organic compounds
1-Benzylpiperidin-4-one O-(2-bromobenzyl)oxime
aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bLaboratorio de Sintesis Orgánica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota, DC, Colombia, and cWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rodimo26@yahoo.es
In the title molecule, C19H21BrN2O, the piperidone ring adopts a chair conformation with a total puckering amplitude QT of 0.554 (2) Å. The dihedral angle between the benzene rings is 64.10 (7)°. There are no significant intermolecular interactions.
Related literature
For the use of the oxime function in organic synthesis, see: Mikhaleva et al. (2006). For properties of the oxime function, see: Parthiban et al. (2011); Jayabharathi et al. (2011); Picard et al. (2000); For related structures, see: Parthiban et al. (2009); For details of ring-puckering see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536812040263/gg2101sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812040263/gg2101Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812040263/gg2101Isup3.cml
In a two necks round bottom flask a mixture of 1-benzylpiperidin-4-one oxime (204 mg, 1 mmol), NaOH (80 mg, 2 mmol) in dry acetone (1.5 ml) was refluxed for 30 minutes, and then 2-bromobenzyl bromide (275 mg, 1,1 mmol) was added and subsequently stirred for 3 h. The reaction mixture was neutralized with acetic acid, extracted with AcOEt and dried with anhydrous Na2SO4. The combined organic layers were evaporated under low pressure to dryness. Purification of the crude mixture by flash δ, 7.56 (dd, 1H, Ar—H), 7.43–7.27 (m, 7H, Ar—H), 7.17 (td, 1H, Ar—H), 5.16 (s, 2H, O—CH2—Ar) 3.58 (s, 2H, N—CH2—Ph), 2.73 (t, 2H, N=C—CH2), 2.59 (t, 2H, N—CH2), 2.56 (t, 2H, N—CH2), 2.39 (t, 2H, N=C—CH2). 13C-NMR δ, 158.3 (C=N), 138.0 (C), 137.5(C), 132.5 (Ar—H), 129.2, 129.1, 128.9, 128.3, 127.2, 122.7 (C—Br), 74.5 (O—CH2—Ar), 62.5 (N—CH2—Ar), 53.5 (N—CH2), 52.4 (N—CH2), 31.4 (N=C—CH2), 25.5 (N=C—CH2). MS—EI M+ m/z: 372.1, 374.1, 100%: 91.1.
with 15% (v/v) AcOEt/hexane yielded compound 1 as a pale yellow solid (250 mg, 67% yield) mp 340.5 - 342.0 K. 1-benzylpiperidin-4-oneO-2-bromobenzyl oxime 1H NMR (300 MHz)The H-atoms were positioned geometrically [C—H= 0.95 Å for aromatic and C—H = 0.99 Å for methylene, and with Uiso(H) (1.2 and 1.5 x Ueq of the parent atom respectively].
The oxime function is a versatile intermediate in organic synthesis, for example, it can be readily transformed into important groups such as carbonyl, amino, nitro, cyano and can be used as a convenient protective group (Mikhaleva et al., 2006). The oxime function is also an important pharmacophore group, particularly φ2= -176 (2)° (Cremer & Pople, 1975). This conformational behavior is similar to that reported by other similar systems (Parthiban et al., 2009). The least-squares fit of two phenyl rings C2/C3/C4/C5/C6/C7 and C14/C15/C16/C17/C18/C19 with a r.m.s deviation of fitted atoms of 0.0.009 and 0.004 Å respectively, shows a dihedral angle of 64.10 (7)° between the rings. The crystal packing shows no classical hydrogen bonds.
of the piperidone and their possess a wide spectrum of biological activity such as cytotoxic (Parthiban et al., 2011), antimicrobial (Jayabharathi et al., 2011) and as an inhibitor of steroid-5-reductase (Picard et al., 2000). In our research group, we are interested in the synthesis of nitrogen containing compounds with potential biological activity such as and isoxazoles. In order to accomplish this objective the 1-benzylpiperidin-4-one O-2-bromobenzyl oxime (I) was synthesized with the aim of evaluating its in vitro antimicrobial activity. The molecular structure of I is shown in Fig. 1. A single crystal XRD study has been carried out for (I) to confirm the sterochemistry stablished by NMR studies. Analisis of torsion angles, and least-square plane calculation, indicate that piperidone ring adopts a chair conformation with the smallest displacement parameters q2= 0.078 (2) and q3= 0.549 (2) Å, total puckering amplitude, QT= 0.554 (2) Å andFor the use of the oxime function in organic synthesis, see: Mikhaleva et al. (2006). For properties of the oxime function, see: Parthiban et al. (2011); Jayabharathi et al. (2011); Picard et al. (2000); For related structures, see: Parthiban et al. (2009); For details of ring-puckering
see: Cremer & Pople (1975).Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. |
C19H21BrN2O | F(000) = 768 |
Mr = 373.29 | Dx = 1.448 Mg m−3 |
Monoclinic, P21/c | Melting point: 341(1) K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 21.1586 (5) Å | Cell parameters from 4022 reflections |
b = 5.6731 (2) Å | θ = 3.2–30.0° |
c = 14.6425 (4) Å | µ = 2.41 mm−1 |
β = 103.037 (3)° | T = 123 K |
V = 1712.31 (9) Å3 | Cut from large needle, colourless |
Z = 4 | 0.40 × 0.12 × 0.05 mm |
Oxford Diffraction Xcalibur E diffractometer | 4525 independent reflections |
Radiation source: fine-focus sealed tube | 3556 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ω scans | θmax = 30.0°, θmin = 3.2° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | h = −29→28 |
Tmin = 0.448, Tmax = 1.000 | k = −7→7 |
9090 measured reflections | l = −20→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0294P)2 + 0.3261P] where P = (Fo2 + 2Fc2)/3 |
4525 reflections | (Δ/σ)max < 0.001 |
208 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.69 e Å−3 |
C19H21BrN2O | V = 1712.31 (9) Å3 |
Mr = 373.29 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 21.1586 (5) Å | µ = 2.41 mm−1 |
b = 5.6731 (2) Å | T = 123 K |
c = 14.6425 (4) Å | 0.40 × 0.12 × 0.05 mm |
β = 103.037 (3)° |
Oxford Diffraction Xcalibur E diffractometer | 4525 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 3556 reflections with I > 2σ(I) |
Tmin = 0.448, Tmax = 1.000 | Rint = 0.032 |
9090 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.45 e Å−3 |
4525 reflections | Δρmin = −0.69 e Å−3 |
208 parameters |
Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.089592 (10) | 0.38045 (4) | 0.610086 (15) | 0.02227 (8) | |
O1 | 0.19320 (7) | 0.9868 (3) | 0.78376 (10) | 0.0186 (3) | |
N1 | 0.25028 (8) | 0.8872 (3) | 0.84339 (13) | 0.0182 (4) | |
N2 | 0.31211 (8) | 1.2442 (3) | 1.08828 (12) | 0.0178 (4) | |
C1 | 0.15948 (10) | 0.8022 (4) | 0.72769 (15) | 0.0185 (5) | |
H1A | 0.1912 | 0.7023 | 0.7052 | 0.022* | |
H1B | 0.1299 | 0.8716 | 0.6721 | 0.022* | |
C2 | 0.12070 (9) | 0.6498 (4) | 0.77892 (14) | 0.0141 (4) | |
C3 | 0.08859 (9) | 0.4501 (4) | 0.73724 (14) | 0.0155 (4) | |
C4 | 0.05440 (10) | 0.3014 (4) | 0.78332 (16) | 0.0200 (5) | |
H4 | 0.0338 | 0.1645 | 0.7531 | 0.024* | |
C5 | 0.05072 (10) | 0.3551 (4) | 0.87379 (16) | 0.0223 (5) | |
H5 | 0.0278 | 0.2538 | 0.9067 | 0.027* | |
C6 | 0.08033 (10) | 0.5564 (4) | 0.91680 (15) | 0.0212 (5) | |
H6 | 0.0769 | 0.5950 | 0.9786 | 0.025* | |
C7 | 0.11498 (10) | 0.7015 (4) | 0.86974 (15) | 0.0183 (5) | |
H7 | 0.1353 | 0.8389 | 0.9000 | 0.022* | |
C8 | 0.27666 (10) | 1.0359 (4) | 0.90613 (15) | 0.0164 (4) | |
C9 | 0.25232 (10) | 1.2752 (4) | 0.92308 (15) | 0.0202 (5) | |
H9A | 0.2085 | 1.2990 | 0.8827 | 0.024* | |
H9B | 0.2815 | 1.3968 | 0.9068 | 0.024* | |
C10 | 0.24949 (10) | 1.3006 (4) | 1.02568 (15) | 0.0214 (5) | |
H10A | 0.2372 | 1.4643 | 1.0375 | 0.026* | |
H10B | 0.2158 | 1.1939 | 1.0393 | 0.026* | |
C11 | 0.32969 (10) | 0.9998 (4) | 1.07409 (15) | 0.0188 (5) | |
H11A | 0.2957 | 0.8934 | 1.0871 | 0.023* | |
H11B | 0.3710 | 0.9610 | 1.1187 | 0.023* | |
C12 | 0.33726 (10) | 0.9598 (4) | 0.97427 (15) | 0.0188 (5) | |
H12A | 0.3747 | 1.0512 | 0.9634 | 0.023* | |
H12B | 0.3455 | 0.7907 | 0.9649 | 0.023* | |
C13 | 0.30752 (11) | 1.2827 (5) | 1.18558 (15) | 0.0246 (5) | |
H13A | 0.2778 | 1.1639 | 1.2024 | 0.030* | |
H13B | 0.2886 | 1.4403 | 1.1907 | 0.030* | |
C14 | 0.37229 (10) | 1.2669 (4) | 1.25436 (15) | 0.0198 (5) | |
C15 | 0.38856 (11) | 1.0734 (4) | 1.31350 (15) | 0.0222 (5) | |
H15 | 0.3588 | 0.9467 | 1.3102 | 0.027* | |
C16 | 0.44798 (12) | 1.0645 (4) | 1.37719 (16) | 0.0258 (5) | |
H16 | 0.4587 | 0.9316 | 1.4171 | 0.031* | |
C17 | 0.49166 (11) | 1.2485 (5) | 1.38284 (16) | 0.0263 (5) | |
H17 | 0.5321 | 1.2433 | 1.4272 | 0.032* | |
C18 | 0.47616 (11) | 1.4401 (4) | 1.32351 (17) | 0.0249 (5) | |
H18 | 0.5062 | 1.5658 | 1.3263 | 0.030* | |
C19 | 0.41685 (11) | 1.4481 (4) | 1.26022 (16) | 0.0229 (5) | |
H19 | 0.4065 | 1.5805 | 1.2199 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02297 (11) | 0.02514 (14) | 0.01779 (12) | −0.00154 (10) | 0.00266 (8) | −0.00613 (10) |
O1 | 0.0158 (7) | 0.0169 (8) | 0.0189 (8) | −0.0016 (6) | −0.0045 (6) | 0.0019 (7) |
N1 | 0.0136 (8) | 0.0198 (10) | 0.0194 (9) | 0.0013 (7) | −0.0002 (7) | 0.0026 (8) |
N2 | 0.0140 (8) | 0.0219 (10) | 0.0160 (9) | 0.0038 (7) | 0.0006 (7) | −0.0017 (8) |
C1 | 0.0175 (10) | 0.0189 (11) | 0.0169 (11) | −0.0036 (9) | −0.0011 (8) | −0.0009 (9) |
C2 | 0.0122 (9) | 0.0140 (11) | 0.0142 (10) | 0.0022 (8) | −0.0013 (7) | 0.0010 (9) |
C3 | 0.0129 (9) | 0.0176 (11) | 0.0143 (10) | 0.0025 (8) | −0.0006 (8) | −0.0020 (9) |
C4 | 0.0155 (10) | 0.0183 (11) | 0.0242 (12) | 0.0008 (9) | 0.0005 (9) | 0.0012 (10) |
C5 | 0.0188 (10) | 0.0258 (13) | 0.0219 (11) | −0.0007 (9) | 0.0033 (9) | 0.0071 (10) |
C6 | 0.0207 (11) | 0.0283 (13) | 0.0139 (10) | 0.0031 (9) | 0.0025 (8) | 0.0033 (10) |
C7 | 0.0159 (10) | 0.0199 (11) | 0.0167 (11) | 0.0003 (9) | −0.0015 (8) | −0.0018 (9) |
C8 | 0.0147 (10) | 0.0184 (11) | 0.0159 (10) | −0.0007 (8) | 0.0029 (8) | 0.0007 (9) |
C9 | 0.0203 (10) | 0.0186 (12) | 0.0183 (11) | 0.0012 (9) | −0.0027 (9) | −0.0008 (10) |
C10 | 0.0158 (10) | 0.0253 (12) | 0.0215 (11) | 0.0039 (9) | 0.0008 (9) | −0.0029 (10) |
C11 | 0.0160 (10) | 0.0214 (12) | 0.0175 (11) | 0.0010 (9) | 0.0006 (8) | 0.0001 (10) |
C12 | 0.0139 (10) | 0.0209 (12) | 0.0199 (11) | 0.0030 (9) | 0.0004 (8) | −0.0018 (10) |
C13 | 0.0197 (11) | 0.0363 (14) | 0.0179 (11) | 0.0038 (10) | 0.0046 (9) | −0.0026 (11) |
C14 | 0.0184 (10) | 0.0271 (13) | 0.0144 (10) | 0.0033 (9) | 0.0050 (8) | −0.0037 (10) |
C15 | 0.0264 (11) | 0.0232 (13) | 0.0176 (11) | −0.0035 (9) | 0.0060 (9) | −0.0023 (10) |
C16 | 0.0311 (13) | 0.0288 (14) | 0.0179 (11) | 0.0036 (10) | 0.0059 (10) | 0.0048 (10) |
C17 | 0.0211 (11) | 0.0360 (15) | 0.0199 (12) | 0.0007 (10) | 0.0010 (9) | −0.0027 (12) |
C18 | 0.0242 (12) | 0.0246 (13) | 0.0258 (13) | −0.0055 (10) | 0.0054 (10) | −0.0013 (11) |
C19 | 0.0241 (11) | 0.0227 (12) | 0.0223 (12) | 0.0039 (9) | 0.0059 (9) | 0.0038 (10) |
Br1—C3 | 1.908 (2) | C9—H9A | 0.9900 |
O1—C1 | 1.420 (2) | C9—H9B | 0.9900 |
O1—N1 | 1.437 (2) | C10—H10A | 0.9900 |
N1—C8 | 1.279 (3) | C10—H10B | 0.9900 |
N2—C11 | 1.462 (3) | C11—C12 | 1.523 (3) |
N2—C13 | 1.466 (3) | C11—H11A | 0.9900 |
N2—C10 | 1.466 (2) | C11—H11B | 0.9900 |
C1—C2 | 1.504 (3) | C12—H12A | 0.9900 |
C1—H1A | 0.9900 | C12—H12B | 0.9900 |
C1—H1B | 0.9900 | C13—C14 | 1.509 (3) |
C2—C3 | 1.389 (3) | C13—H13A | 0.9900 |
C2—C7 | 1.393 (3) | C13—H13B | 0.9900 |
C3—C4 | 1.382 (3) | C14—C19 | 1.384 (3) |
C4—C5 | 1.379 (3) | C14—C15 | 1.392 (3) |
C4—H4 | 0.9500 | C15—C16 | 1.387 (3) |
C5—C6 | 1.384 (3) | C15—H15 | 0.9500 |
C5—H5 | 0.9500 | C16—C17 | 1.384 (3) |
C6—C7 | 1.385 (3) | C16—H16 | 0.9500 |
C6—H6 | 0.9500 | C17—C18 | 1.384 (3) |
C7—H7 | 0.9500 | C17—H17 | 0.9500 |
C8—C9 | 1.492 (3) | C18—C19 | 1.382 (3) |
C8—C12 | 1.500 (3) | C18—H18 | 0.9500 |
C9—C10 | 1.524 (3) | C19—H19 | 0.9500 |
C1—O1—N1 | 107.75 (15) | C9—C10—H10A | 109.3 |
C8—N1—O1 | 110.33 (17) | N2—C10—H10B | 109.3 |
C11—N2—C13 | 110.74 (18) | C9—C10—H10B | 109.3 |
C11—N2—C10 | 109.94 (17) | H10A—C10—H10B | 108.0 |
C13—N2—C10 | 109.04 (17) | N2—C11—C12 | 111.28 (18) |
O1—C1—C2 | 113.28 (18) | N2—C11—H11A | 109.4 |
O1—C1—H1A | 108.9 | C12—C11—H11A | 109.4 |
C2—C1—H1A | 108.9 | N2—C11—H11B | 109.4 |
O1—C1—H1B | 108.9 | C12—C11—H11B | 109.4 |
C2—C1—H1B | 108.9 | H11A—C11—H11B | 108.0 |
H1A—C1—H1B | 107.7 | C8—C12—C11 | 109.66 (18) |
C3—C2—C7 | 116.8 (2) | C8—C12—H12A | 109.7 |
C3—C2—C1 | 121.16 (19) | C11—C12—H12A | 109.7 |
C7—C2—C1 | 121.99 (19) | C8—C12—H12B | 109.7 |
C4—C3—C2 | 122.8 (2) | C11—C12—H12B | 109.7 |
C4—C3—Br1 | 118.18 (16) | H12A—C12—H12B | 108.2 |
C2—C3—Br1 | 119.04 (16) | N2—C13—C14 | 112.97 (18) |
C5—C4—C3 | 118.9 (2) | N2—C13—H13A | 109.0 |
C5—C4—H4 | 120.5 | C14—C13—H13A | 109.0 |
C3—C4—H4 | 120.5 | N2—C13—H13B | 109.0 |
C4—C5—C6 | 120.1 (2) | C14—C13—H13B | 109.0 |
C4—C5—H5 | 119.9 | H13A—C13—H13B | 107.8 |
C6—C5—H5 | 119.9 | C19—C14—C15 | 118.5 (2) |
C5—C6—C7 | 120.0 (2) | C19—C14—C13 | 120.0 (2) |
C5—C6—H6 | 120.0 | C15—C14—C13 | 121.4 (2) |
C7—C6—H6 | 120.0 | C16—C15—C14 | 120.4 (2) |
C6—C7—C2 | 121.3 (2) | C16—C15—H15 | 119.8 |
C6—C7—H7 | 119.4 | C14—C15—H15 | 119.8 |
C2—C7—H7 | 119.4 | C17—C16—C15 | 120.3 (2) |
N1—C8—C9 | 127.48 (19) | C17—C16—H16 | 119.9 |
N1—C8—C12 | 117.18 (19) | C15—C16—H16 | 119.9 |
C9—C8—C12 | 115.27 (18) | C18—C17—C16 | 119.6 (2) |
C8—C9—C10 | 109.98 (18) | C18—C17—H17 | 120.2 |
C8—C9—H9A | 109.7 | C16—C17—H17 | 120.2 |
C10—C9—H9A | 109.7 | C19—C18—C17 | 119.8 (2) |
C8—C9—H9B | 109.7 | C19—C18—H18 | 120.1 |
C10—C9—H9B | 109.7 | C17—C18—H18 | 120.1 |
H9A—C9—H9B | 108.2 | C18—C19—C14 | 121.3 (2) |
N2—C10—C9 | 111.39 (18) | C18—C19—H19 | 119.3 |
N2—C10—H10A | 109.3 | C14—C19—H19 | 119.3 |
C1—O1—N1—C8 | −169.11 (18) | C13—N2—C10—C9 | 177.2 (2) |
N1—O1—C1—C2 | 78.7 (2) | C8—C9—C10—N2 | 53.8 (3) |
O1—C1—C2—C3 | −175.08 (17) | C13—N2—C11—C12 | −177.74 (17) |
O1—C1—C2—C7 | 5.1 (3) | C10—N2—C11—C12 | 61.7 (2) |
C7—C2—C3—C4 | −2.5 (3) | N1—C8—C12—C11 | −127.6 (2) |
C1—C2—C3—C4 | 177.67 (19) | C9—C8—C12—C11 | 49.4 (3) |
C7—C2—C3—Br1 | 175.90 (15) | N2—C11—C12—C8 | −54.7 (2) |
C1—C2—C3—Br1 | −3.9 (3) | C11—N2—C13—C14 | 68.1 (3) |
C2—C3—C4—C5 | 1.4 (3) | C10—N2—C13—C14 | −170.8 (2) |
Br1—C3—C4—C5 | −177.08 (16) | N2—C13—C14—C19 | 74.1 (3) |
C3—C4—C5—C6 | 0.7 (3) | N2—C13—C14—C15 | −106.4 (3) |
C4—C5—C6—C7 | −1.4 (3) | C19—C14—C15—C16 | 0.5 (3) |
C5—C6—C7—C2 | 0.2 (3) | C13—C14—C15—C16 | −179.0 (2) |
C3—C2—C7—C6 | 1.7 (3) | C14—C15—C16—C17 | 0.2 (4) |
C1—C2—C7—C6 | −178.5 (2) | C15—C16—C17—C18 | −1.0 (4) |
O1—N1—C8—C9 | 3.7 (3) | C16—C17—C18—C19 | 1.0 (4) |
O1—N1—C8—C12 | −179.76 (17) | C17—C18—C19—C14 | −0.3 (4) |
N1—C8—C9—C10 | 127.6 (2) | C15—C14—C19—C18 | −0.5 (3) |
C12—C8—C9—C10 | −49.1 (3) | C13—C14—C19—C18 | 179.0 (2) |
C11—N2—C10—C9 | −61.2 (2) |
Experimental details
Crystal data | |
Chemical formula | C19H21BrN2O |
Mr | 373.29 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 123 |
a, b, c (Å) | 21.1586 (5), 5.6731 (2), 14.6425 (4) |
β (°) | 103.037 (3) |
V (Å3) | 1712.31 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.41 |
Crystal size (mm) | 0.40 × 0.12 × 0.05 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur E |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.448, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9090, 4525, 3556 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.078, 1.03 |
No. of reflections | 4525 |
No. of parameters | 208 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.69 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database. RMF also thanks the Universidad del Valle, Colombia, and AL thanks Pontificia Universidad Javeriana, Colombia, for partial financial support.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Jayabharathi, J., Manimekalai, A. & Padmavathy, M. (2011). Med. Chem. Res. 20, 981–995. Web of Science CrossRef CAS Google Scholar
Mikhaleva, A., Zaitsev, A. B. & Trofimov, B. A. (2006). Russ. Chem. Rev. 75, 797–823. CrossRef CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 2981–2985. Web of Science CSD CrossRef PubMed CAS Google Scholar
Parthiban, P., Pallela, R., Kim, S., Park, D. & Jeong, Y. (2011). Bioorg. Med. Chem. Lett. 21, 6678–6686. Web of Science CrossRef CAS PubMed Google Scholar
Picard, F., Baston, E., Reichert, W. & Hartmann, R. (2000). Bioorg. Med. Chem. 8, 1479–1487. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The oxime function is a versatile intermediate in organic synthesis, for example, it can be readily transformed into important groups such as carbonyl, amino, nitro, cyano and can be used as a convenient protective group (Mikhaleva et al., 2006). The oxime function is also an important pharmacophore group, particularly oximes of the piperidone and their ethers possess a wide spectrum of biological activity such as cytotoxic (Parthiban et al., 2011), antimicrobial (Jayabharathi et al., 2011) and as an inhibitor of steroid-5-reductase (Picard et al., 2000). In our research group, we are interested in the synthesis of nitrogen containing compounds with potential biological activity such as oximes and isoxazoles. In order to accomplish this objective the 1-benzylpiperidin-4-one O-2-bromobenzyl oxime (I) was synthesized with the aim of evaluating its in vitro antimicrobial activity. The molecular structure of I is shown in Fig. 1. A single crystal XRD study has been carried out for (I) to confirm the sterochemistry stablished by NMR studies. Analisis of torsion angles, and least-square plane calculation, indicate that piperidone ring adopts a chair conformation with the smallest displacement parameters q2= 0.078 (2) and q3= 0.549 (2) Å, total puckering amplitude, QT= 0.554 (2) Å and φ2= -176 (2)° (Cremer & Pople, 1975). This conformational behavior is similar to that reported by other similar systems (Parthiban et al., 2009). The least-squares fit of two phenyl rings C2/C3/C4/C5/C6/C7 and C14/C15/C16/C17/C18/C19 with a r.m.s deviation of fitted atoms of 0.0.009 and 0.004 Å respectively, shows a dihedral angle of 64.10 (7)° between the rings. The crystal packing shows no classical hydrogen bonds.