organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Furan-2-yl)-1,3-bis­(furan-2-ylmeth­yl)-1H-benzimidazol-3-ium chloride monohydrate

aDepartment of Chemistry, State University of New York-College at Geneseo, 1 College Circle, Geneseo, NY 14454, USA
*Correspondence e-mail: geiger@geneseo.edu

(Received 22 August 2012; accepted 21 September 2012; online 26 September 2012)

The title hydrated salt, C21H17N2O3+·Cl·H2O, exhibits disorder in one of the furan rings. The major and minor components have a refined occupancy ratio of 0.844 (19):0.156 (19). The structure displays intermolecular hydrogen bonding involving the water molecule and the chloride anion. Close intermolecular C—H⋯Cl and C—H⋯(furan ring) inter­actions complete the hydrogen bonding.

Related literature

For examples of the synthesis of substituted benzimidazolium salts, see: Wang & Chang (2006[Wang, S. & Chang, Y.-T. J. (2006). J. Am. Chem. Soc. 128, 10380-10381.]); Hoesl et al. (2004[Hoesl, C., Nefzi, A. & Houghten, R. (2004). J. Combin. Chem. 6, 220-223.]); Rivas et al. (2001[Rivas, F., Riaz, U., Giessert, A., Smulik, J. & Diver, S. (2001). Org. Lett. 3, 2673-2676.], 2002[Rivas, F., Giessert, A. & Diver, S. (2002). J. Org. Chem. 67, 1708-1711.]). For examples of structures of other tris­ubstituted benzimidazolium salts, see: Ennajih et al. (2009[Ennajih, H., Bouhfid, R., Zouihri, H., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2321.], 2010[Ennajih, H., Bouhfid, R., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o455.]); Akkurt et al. (2008[Akkurt, M., Karaca, S., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2008). Acta Cryst. E64, o809.], 2004[Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o219-o221.]); Smith & Luss (1975[Smith, D. L. & Luss, H. R. (1975). Acta Cryst. B31, 402-408.]). For the structure of 1,3-bis(furan-2-ylmethyl)-1H-benzo[d]imidazol-3-ium chloride, see: Akkurt et al. (2009[Akkurt, M., Şireci, N., Deniz, S., Küçükbay, H. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2037-o2038.]). For other related literature, see: Costache et al. (2007[Costache, M., Heidecker, M., Manias, E., Gupta, R. K. & Wilkie, C. (2007). Polym. Degrad. Stabil. 92, 1753-1762.]); Elmali et al. (2005[Elmali, A., Elerman, Y., Eren, G., Gümüş, R. & Svoboda, I. (2005). Z. Naturforsch. Teil B, 60, 164-168.]); Hayakawa et al. (1996[Hayakawa, Y., Kataoka, M. & Noyori, R. (1996). J. Org. Chem. 61, 7996-7997.]); Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]); Nahlé et al. (2012[Nahlé, A., Abu-Abdoun, I. & Abdel-Rahman, I. (2012). Int. J. Corros. Article ID 246013.]); Welton (1999[Welton, T. (1999). Chem. Rev. 99, 2071-2083.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17N2O3+·Cl·H2O

  • Mr = 398.83

  • Triclinic, [P \overline 1]

  • a = 9.4723 (12) Å

  • b = 9.9129 (14) Å

  • c = 11.2779 (16) Å

  • α = 97.980 (5)°

  • β = 110.359 (4)°

  • γ = 93.547 (4)°

  • V = 976.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 200 K

  • 0.30 × 0.07 × 0.07 mm

Data collection
  • Bruker SMART X2S benchtop diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.91, Tmax = 0.98

  • 9477 measured reflections

  • 3419 independent reflections

  • 2732 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.129

  • S = 1.05

  • 3419 reflections

  • 272 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW—HO2⋯Cl1 0.85 (1) 2.35 (1) 3.189 (2) 174 (5)
OW—HO1⋯Cl1i 0.84 (1) 2.34 (1) 3.183 (2) 176 (4)
C9—H9⋯O3 0.95 2.49 3.278 (7) 141
C12—H12A⋯Cl1ii 0.99 2.77 3.694 (2) 155
C12—H12B⋯O1 0.99 2.39 3.098 (6) 127
C17—H17B⋯Cl1 0.99 2.61 3.594 (2) 176
C21—H21⋯OWiii 0.95 2.29 3.168 (4) 153
C15—H15⋯O3iv 0.95 2.62 3.436 (3) 143
C15—H15⋯C18iv 0.95 2.85 3.788 (4) 170
C15—H15⋯C21iv 0.95 2.87 3.498 (4) 124
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+1, -z+1; (iii) x, y, z+1; (iv) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XSHELL (Bruker, 2004[Bruker (2004). XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzimidazolium salts have uses as room-temperature ionic liquids (Welton, 1999), surfactants (Costache et al., 2007), inhibitors of corrosion (Nahlé et al., 2012), anti-tumor (Elmali et al., 2005) and other pharmacological agents (Horton et al., 2003) and in nucleotide synthesis (Hayakawa et al., 1996).

A perspective view of the benzimidazolium cation of the title compound is shown in Figure 1. The benzimidazole moiety is planar with the largest deviation being 0.011 (1) Å (N1). The furan rings are also planar with the largest deviations being 0.004 (3) Å (C11, major contributor to the disorder structure), 0.034 (13) Å (O1', minor contributor to the disordered structure), 0.011 (1) Å (C16), and 0.003 (2) Å(C20). The major component of the disordered 2-furan substituent is canted 45.1 (2)° from the mean plane of the benzimidazole ring system and the two components of the disordered furan form an angle of 22.0 (2)°. The two 2-furanylmethyl rings are on the same side of the benzimidazole with an angle of 82.79 (10)° between them.

Figure 2 shows the unit cell of the title compound. The hydrogen-bonding network involving the chloride anion and water are displayed. In addition to the O—H···Cl hydrogen bonding network, weak C—H···Cl interactions are observed. The H12A···Cl1 distance is 2.77 Å with C12···Cl1 = 3.627 (2) Å. Also, there is a weak C—H···aromatic interaction involving H15 and the furan ring containing O3. The closest approach is with O3 with H15···O3 = 2.63 Å. H15 is 2.602 (3) Å from the furan mean plane. These interactions result in chains of molecules parallel to the (0 0 1) plane as shown in Figure 3.

Related literature top

For examples of the synthesis of substituted benzimidazolium salts, see: Rivas et al. (2001); Wang & Chang (2006); Hoesl et al. (2004); Rivas et al. (2001, 2002). For examples of structures of other trisubstituted benzimidazolium salts, see: Ennajih et al. (2009, 2010); Akkurt et al. (2008, 2004); Smith & Luss (1975). For the structure of 1,3-difurfurylbenzimidazolium chloride, see: Akkurt et al. (2009). For other related literature, see: Costache et al. (2007); Elmali et al. (2005); Hayakawa et al. (1996); Horton et al. (2003); Nahlé et al. (2012); Welton (1999).

Experimental top

A single-crystal of the title compound was obtained during the attempted crystallization of 2-(2-furanyl)-1-(furanylmethyl)-1H-benzimidazole prepared via the aluminium trichloride catalyzed reaction of 1,2-diaminobenzene and furan-2-carbaldehyde in refluxing dichloromethane. The product was isolated by column chromatography on silica gel using an eluant that varied from 1:2 ethylacetate:hexanes to pure ethyl acetate.

The crystal used for the diffraction study was obtained by vapor diffusion of heptane into a methanol solution of the chromatographed product. Based on 1H NMR spectroscopy, the title compound makes up less than 5% of the bulk product.

Refinement top

All hydrogen atoms were observed in difference fourier maps. The H atoms were refined using a riding model with a C—H distance of 0.99 Å for the methylene carbon atoms and 0.95 Å for the phenyl and furan carbon atoms. All C—H hydrogen atom thermal parameters were set using the approximation Uiso = 1.2Ueq.

The water oxygen atom was refined anisotropically. During the course of the refinement, SHELXL suggested that the oxygen atom of the water could be split into two atoms. However, attempts to refine the water assuming disorder result in no improvement in the GOF or the R values. The O—H distances were contrained to ~0.84 Å using DFIX and the H—O—H angles were restrained to ~104° using a DANG value of 1.34 Å between corresponding H atoms. The O—H hydrogen atom thermal parameters were set using the approximation Uiso = 1.2Ueq.

During the later stages of refinement, elongated thermal ellipsoids were noted for one of the furan rings. A disorder model was developed in which the minor component of the furan ring was modeled using the metrics of the major components as a guide. The pivot atom (C8) was assumed to have full occupancy and so was not included in the disorder model. The minor four-atom components (O1', C9', C10' and C11') were constrained to planarity using FLAT. Corresponding bond distances of the minor component and major component were set equal using SADI and corresponding thermal parameters were held the same using EADP. All atoms were refined anisotropically with hydrogen atoms in calculated positions using a riding model. With these constraints, the site occupancy of the major component refined to 0.84 (2). Based on this model, the angle between the mean planes of the major and minor components of the disordered furan ring is 22.(2)°.

Improvement in the usual indicators occurred with the introduction of the disorder model. The S improved from 1.06 to 1.04. The R decreased from 0.046 to 0.045 and wR decreased from 0.132 to 0.129. However, an unusually large residual peak (0.61 e-3) that is 1.00 Å from a hydrogen atom exists. The hydrogen atom in question (H12A) is involved in a close interaction with the chloride ion (2.78 Å). The next largest residual peak is 0.37 e-3 and it is located 1.29 Å from H15, which is involved in a weak C—H···aromatic ring hydrogen bonding interaction (the closest approach is to O3 at 2.63 Å).

Structure description top

Benzimidazolium salts have uses as room-temperature ionic liquids (Welton, 1999), surfactants (Costache et al., 2007), inhibitors of corrosion (Nahlé et al., 2012), anti-tumor (Elmali et al., 2005) and other pharmacological agents (Horton et al., 2003) and in nucleotide synthesis (Hayakawa et al., 1996).

A perspective view of the benzimidazolium cation of the title compound is shown in Figure 1. The benzimidazole moiety is planar with the largest deviation being 0.011 (1) Å (N1). The furan rings are also planar with the largest deviations being 0.004 (3) Å (C11, major contributor to the disorder structure), 0.034 (13) Å (O1', minor contributor to the disordered structure), 0.011 (1) Å (C16), and 0.003 (2) Å(C20). The major component of the disordered 2-furan substituent is canted 45.1 (2)° from the mean plane of the benzimidazole ring system and the two components of the disordered furan form an angle of 22.0 (2)°. The two 2-furanylmethyl rings are on the same side of the benzimidazole with an angle of 82.79 (10)° between them.

Figure 2 shows the unit cell of the title compound. The hydrogen-bonding network involving the chloride anion and water are displayed. In addition to the O—H···Cl hydrogen bonding network, weak C—H···Cl interactions are observed. The H12A···Cl1 distance is 2.77 Å with C12···Cl1 = 3.627 (2) Å. Also, there is a weak C—H···aromatic interaction involving H15 and the furan ring containing O3. The closest approach is with O3 with H15···O3 = 2.63 Å. H15 is 2.602 (3) Å from the furan mean plane. These interactions result in chains of molecules parallel to the (0 0 1) plane as shown in Figure 3.

For examples of the synthesis of substituted benzimidazolium salts, see: Rivas et al. (2001); Wang & Chang (2006); Hoesl et al. (2004); Rivas et al. (2001, 2002). For examples of structures of other trisubstituted benzimidazolium salts, see: Ennajih et al. (2009, 2010); Akkurt et al. (2008, 2004); Smith & Luss (1975). For the structure of 1,3-difurfurylbenzimidazolium chloride, see: Akkurt et al. (2009). For other related literature, see: Costache et al. (2007); Elmali et al. (2005); Hayakawa et al. (1996); Horton et al. (2003); Nahlé et al. (2012); Welton (1999).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSHELL (Bruker, 2004) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Perspective view of the benzimidazolium ion showing the atom labeling scheme. Displacement ellipsoids of non-hydrogen atoms are drawn at the 25% probability level. Only the major contributor to the disordered furan ring is shown.
[Figure 2] Fig. 2. View of the unit cell showing the hydrogen bonding network. Only the major component of the disordered furan is shown. Ellipsoids are drawn at the 25% probability level.
[Figure 3] Fig. 3. Close intermolecular C—H···Cl and CH···O(furan) interactions resulting in a chain structure.
2-(Furan-2-yl)-1,3-bis(furan-2-ylmethyl)-1H-benzimidazol-3-ium chloride monohydrate top
Crystal data top
C21H17N2O3+·Cl·H2OZ = 2
Mr = 398.83F(000) = 416
Triclinic, P1Dx = 1.357 Mg m3
a = 9.4723 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9129 (14) ÅCell parameters from 3551 reflections
c = 11.2779 (16) Åθ = 2.4–24.8°
α = 97.980 (5)°µ = 0.23 mm1
β = 110.359 (4)°T = 200 K
γ = 93.547 (4)°Needle, clear colourless
V = 976.3 (2) Å30.30 × 0.07 × 0.07 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
3419 independent reflections
Radiation source: XOS X-beam microfocus source, Bruker SMART X2S benchtop2732 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.036
Detector resolution: 8.3330 pixels mm-1θmax = 25.2°, θmin = 2.0°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1111
Tmin = 0.91, Tmax = 0.98l = 1313
9477 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.4042P]
where P = (Fo2 + 2Fc2)/3
3419 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.62 e Å3
10 restraintsΔρmin = 0.21 e Å3
Crystal data top
C21H17N2O3+·Cl·H2Oγ = 93.547 (4)°
Mr = 398.83V = 976.3 (2) Å3
Triclinic, P1Z = 2
a = 9.4723 (12) ÅMo Kα radiation
b = 9.9129 (14) ŵ = 0.23 mm1
c = 11.2779 (16) ÅT = 200 K
α = 97.980 (5)°0.30 × 0.07 × 0.07 mm
β = 110.359 (4)°
Data collection top
Bruker SMART X2S benchtop
diffractometer
3419 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2732 reflections with I > 2σ(I)
Tmin = 0.91, Tmax = 0.98Rint = 0.036
9477 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04510 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.62 e Å3
3419 reflectionsΔρmin = 0.21 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.44526 (6)0.74517 (6)0.50520 (6)0.0460 (2)
OW0.6147 (4)0.9554 (2)0.3947 (2)0.0967 (9)
HO10.597 (5)1.033 (2)0.423 (4)0.145*
HO20.575 (5)0.902 (3)0.429 (4)0.145*
C10.1566 (2)0.5684 (2)0.68521 (18)0.0318 (5)
C20.0112 (2)0.5062 (2)0.66052 (18)0.0311 (5)
C30.0290 (3)0.3649 (2)0.62089 (19)0.0365 (5)
H30.12830.32250.60420.044*
C40.0851 (3)0.2905 (2)0.6075 (2)0.0435 (6)
H40.06380.19380.58170.052*
C50.2319 (3)0.3538 (3)0.6310 (2)0.0449 (6)
H50.30620.29860.61970.054*
C60.2706 (3)0.4929 (2)0.6698 (2)0.0398 (5)
H60.36950.53540.68530.048*
N10.07374 (18)0.61074 (18)0.68249 (15)0.0303 (4)
C70.0161 (2)0.7312 (2)0.72021 (18)0.0312 (5)
N20.15618 (19)0.70877 (18)0.72206 (15)0.0316 (4)
C80.0297 (2)0.8639 (2)0.7526 (2)0.0371 (5)
C90.0340 (8)0.9713 (6)0.8502 (5)0.0481 (14)0.844 (19)
H90.12830.97840.91920.058*0.844 (19)
C100.0713 (7)1.0725 (7)0.8273 (7)0.0587 (14)0.844 (19)
H100.05891.160.87870.07*0.844 (19)
C110.1853 (5)1.0220 (6)0.7243 (8)0.0689 (16)0.844 (19)
H110.27151.06770.68840.083*0.844 (19)
O10.1656 (4)0.8939 (6)0.6734 (6)0.0664 (14)0.844 (19)
C9'0.059 (5)0.970 (3)0.843 (3)0.0481 (14)0.156 (19)
H9'0.16610.98450.8870.058*0.156 (19)
C10'0.057 (4)1.053 (5)0.850 (4)0.0587 (14)0.156 (19)
H10'0.04141.13810.90550.07*0.156 (19)
C11'0.187 (3)0.992 (3)0.770 (3)0.0689 (16)0.156 (19)
H11'0.27831.03240.75410.083*0.156 (19)
O1'0.1809 (18)0.862 (2)0.708 (3)0.0664 (14)0.156 (19)
C120.2298 (2)0.5859 (2)0.6823 (2)0.0389 (5)
H12A0.290.51360.60890.047*
H12B0.27930.67090.67210.047*
C130.2264 (2)0.5425 (2)0.8045 (2)0.0378 (5)
C140.2923 (3)0.4323 (3)0.8311 (2)0.0524 (7)
H140.35550.35640.77120.063*
C150.2481 (4)0.4523 (3)0.9676 (3)0.0634 (8)
H150.2780.3931.01610.076*
C160.1564 (3)0.5706 (3)1.0140 (2)0.0570 (7)
H160.10820.60761.10270.068*
O20.14159 (19)0.63101 (18)0.91660 (15)0.0492 (4)
C170.2888 (2)0.8126 (2)0.7527 (2)0.0387 (5)
H17A0.25430.90460.74830.046*
H17B0.3370.79310.68810.046*
C180.4023 (3)0.8125 (2)0.8827 (2)0.0424 (6)
C190.5399 (3)0.7716 (3)0.9248 (3)0.0663 (8)
H190.59310.73210.87380.08*
C200.5922 (4)0.7991 (4)1.0628 (3)0.0774 (10)
H200.68640.78071.12060.093*
C210.4837 (4)0.8549 (3)1.0937 (3)0.0652 (8)
H210.48820.8841.17890.078*
O30.3639 (2)0.86463 (18)0.98518 (16)0.0523 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0399 (4)0.0385 (3)0.0571 (4)0.0009 (2)0.0175 (3)0.0011 (3)
OW0.197 (3)0.0528 (13)0.0828 (16)0.0360 (17)0.0950 (18)0.0222 (12)
C10.0345 (12)0.0383 (12)0.0231 (10)0.0040 (9)0.0104 (9)0.0074 (8)
C20.0344 (12)0.0379 (12)0.0215 (9)0.0063 (9)0.0091 (8)0.0084 (8)
C30.0400 (13)0.0381 (12)0.0290 (11)0.0011 (10)0.0095 (9)0.0075 (9)
C40.0601 (16)0.0352 (12)0.0345 (12)0.0095 (11)0.0155 (11)0.0055 (10)
C50.0477 (15)0.0508 (15)0.0397 (13)0.0198 (12)0.0173 (11)0.0086 (11)
C60.0360 (12)0.0494 (14)0.0363 (12)0.0098 (11)0.0145 (10)0.0086 (10)
N10.0274 (9)0.0353 (10)0.0271 (9)0.0025 (8)0.0082 (7)0.0067 (7)
C70.0326 (11)0.0373 (12)0.0233 (10)0.0021 (9)0.0091 (8)0.0075 (8)
N20.0295 (10)0.0366 (10)0.0290 (9)0.0019 (8)0.0110 (7)0.0067 (7)
C80.0356 (12)0.0401 (13)0.0367 (12)0.0067 (10)0.0136 (10)0.0080 (10)
C90.041 (3)0.0451 (15)0.0502 (16)0.0033 (18)0.0118 (16)0.0023 (12)
C100.075 (3)0.033 (3)0.071 (3)0.0086 (18)0.032 (2)0.002 (2)
C110.072 (2)0.055 (2)0.078 (4)0.037 (2)0.020 (2)0.012 (2)
O10.0532 (14)0.059 (2)0.067 (2)0.0210 (14)0.0006 (13)0.0014 (16)
C9'0.041 (3)0.0451 (15)0.0502 (16)0.0033 (18)0.0118 (16)0.0023 (12)
C10'0.075 (3)0.033 (3)0.071 (3)0.0086 (18)0.032 (2)0.002 (2)
C11'0.072 (2)0.055 (2)0.078 (4)0.037 (2)0.020 (2)0.012 (2)
O1'0.0532 (14)0.059 (2)0.067 (2)0.0210 (14)0.0006 (13)0.0014 (16)
C120.0333 (12)0.0452 (13)0.0379 (12)0.0045 (10)0.0119 (10)0.0084 (10)
C130.0338 (12)0.0430 (13)0.0342 (12)0.0038 (10)0.0101 (9)0.0043 (10)
C140.0618 (17)0.0512 (16)0.0424 (14)0.0091 (13)0.0191 (12)0.0079 (12)
C150.083 (2)0.0618 (18)0.0477 (15)0.0101 (16)0.0261 (15)0.0175 (14)
C160.0727 (19)0.0634 (18)0.0328 (13)0.0045 (15)0.0153 (12)0.0126 (12)
O20.0529 (11)0.0516 (10)0.0393 (9)0.0029 (8)0.0134 (8)0.0083 (8)
C170.0362 (13)0.0388 (13)0.0432 (12)0.0026 (10)0.0176 (10)0.0089 (10)
C180.0373 (13)0.0388 (13)0.0461 (13)0.0051 (10)0.0116 (11)0.0044 (10)
C190.0443 (16)0.072 (2)0.071 (2)0.0068 (14)0.0087 (14)0.0062 (16)
C200.0531 (19)0.074 (2)0.075 (2)0.0040 (17)0.0146 (16)0.0171 (17)
C210.070 (2)0.0564 (18)0.0466 (16)0.0170 (16)0.0038 (14)0.0111 (13)
O30.0532 (11)0.0541 (11)0.0432 (10)0.0020 (9)0.0109 (8)0.0085 (8)
Geometric parameters (Å, º) top
OW—HO10.844 (10)C9'—C10'1.432 (18)
OW—HO20.847 (10)C9'—H9'0.95
C1—C21.391 (3)C10'—C11'1.297 (19)
C1—N21.397 (3)C10'—H10'0.95
C1—C61.397 (3)C11'—O1'1.388 (17)
C2—C31.395 (3)C11'—H11'0.95
C2—N11.398 (3)C12—C131.489 (3)
C3—C41.384 (3)C12—H12A0.99
C3—H30.95C12—H12B0.99
C4—C51.410 (4)C13—C141.345 (3)
C4—H40.95C13—O21.383 (3)
C5—C61.373 (3)C14—C151.429 (4)
C5—H50.95C14—H140.95
C6—H60.95C15—C161.338 (4)
N1—C71.347 (3)C15—H150.95
N1—C121.483 (3)C16—O21.365 (3)
C7—N21.352 (3)C16—H160.95
C7—C81.449 (3)C17—C181.486 (3)
N2—C171.482 (3)C17—H17A0.99
C8—O1'1.341 (15)C17—H17B0.99
C8—C91.357 (4)C18—C191.333 (4)
C8—C9'1.358 (18)C18—O31.373 (3)
C8—O11.366 (4)C19—C201.439 (5)
C9—C101.444 (5)C19—H190.95
C9—H90.95C20—C211.322 (5)
C10—C111.290 (5)C20—H200.95
C10—H100.95C21—O31.369 (3)
C11—O11.371 (4)C21—H210.95
C11—H110.95
HO1—OW—HO2103 (2)C8—C9'—H9'130.8
C2—C1—N2106.81 (18)C10'—C9'—H9'130.8
C2—C1—C6121.7 (2)C11'—C10'—C9'109 (4)
N2—C1—C6131.4 (2)C11'—C10'—H10'125.5
C1—C2—C3122.2 (2)C9'—C10'—H10'125.5
C1—C2—N1106.73 (18)C10'—C11'—O1'114 (3)
C3—C2—N1131.0 (2)C10'—C11'—H11'122.8
C4—C3—C2115.7 (2)O1'—C11'—H11'122.8
C4—C3—H3122.1C8—O1'—C11'97.6 (17)
C2—C3—H3122.1N1—C12—C13110.44 (17)
C3—C4—C5122.0 (2)N1—C12—H12A109.6
C3—C4—H4119.0C13—C12—H12A109.6
C5—C4—H4119.0N1—C12—H12B109.6
C6—C5—C4122.0 (2)C13—C12—H12B109.6
C6—C5—H5119.0H12A—C12—H12B108.1
C4—C5—H5119.0C14—C13—O2110.3 (2)
C5—C6—C1116.3 (2)C14—C13—C12133.2 (2)
C5—C6—H6121.8O2—C13—C12116.5 (2)
C1—C6—H6121.8C13—C14—C15106.2 (2)
C7—N1—C2108.79 (17)C13—C14—H14126.9
C7—N1—C12126.83 (18)C15—C14—H14126.9
C2—N1—C12123.78 (18)C16—C15—C14106.9 (2)
N1—C7—N2109.02 (18)C16—C15—H15126.6
N1—C7—C8125.66 (19)C14—C15—H15126.6
N2—C7—C8125.32 (19)C15—C16—O2110.8 (2)
C7—N2—C1108.65 (17)C15—C16—H16124.6
C7—N2—C17127.40 (18)O2—C16—H16124.6
C1—N2—C17123.92 (18)C16—O2—C13105.8 (2)
O1'—C8—C9109.7 (10)N2—C17—C18111.56 (18)
O1'—C8—C9'120 (2)N2—C17—H17A109.3
C9—C8—O1109.0 (4)C18—C17—H17A109.3
C9'—C8—O1116 (2)N2—C17—H17B109.3
O1'—C8—C7112.0 (9)C18—C17—H17B109.3
C9—C8—C7133.6 (4)H17A—C17—H17B108.0
C9'—C8—C7126 (2)C19—C18—O3109.8 (2)
O1—C8—C7117.5 (2)C19—C18—C17133.6 (3)
C8—C9—C10105.8 (5)O3—C18—C17116.7 (2)
C8—C9—H9127.1C18—C19—C20106.6 (3)
C10—C9—H9127.1C18—C19—H19126.7
C11—C10—C9107.3 (6)C20—C19—H19126.7
C11—C10—H10126.3C21—C20—C19106.7 (3)
C9—C10—H10126.3C21—C20—H20126.6
C10—C11—O1111.1 (5)C19—C20—H20126.6
C10—C11—H11124.5C20—C21—O3110.3 (3)
O1—C11—H11124.4C20—C21—H21124.9
C8—O1—C11106.8 (3)O3—C21—H21124.9
C8—C9'—C10'98 (3)C21—O3—C18106.7 (2)
N2—C1—C2—C3179.89 (18)C9—C10—C11—O10.7 (6)
C6—C1—C2—C31.0 (3)O1'—C8—O1—C1196 (2)
N2—C1—C2—N10.3 (2)C9—C8—O1—C110.3 (4)
C6—C1—C2—N1178.61 (18)C9'—C8—O1—C1111 (2)
C1—C2—C3—C40.1 (3)C7—C8—O1—C11178.9 (3)
N1—C2—C3—C4179.42 (19)C10—C11—O1—C80.6 (5)
C2—C3—C4—C50.7 (3)O1'—C8—C9'—C10'4 (2)
C3—C4—C5—C60.7 (3)C9—C8—C9'—C10'33 (9)
C4—C5—C6—C10.2 (3)O1—C8—C9'—C10'24 (2)
C2—C1—C6—C51.0 (3)C7—C8—C9'—C10'166.6 (15)
N2—C1—C6—C5179.6 (2)C8—C9'—C10'—C11'1 (2)
C1—C2—N1—C70.6 (2)C9'—C10'—C11'—O1'5 (3)
C3—C2—N1—C7179.8 (2)C9—C8—O1'—C11'12.4 (16)
C1—C2—N1—C12172.23 (17)C9'—C8—O1'—C11'6 (2)
C3—C2—N1—C128.2 (3)O1—C8—O1'—C11'80 (2)
C2—N1—C7—N20.7 (2)C7—C8—O1'—C11'171.4 (13)
C12—N1—C7—N2172.00 (17)C10'—C11'—O1'—C87 (3)
C2—N1—C7—C8179.78 (18)C7—N1—C12—C1392.9 (2)
C12—N1—C7—C88.5 (3)C2—N1—C12—C1377.2 (2)
N1—C7—N2—C10.5 (2)N1—C12—C13—C14124.4 (3)
C8—C7—N2—C1179.96 (18)N1—C12—C13—O257.0 (3)
N1—C7—N2—C17177.42 (17)O2—C13—C14—C150.5 (3)
C8—C7—N2—C172.1 (3)C12—C13—C14—C15178.2 (3)
C2—C1—N2—C70.1 (2)C13—C14—C15—C161.4 (3)
C6—C1—N2—C7178.9 (2)C14—C15—C16—O21.8 (4)
C2—C1—N2—C17177.90 (17)C15—C16—O2—C131.5 (3)
C6—C1—N2—C170.9 (3)C14—C13—O2—C160.6 (3)
N1—C7—C8—O1'17.5 (16)C12—C13—O2—C16179.5 (2)
N2—C7—C8—O1'161.9 (15)C7—N2—C17—C18105.0 (2)
N1—C7—C8—C9134.8 (4)C1—N2—C17—C1877.4 (2)
N2—C7—C8—C945.8 (5)N2—C17—C18—C19108.4 (3)
N1—C7—C8—C9'147 (2)N2—C17—C18—O371.7 (3)
N2—C7—C8—C9'34 (2)O3—C18—C19—C200.2 (3)
N1—C7—C8—O144.2 (5)C17—C18—C19—C20180.0 (3)
N2—C7—C8—O1135.2 (5)C18—C19—C20—C210.4 (4)
O1'—C8—C9—C1026.4 (14)C19—C20—C21—O30.4 (4)
C9'—C8—C9—C10127 (10)C20—C21—O3—C180.3 (3)
O1—C8—C9—C100.1 (4)C19—C18—O3—C210.1 (3)
C7—C8—C9—C10179.1 (4)C17—C18—O3—C21179.8 (2)
C8—C9—C10—C110.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HO2···Cl10.85 (1)2.35 (1)3.189 (2)174 (5)
OW—HO1···Cl1i0.84 (1)2.34 (1)3.183 (2)176 (4)
C9—H9···O30.952.493.278 (7)141
C12—H12A···Cl1ii0.992.773.694 (2)155
C12—H12B···O10.992.393.098 (6)127
C17—H17B···Cl10.992.613.594 (2)176
C21—H21···OWiii0.952.293.168 (4)153
C15—H15···O3iv0.952.623.436 (3)143
C15—H15···C18iv0.952.853.788 (4)170
C15—H15···C21iv0.952.873.498 (4)124
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC21H17N2O3+·Cl·H2O
Mr398.83
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)9.4723 (12), 9.9129 (14), 11.2779 (16)
α, β, γ (°)97.980 (5), 110.359 (4), 93.547 (4)
V3)976.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.30 × 0.07 × 0.07
Data collection
DiffractometerBruker SMART X2S benchtop
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.91, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
9477, 3419, 2732
Rint0.036
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.129, 1.05
No. of reflections3419
No. of parameters272
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.21

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XSHELL (Bruker, 2004) and Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HO2···Cl10.847 (10)2.346 (11)3.189 (2)174 (5)
OW—HO1···Cl1i0.844 (10)2.340 (10)3.183 (2)176 (4)
C9—H9···O30.952.493.278 (7)141
C12—H12A···Cl1ii0.992.773.694 (2)155
C12—H12B···O10.992.393.098 (6)127
C17—H17B···Cl10.992.613.594 (2)176
C21—H21···OWiii0.952.293.168 (4)153
C15—H15···O3iv0.952.623.436 (3)143
C15—H15···C18iv0.952.853.788 (4)170
C15—H15···C21iv0.952.873.498 (4)124
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x, y+1, z+2.
 

Acknowledgements

This work was supported by a Congressionally directed grant from the US Department of Education (grant No. P116Z100020) for the X-ray diffractometer and a grant from the Geneseo Foundation.

References

First citationAkkurt, M., Karaca, S., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2008). Acta Cryst. E64, o809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o219–o221.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Şireci, N., Deniz, S., Küçükbay, H. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2037–o2038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCostache, M., Heidecker, M., Manias, E., Gupta, R. K. & Wilkie, C. (2007). Polym. Degrad. Stabil. 92, 1753–1762.  Web of Science CrossRef CAS Google Scholar
First citationElmali, A., Elerman, Y., Eren, G., Gümüş, R. & Svoboda, I. (2005). Z. Naturforsch. Teil B, 60, 164-168.  CAS Google Scholar
First citationEnnajih, H., Bouhfid, R., Zouihri, H., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2321.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnnajih, H., Bouhfid, R., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHayakawa, Y., Kataoka, M. & Noyori, R. (1996). J. Org. Chem. 61, 7996–7997.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHoesl, C., Nefzi, A. & Houghten, R. (2004). J. Combin. Chem. 6, 220–223.  Web of Science CSD CrossRef CAS Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNahlé, A., Abu-Abdoun, I. & Abdel-Rahman, I. (2012). Int. J. Corros. Article ID 246013.  Google Scholar
First citationRivas, F., Giessert, A. & Diver, S. (2002). J. Org. Chem. 67, 1708–1711.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRivas, F., Riaz, U., Giessert, A., Smulik, J. & Diver, S. (2001). Org. Lett. 3, 2673–2676.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, D. L. & Luss, H. R. (1975). Acta Cryst. B31, 402–408.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWang, S. & Chang, Y.-T. J. (2006). J. Am. Chem. Soc. 128, 10380–10381.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWelton, T. (1999). Chem. Rev. 99, 2071–2083.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds