0167 (11)0.0121 (12)0.0002 (11)0.0024 (11)0.0060 (10)
N20.0146 (14)0.0166 (10)0.0124 (11)0.0004 (10)0.0012 (10)0.0009 (9)
N30.0157 (13)0.0150 (10)0.0121 (12)0.0007 (10)0.0019 (10)0.0023 (10)
N40.0214 (15)0.0194 (11)0.0136 (13)0.0022 (11)0.0043 (11)0.0024 (10)
C10.0178 (17)0.0140 (11)0.0130 (13)0.0044 (12)0.0019 (12)0.0020 (10)
C20.0191 (17)0.0203 (13)0.0125 (14)0.0041 (13)0.0013 (13)0.0018 (11)
C30.0164 (16)0.0199 (13)0.0176 (15)0.0002 (12)0.0001 (12)0.0089 (12)
C40.0226 (18)0.0130 (12)0.0209 (15)0.0001 (13)0.0061 (13)0.0021 (12)
C50.0198 (17)0.0161 (12)0.0153 (14)0.0006 (12)0.0028 (12)0.0008 (11)
C60.0149 (16)0.0140 (11)0.0105 (13)0.0030 (11)0.0004 (11)0.0020 (10)
C70.0148 (16)0.0138 (12)0.0085 (13)0.0030 (11)0.0020 (11)0.0001 (10)
C80.0147 (16)0.0165 (12)0.0103 (13)0.0041 (12)0.0033 (11)0.0010 (11)
C90.0137 (15)0.0203 (13)0.0118 (13)0.0038 (12)0.0015 (11)0.0024 (11)
C100.0234 (18)0.0204 (13)0.0179 (15)0.0000 (13)0.0063 (13)0.0042 (11)
C110.0266 (19)0.0200 (13)0.0166 (15)0.0022 (14)0.0043 (13)0.0021 (12)
Geometric parameters (Å, º) top
S1—C91.673 (3)C2—C31.390 (4)
F1—C41.359 (3)C2—H2A0.9500
O1—C81.234 (3)C3—C41.385 (4)
N1—C81.352 (3)C3—H3A0.9500
N1—C11.409 (3)C4—C51.373 (4)
N1—H1N10.84 (2)C5—C61.392 (3)
N2—C71.293 (3)C5—H5A0.9500
N2—N31.342 (3)C6—C71.459 (4)
N3—C91.387 (3)C7—C81.501 (3)
N3—H1N30.88 (2)C10—C111.521 (4)
N4—C91.323 (3)C10—H10A0.9900
N4—C101.457 (3)C10—H10B0.9900
N4—H1N40.80 (3)C11—H11A0.9800
C1—C21.373 (4)C11—H11B0.9800
C1—C61.406 (3)C11—H11C0.9800
C8—N1—C1111.5 (2)C5—C6—C1119.6 (2)
C8—N1—H1N1123 (2)C5—C6—C7133.9 (2)
C1—N1—H1N1125 (2)C1—C6—C7106.4 (2)
C7—N2—N3117.0 (2)N2—C7—C6126.2 (2)
N2—N3—C9120.7 (2)N2—C7—C8127.4 (2)
N2—N3—H1N3119.8 (17)C6—C7—C8106.4 (2)
C9—N3—H1N3119.0 (17)O1—C8—N1126.8 (2)
C9—N4—C10125.2 (2)O1—C8—C7126.8 (2)
C9—N4—H1N4116.1 (19)N1—C8—C7106.4 (2)
C10—N4—H1N4118.7 (19)N4—C9—N3115.0 (2)
C2—C1—C6122.8 (2)N4—C9—S1126.9 (2)
C2—C1—N1127.8 (2)N3—C9—S1118.02 (19)
C6—C1—N1109.3 (2)N4—C10—C11111.2 (2)
C1—C2—C3117.3 (2)N4—C10—H10A109.4
C1—C2—H2A121.3C11—C10—H10A109.4
C3—C2—H2A121.3N4—C10—H10B109.4
C4—C3—C2119.6 (3)C11—C10—H10B109.4
C4—C3—H3A120.2H10A—C10—H10B108.0
C2—C3—H3A120.2C10—C11—H11A109.5
F1—C4—C5119.1 (2)C10—C11—H11B109.5
F1—C4—C3116.9 (3)H11A—C11—H11B109.5
C5—C4—C3124.0 (2)C10—C11—H11C109.5
C4—C5—C6116.7 (2)H11A—C11—H11C109.5
C4—C5—H5A121.7H11B—C11—H11C109.5
C6—C5—H5A121.7
C7—N2—N3—C9179.6 (2)N3—N2—C7—C83.2 (4)
C8—N1—C1—C2179.4 (3)C5—C6—C7—N22.3 (5)
C8—N1—C1—C60.4 (3)C1—C6—C7—N2177.7 (3)
C6—C1—C2—C30.1 (4)C5—C6—C7—C8179.8 (3)
N1—C1—C2—C3179.7 (2)C1—C6—C7—C80.1 (3)
C1—C2—C3—C40.1 (4)C1—N1—C8—O1178.9 (2)
C2—C3—C4—F1179.4 (2)C1—N1—C8—C70.4 (3)
C2—C3—C4—C50.2 (4)N2—C7—C8—O11.0 (5)
F1—C4—C5—C6179.8 (2)C6—C7—C8—O1178.8 (2)
C3—C4—C5—C60.6 (4)N2—C7—C8—N1177.5 (3)
C4—C5—C6—C10.6 (4)C6—C7—C8—N10.3 (3)
C4—C5—C6—C7179.4 (3)C10—N4—C9—N3177.4 (2)
C2—C1—C6—C50.3 (4)C10—N4—C9—S14.7 (4)
N1—C1—C6—C5179.9 (2)N2—N3—C9—N47.8 (4)
C2—C1—C6—C7179.7 (3)N2—N3—C9—S1174.10 (18)
N1—C1—C6—C70.2 (3)C9—N4—C10—C11109.6 (3)
N3—N2—C7—C6179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.84 (2)2.01 (2)2.836 (3)168 (3)
N3—H1N3···O10.88 (2)2.06 (2)2.747 (3)134 (2)
N4—H1N4···S1ii0.80 (3)2.86 (2)3.541 (2)144 (2)
Symmetry codes: (i) x1/2, y+3/2, z+2; (ii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC11H11FN4OS
Mr266.30
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)4.5151 (1), 11.6102 (3), 22.3255 (7)
V3)1170.33 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.43 × 0.09 × 0.05
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.887, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
8163, 3384, 2558
Rint0.047
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.098, 1.09
No. of reflections3384
No. of parameters176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.40
Absolute structureFlack (1983), 1367 Friedel pairs
Absolute structure parameter0.12 (12)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.84 (2)2.01 (2)2.836 (3)168 (3)
N3—H1N3···O10.88 (2)2.06 (2)2.747 (3)134 (2)
N4—H1N4···S1ii0.80 (3)2.86 (2)3.541 (2)144 (2)
Symmetry codes: (i) x1/2, y+3/2, z+2; (ii) x+2, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: E-9395-2011.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (1001/PKIMIA/815067). AQA thanks the Ministry of Higher Education and the University of Sabha (Libya) for a schol­arship.

References

First citationAli, A. Q., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012a). Acta Cryst. E68, m538–m539.  CSD CrossRef IUCr Journals Google Scholar
First citationAli, A. Q., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012b). Acta Cryst. E68, o285–o286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822–1831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Indian J. Pharm. Sci. 61, 358–361.  Google Scholar
First citationQasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011). Acta Cryst. E67, o3476–o3477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012a). Acta Cryst. E68, o953–o954.  CSD CrossRef IUCr Journals Google Scholar
First citationQasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012b). Acta Cryst. E68, o955–o956.  CSD CrossRef IUCr Journals Google Scholar
First citationQasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012c). Acta Cryst. E68, o962–o963.  CSD CrossRef IUCr Journals Google Scholar
First citationQasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012d). Acta Cryst. E68, o964–o965.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuryavanshi, J. P. & Pai, N. R. (2006). Indian J. Chem. Sect. B, 45, 1227–1230.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds