metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(1,1′-bi­phenyl-2,2′-di­yl)di-tert-butyl­phospho­nium] di-μ-chlorido-bis­­[di­chlorido­palladate(II)]

aDepartment of Chemistry, University of Johannesburg, P O Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: carderne@uj.ac.za

(Received 3 August 2012; accepted 3 September 2012; online 8 September 2012)

In the title compound, (C20H26P)2[Pd2Cl6], the PdII atom within the hexachloridodipalladate(II) dianion has a square-planar geometry. It resides on a centre of inversion with the asymmetric unit containing half of the dianion and one phospho­nium cation. Only weak C—H⋯π inter­actions are present in the crystal structure.

Related literature

For the structures of related PdII complexes and background to organopalladium-catalysed reactions, see: Ormondi et al. (2011[Ormondi, B., Shaw, M. L. & Holzapfel, C. W. (2011). J. Organomet. Chem. 696, 3091-3096.]); Williams et al. (2008[Williams, D. B. G., Shaw, M. L., Green, M. J. & Holzapfel, C. W. (2008). Angew. Chem. Int. Ed. 47, 560-563.]); Migowski & DuPont (2007[Migowski, P. & DuPont, J. (2007). Chem. Eur. J. 13, 32-39.]); d′OrLyé & Jutland (2005[OrLyé, F. d' & Jutland, A. (2005). Tetrahedron, 61, 9670-9678.]); Beletskaya & Cheprakov (2004[Beletskaya, I. P. & Cheprakov, A. V. (2004). J. Organomet. Chem. 689, 4055-4082.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • (C20H26P)2[Pd2Cl6]

  • Mr = 1020.26

  • Triclinic, [P \overline 1]

  • a = 8.3247 (2) Å

  • b = 11.2697 (2) Å

  • c = 11.7004 (3) Å

  • α = 73.0982 (6)°

  • β = 85.0900 (6)°

  • γ = 82.2708 (5)°

  • V = 1039.49 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 100 K

  • 0.29 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (AXScale; Bruker, 2010[Bruker (2010). APEX2, AXScale and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.695, Tmax = 0.774

  • 39747 measured reflections

  • 5184 independent reflections

  • 5088 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.037

  • S = 1.05

  • 5184 reflections

  • 232 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg7 is the centroid of the Pd1,Cl3,Pd1′,Cl3′ ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Cg7i 0.95 2.68 3.5952 (13) 138
Symmetry code: (i) x+1, y, z-1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, AXScale and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, AXScale and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our continued studies (Williams et al., 2008 and Ormondi et al., 2011) of organopalladium catalysed reactions, we have found that certain palladocycles (Beletskaya & Cheprakov, 2004 and d'OrLyé & Jutland, 2005) are readily converted into highly catalytically active low-ligated Pd0 complexes. We now report that treatment of one such palladocycle, namely acetato-(2'-di-t-butylphosphino-1,1'-diphenyl-2yl) palladium(II), with HCl at room temperature results in the formation of the title compound (I) in good yield. Formation of the complex appears to result from the acid-induced reductive elimination of Pd0 from the palladocycle followed by oxidation of the palladium in the presence of air and chloride ions (Migowski & DuPont, 2007).

The structure of the title compound (I), [C20H26P. 0.5(Cl6Pd2)]2 shows a square planar geometry for the PdII atom within the hexachlorodipalladium(II) anion. The palladium atom sits on a centre of inversion and therefore the asymmetric unit contains half of the trichloropalladium(II) anion and one phosphonium cation. Figure 1 shows a diagram of the molecular structure of the asymmetric unit of (I). Weak interactions were observed in this structure where C—H···Cl and C—H···π are evident only.

Related literature top

For the structures of related Pd complexes and background to organopalladium-catalysed reactions, see: Ormondi et al. (2011); Williams et al. (2008); Migowski & DuPont (2007); d'OrLyé & Jutland (2005); Beletskaya & Cheprakov (2004). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A solution of hydrogen chloride (142 mg; 4 mmol) in 18 ml of methanol was slowly added to a stirred solution of the palladocycle precursor, namely acetato-(2'-di-t-butylphosphino-1,1'-diphenyl-2yl) palladium(II) (493 mg; 1 mmol) in 17 ml of dichloromethane over a period of 10 minutes. The reaction mixture changed from colourless to dark purple and then to dark brown. After completion of the addition, stirring was discontinued and the reaction mixture left exposed to the air at room temperature. A red crystalline precipitate started to form after 45 minutes. After 24 h, the supernatant solution was removed, the solid material was with ether and dried in vacuo. The solid material (376 mg; 74%) was taken up in 15 ml of 2:1 dichloromethane:methanol and the resulting solution was exposed to the vapours of diethyl ether in a closed system for 24 h. Well formed, dark red prisms of the title compound (I) crystallized from the solution and a suitable single-crystal was selected for the single-crystal X-ray diffraction analysis.

Refinement top

The H-atoms were geometrically positioned and refined in the riding-model approximation, with C—H = 0.97 Å, N—H = 0.89 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N). For (I), the highest peak in the final difference map is 0.60 Å from Cl4B and the deepest hole is 0.27 Å from Cl4B.

Structure description top

As part of our continued studies (Williams et al., 2008 and Ormondi et al., 2011) of organopalladium catalysed reactions, we have found that certain palladocycles (Beletskaya & Cheprakov, 2004 and d'OrLyé & Jutland, 2005) are readily converted into highly catalytically active low-ligated Pd0 complexes. We now report that treatment of one such palladocycle, namely acetato-(2'-di-t-butylphosphino-1,1'-diphenyl-2yl) palladium(II), with HCl at room temperature results in the formation of the title compound (I) in good yield. Formation of the complex appears to result from the acid-induced reductive elimination of Pd0 from the palladocycle followed by oxidation of the palladium in the presence of air and chloride ions (Migowski & DuPont, 2007).

The structure of the title compound (I), [C20H26P. 0.5(Cl6Pd2)]2 shows a square planar geometry for the PdII atom within the hexachlorodipalladium(II) anion. The palladium atom sits on a centre of inversion and therefore the asymmetric unit contains half of the trichloropalladium(II) anion and one phosphonium cation. Figure 1 shows a diagram of the molecular structure of the asymmetric unit of (I). Weak interactions were observed in this structure where C—H···Cl and C—H···π are evident only.

For the structures of related Pd complexes and background to organopalladium-catalysed reactions, see: Ormondi et al. (2011); Williams et al. (2008); Migowski & DuPont (2007); d'OrLyé & Jutland (2005); Beletskaya & Cheprakov (2004). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the asymmetric unit of the title compound (I) with thermal displacement ellipsoids drawn at the 50% probability level.
Bis[(1,1'-biphenyl-2,2'-diyl)di-tert-butylphosphonium] di-µ-chlorido-bis[dichloridopalladate(II)] top
Crystal data top
(C20H26P)2[Pd2Cl6]Z = 1
Mr = 1020.26F(000) = 516
Triclinic, P1Dx = 1.630 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3247 (2) ÅCell parameters from 9253 reflections
b = 11.2697 (2) Åθ = 3.6–28.4°
c = 11.7004 (3) ŵ = 1.36 mm1
α = 73.0982 (6)°T = 100 K
β = 85.0900 (6)°Prism, dark orange
γ = 82.2708 (5)°0.29 × 0.22 × 0.20 mm
V = 1039.49 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5184 independent reflections
Radiation source: fine-focus sealed tube5088 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 28.5°, θmin = 2.9°
Absorption correction: multi-scan
(AXScale; Bruker, 2010)
h = 1111
Tmin = 0.695, Tmax = 0.774k = 1515
39747 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.037H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0139P)2 + 0.6282P]
where P = (Fo2 + 2Fc2)/3
5184 reflections(Δ/σ)max = 0.002
232 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
(C20H26P)2[Pd2Cl6]γ = 82.2708 (5)°
Mr = 1020.26V = 1039.49 (4) Å3
Triclinic, P1Z = 1
a = 8.3247 (2) ÅMo Kα radiation
b = 11.2697 (2) ŵ = 1.36 mm1
c = 11.7004 (3) ÅT = 100 K
α = 73.0982 (6)°0.29 × 0.22 × 0.20 mm
β = 85.0900 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
5184 independent reflections
Absorption correction: multi-scan
(AXScale; Bruker, 2010)
5088 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 0.774Rint = 0.017
39747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0150 restraints
wR(F2) = 0.037H-atom parameters constrained
S = 1.05Δρmax = 0.41 e Å3
5184 reflectionsΔρmin = 0.48 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C160.06541 (14)0.17413 (10)0.35252 (11)0.0171 (2)
H16A0.11670.14530.42970.026*
H16B0.12880.13560.29530.026*
H16C0.04510.15040.36280.026*
C20.51131 (13)0.18374 (10)0.38452 (10)0.0150 (2)
C60.36510 (14)0.28059 (11)0.52998 (11)0.0182 (2)
H60.27870.33630.55010.022*
C10.38564 (13)0.26782 (10)0.41465 (10)0.0147 (2)
C30.61953 (14)0.11512 (11)0.47087 (11)0.0186 (2)
H30.70570.05880.45150.022*
C50.47340 (15)0.21017 (12)0.61544 (11)0.0213 (2)
H50.46010.21730.69470.026*
C40.60052 (15)0.12966 (12)0.58561 (11)0.0215 (2)
H40.67530.08400.64410.026*
C170.32342 (14)0.50983 (10)0.22795 (11)0.0161 (2)
C130.05899 (13)0.31677 (10)0.30507 (10)0.0137 (2)
C70.51087 (13)0.17674 (10)0.26061 (10)0.0149 (2)
C190.25132 (15)0.58473 (11)0.31437 (12)0.0215 (2)
H19A0.28700.54120.39510.032*
H19B0.13260.59300.31490.032*
H19C0.28830.66780.28840.032*
C180.26103 (15)0.57096 (11)0.10206 (11)0.0211 (2)
H18A0.14210.57900.10610.032*
H18B0.30340.51900.04960.032*
H18C0.29770.65390.07010.032*
C150.03314 (14)0.37709 (11)0.39742 (11)0.0181 (2)
H15A0.04550.46810.36420.027*
H15B0.02790.35370.47020.027*
H15C0.14060.34790.41670.027*
C120.61554 (14)0.09816 (11)0.20828 (11)0.0190 (2)
H120.70140.04450.25170.023*
C140.02701 (14)0.36283 (11)0.18602 (11)0.0180 (2)
H14A0.03650.32860.12600.027*
H14B0.03690.45420.15840.027*
H14C0.13530.33500.19790.027*
C200.50976 (14)0.50237 (12)0.22269 (13)0.0228 (2)
H20A0.55620.45030.17130.034*
H20B0.54910.46560.30340.034*
H20C0.54260.58650.19000.034*
C90.36534 (14)0.25847 (10)0.07624 (10)0.0157 (2)
H90.28170.31360.03140.019*
C80.38668 (13)0.25742 (10)0.19316 (10)0.0137 (2)
C100.46880 (14)0.17729 (11)0.02614 (11)0.0183 (2)
H100.45450.17540.05300.022*
C110.59299 (15)0.09897 (11)0.09144 (12)0.0205 (2)
H110.66390.04490.05570.025*
Cl30.06462 (4)0.07944 (3)1.07304 (2)0.01962 (6)
Cl20.15259 (3)0.29365 (2)0.81900 (2)0.01663 (5)
Cl10.01589 (3)0.12552 (3)0.67310 (2)0.01763 (6)
P10.27397 (3)0.34725 (3)0.28353 (2)0.01179 (5)
Pd10.041384 (9)0.110164 (7)0.868729 (7)0.01193 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C160.0169 (5)0.0132 (5)0.0208 (5)0.0040 (4)0.0012 (4)0.0037 (4)
C20.0129 (5)0.0132 (5)0.0177 (5)0.0035 (4)0.0001 (4)0.0018 (4)
C60.0177 (5)0.0209 (6)0.0170 (5)0.0038 (4)0.0011 (4)0.0060 (4)
C10.0135 (5)0.0149 (5)0.0151 (5)0.0025 (4)0.0017 (4)0.0025 (4)
C30.0134 (5)0.0170 (5)0.0230 (6)0.0027 (4)0.0025 (4)0.0010 (4)
C50.0214 (6)0.0260 (6)0.0173 (5)0.0072 (5)0.0036 (4)0.0046 (5)
C40.0180 (5)0.0228 (6)0.0213 (6)0.0059 (4)0.0071 (4)0.0009 (5)
C170.0149 (5)0.0123 (5)0.0208 (5)0.0032 (4)0.0008 (4)0.0042 (4)
C130.0118 (5)0.0128 (5)0.0162 (5)0.0021 (4)0.0006 (4)0.0037 (4)
C70.0127 (5)0.0126 (5)0.0181 (5)0.0020 (4)0.0003 (4)0.0026 (4)
C190.0229 (6)0.0161 (5)0.0280 (6)0.0024 (4)0.0005 (5)0.0103 (5)
C180.0236 (6)0.0157 (5)0.0210 (6)0.0038 (4)0.0000 (5)0.0001 (4)
C150.0161 (5)0.0174 (5)0.0204 (6)0.0012 (4)0.0035 (4)0.0064 (4)
C120.0152 (5)0.0159 (5)0.0242 (6)0.0015 (4)0.0009 (4)0.0049 (5)
C140.0151 (5)0.0192 (5)0.0193 (5)0.0013 (4)0.0033 (4)0.0043 (4)
C200.0151 (5)0.0189 (6)0.0337 (7)0.0055 (4)0.0013 (5)0.0052 (5)
C90.0152 (5)0.0149 (5)0.0169 (5)0.0023 (4)0.0007 (4)0.0043 (4)
C80.0127 (5)0.0117 (5)0.0163 (5)0.0015 (4)0.0014 (4)0.0039 (4)
C100.0193 (5)0.0188 (5)0.0184 (5)0.0039 (4)0.0034 (4)0.0082 (4)
C110.0187 (5)0.0173 (5)0.0255 (6)0.0001 (4)0.0045 (4)0.0088 (5)
Cl30.03037 (15)0.01788 (13)0.01368 (12)0.01237 (11)0.00371 (10)0.00635 (10)
Cl20.01830 (12)0.01205 (11)0.01884 (13)0.00401 (9)0.00206 (10)0.00193 (10)
Cl10.02204 (13)0.01686 (12)0.01351 (12)0.00352 (10)0.00294 (9)0.00237 (10)
P10.01112 (12)0.01095 (12)0.01294 (12)0.00073 (9)0.00015 (9)0.00320 (10)
Pd10.01306 (4)0.01056 (4)0.01228 (4)0.00235 (3)0.00107 (3)0.00344 (3)
Geometric parameters (Å, º) top
C16—C131.5356 (15)C19—H19C0.9800
C16—H16A0.9800C18—H18A0.9800
C16—H16B0.9800C18—H18B0.9800
C16—H16C0.9800C18—H18C0.9800
C2—C31.3945 (15)C15—H15A0.9800
C2—C11.4075 (15)C15—H15B0.9800
C2—C71.4751 (16)C15—H15C0.9800
C6—C11.3920 (16)C12—C111.3930 (18)
C6—C51.3939 (16)C12—H120.9500
C6—H60.9500C14—H14A0.9800
C1—P11.8003 (11)C14—H14B0.9800
C3—C41.3924 (18)C14—H14C0.9800
C3—H30.9500C20—H20A0.9800
C5—C41.3884 (18)C20—H20B0.9800
C5—H50.9500C20—H20C0.9800
C4—H40.9500C9—C81.3911 (16)
C17—C191.5335 (16)C9—C101.3913 (16)
C17—C181.5357 (17)C9—H90.9500
C17—C201.5391 (16)C8—P11.7945 (11)
C17—P11.8476 (11)C10—C111.3890 (17)
C13—C151.5371 (15)C10—H100.9500
C13—C141.5404 (15)C11—H110.9500
C13—P11.8500 (11)Cl3—Pd1i2.3166 (3)
C7—C121.3908 (16)Cl3—Pd12.3349 (3)
C7—C81.4100 (15)Cl2—Pd12.2791 (3)
C19—H19A0.9800Cl1—Pd12.2709 (3)
C19—H19B0.9800Pd1—Cl3i2.3166 (3)
C13—C16—H16A109.5H18A—C18—H18C109.5
C13—C16—H16B109.5H18B—C18—H18C109.5
H16A—C16—H16B109.5C13—C15—H15A109.5
C13—C16—H16C109.5C13—C15—H15B109.5
H16A—C16—H16C109.5H15A—C15—H15B109.5
H16B—C16—H16C109.5C13—C15—H15C109.5
C3—C2—C1119.27 (11)H15A—C15—H15C109.5
C3—C2—C7126.57 (11)H15B—C15—H15C109.5
C1—C2—C7114.15 (10)C7—C12—C11119.26 (11)
C1—C6—C5118.86 (11)C7—C12—H12120.4
C1—C6—H6120.6C11—C12—H12120.4
C5—C6—H6120.6C13—C14—H14A109.5
C6—C1—C2121.02 (10)C13—C14—H14B109.5
C6—C1—P1130.24 (9)H14A—C14—H14B109.5
C2—C1—P1108.73 (8)C13—C14—H14C109.5
C4—C3—C2119.62 (11)H14A—C14—H14C109.5
C4—C3—H3120.2H14B—C14—H14C109.5
C2—C3—H3120.2C17—C20—H20A109.5
C4—C5—C6120.51 (12)C17—C20—H20B109.5
C4—C5—H5119.7H20A—C20—H20B109.5
C6—C5—H5119.7C17—C20—H20C109.5
C5—C4—C3120.69 (11)H20A—C20—H20C109.5
C5—C4—H4119.7H20B—C20—H20C109.5
C3—C4—H4119.7C8—C9—C10118.76 (11)
C19—C17—C18110.87 (10)C8—C9—H9120.6
C19—C17—C20109.39 (10)C10—C9—H9120.6
C18—C17—C20109.59 (10)C9—C8—C7121.31 (10)
C19—C17—P1110.43 (8)C9—C8—P1129.83 (9)
C18—C17—P1110.18 (8)C7—C8—P1108.86 (8)
C20—C17—P1106.27 (8)C11—C10—C9120.21 (11)
C16—C13—C15109.56 (9)C11—C10—H10119.9
C16—C13—C14109.59 (9)C9—C10—H10119.9
C15—C13—C14109.98 (9)C10—C11—C12121.24 (11)
C16—C13—P1104.76 (7)C10—C11—H11119.4
C15—C13—P1111.52 (8)C12—C11—H11119.4
C14—C13—P1111.29 (8)Pd1i—Cl3—Pd194.884 (10)
C12—C7—C8119.19 (11)C8—P1—C193.92 (5)
C12—C7—C2126.66 (10)C8—P1—C17108.77 (5)
C8—C7—C2114.12 (10)C1—P1—C17109.07 (5)
C17—C19—H19A109.5C8—P1—C13110.90 (5)
C17—C19—H19B109.5C1—P1—C13111.69 (5)
H19A—C19—H19B109.5C17—P1—C13119.48 (5)
C17—C19—H19C109.5Cl1—Pd1—Cl291.333 (10)
H19A—C19—H19C109.5Cl1—Pd1—Cl3i90.924 (10)
H19B—C19—H19C109.5Cl2—Pd1—Cl3i177.377 (10)
C17—C18—H18A109.5Cl1—Pd1—Cl3175.919 (10)
C17—C18—H18B109.5Cl2—Pd1—Cl392.603 (10)
H18A—C18—H18B109.5Cl3i—Pd1—Cl385.117 (10)
C17—C18—H18C109.5
C5—C6—C1—C21.22 (17)C7—C8—P1—C17107.86 (8)
C5—C6—C1—P1177.59 (9)C9—C8—P1—C1360.63 (12)
C3—C2—C1—C61.94 (17)C7—C8—P1—C13118.81 (8)
C7—C2—C1—C6176.93 (10)C6—C1—P1—C8176.59 (11)
C3—C2—C1—P1177.11 (9)C2—C1—P1—C84.49 (9)
C7—C2—C1—P14.03 (12)C6—C1—P1—C1772.01 (12)
C1—C2—C3—C40.77 (17)C2—C1—P1—C17106.92 (8)
C7—C2—C3—C4177.94 (11)C6—C1—P1—C1362.25 (12)
C1—C6—C5—C40.65 (18)C2—C1—P1—C13118.82 (8)
C6—C5—C4—C31.81 (19)C19—C17—P1—C8170.94 (8)
C2—C3—C4—C51.08 (18)C18—C17—P1—C866.24 (9)
C3—C2—C7—C121.82 (19)C20—C17—P1—C852.40 (9)
C1—C2—C7—C12176.95 (11)C19—C17—P1—C169.77 (9)
C3—C2—C7—C8179.97 (11)C18—C17—P1—C1167.42 (8)
C1—C2—C7—C81.26 (14)C20—C17—P1—C148.77 (9)
C8—C7—C12—C111.44 (17)C19—C17—P1—C1360.37 (10)
C2—C7—C12—C11176.69 (11)C18—C17—P1—C1362.44 (10)
C10—C9—C8—C70.39 (16)C20—C17—P1—C13178.91 (8)
C10—C9—C8—P1178.98 (9)C16—C13—P1—C852.91 (9)
C12—C7—C8—C91.04 (16)C15—C13—P1—C8171.33 (8)
C2—C7—C8—C9177.32 (10)C14—C13—P1—C865.44 (9)
C12—C7—C8—P1179.47 (9)C16—C13—P1—C150.42 (9)
C2—C7—C8—P12.18 (12)C15—C13—P1—C168.00 (9)
C8—C9—C10—C111.41 (17)C14—C13—P1—C1168.77 (8)
C9—C10—C11—C121.01 (18)C16—C13—P1—C17179.38 (7)
C7—C12—C11—C100.44 (18)C15—C13—P1—C1760.96 (10)
C9—C8—P1—C1175.63 (11)C14—C13—P1—C1762.27 (9)
C7—C8—P1—C13.81 (8)Pd1i—Cl3—Pd1—Cl2178.700 (11)
C9—C8—P1—C1772.71 (12)Pd1i—Cl3—Pd1—Cl3i0.0
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg7 is the centroid of the Pd1,Cl3,Pd1',Cl3' ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···Cg7ii0.952.683.5952 (13)138
Symmetry code: (ii) x+1, y, z1.

Experimental details

Crystal data
Chemical formula(C20H26P)2[Pd2Cl6]
Mr1020.26
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.3247 (2), 11.2697 (2), 11.7004 (3)
α, β, γ (°)73.0982 (6), 85.0900 (6), 82.2708 (5)
V3)1039.49 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.29 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(AXScale; Bruker, 2010)
Tmin, Tmax0.695, 0.774
No. of measured, independent and
observed [I > 2σ(I)] reflections
39747, 5184, 5088
Rint0.017
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.037, 1.05
No. of reflections5184
No. of parameters232
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.48

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg7 is the centroid of the Pd1,Cl3,Pd1',Cl3' ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···Cg7i0.952.683.5952 (13)138
Symmetry code: (i) x+1, y, z1.
 

Acknowledgements

The authors wish to acknowledge the University of Johannesburg for the use of their facilities and for funding for this project.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBeletskaya, I. P. & Cheprakov, A. V. (2004). J. Organomet. Chem. 689, 4055–4082.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2010). APEX2, AXScale and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMigowski, P. & DuPont, J. (2007). Chem. Eur. J. 13, 32–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOrLyé, F. d' & Jutland, A. (2005). Tetrahedron, 61, 9670–9678.  Google Scholar
First citationOrmondi, B., Shaw, M. L. & Holzapfel, C. W. (2011). J. Organomet. Chem. 696, 3091–3096.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, D. B. G., Shaw, M. L., Green, M. J. & Holzapfel, C. W. (2008). Angew. Chem. Int. Ed. 47, 560–563.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds