organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl­piperidin-4-one O-(2-bromo­benz­yl)oxime

aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bLaboratorio de Sintesis Orgánica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota, DC, Colombia, and cWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rodimo26@yahoo.es

(Received 10 September 2012; accepted 22 September 2012; online 29 September 2012)

In the title mol­ecule, C19H21BrN2O, the piperidone ring adopts a chair conformation with a total puckering amplitude QT of 0.554 (2) Å. The dihedral angle between the benzene rings is 64.10 (7)°. There are no significant inter­molecular inter­actions.

Related literature

For the use of the oxime function in organic synthesis, see: Mikhaleva et al. (2006[Mikhaleva, A., Zaitsev, A. B. & Trofimov, B. A. (2006). Russ. Chem. Rev. 75, 797-823.]). For properties of the oxime function, see: Parthiban et al. (2011[Parthiban, P., Pallela, R., Kim, S., Park, D. & Jeong, Y. (2011). Bioorg. Med. Chem. Lett. 21, 6678-6686.]); Jayabharathi et al. (2011[Jayabharathi, J., Manimekalai, A. & Padmavathy, M. (2011). Med. Chem. Res. 20, 981-995.]); Picard et al. (2000[Picard, F., Baston, E., Reichert, W. & Hartmann, R. (2000). Bioorg. Med. Chem. 8, 1479-1487.]); For related structures, see: Parthiban et al. (2009[Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 2981-2985.]); For details of ring-puckering conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C19H21BrN2O

  • Mr = 373.29

  • Monoclinic, P 21 /c

  • a = 21.1586 (5) Å

  • b = 5.6731 (2) Å

  • c = 14.6425 (4) Å

  • β = 103.037 (3)°

  • V = 1712.31 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.41 mm−1

  • T = 123 K

  • 0.40 × 0.12 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur E diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.448, Tmax = 1.000

  • 9090 measured reflections

  • 4525 independent reflections

  • 3556 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.078

  • S = 1.03

  • 4525 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.69 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The oxime function is a versatile intermediate in organic synthesis, for example, it can be readily transformed into important groups such as carbonyl, amino, nitro, cyano and can be used as a convenient protective group (Mikhaleva et al., 2006). The oxime function is also an important pharmacophore group, particularly oximes of the piperidone and their ethers possess a wide spectrum of biological activity such as cytotoxic (Parthiban et al., 2011), antimicrobial (Jayabharathi et al., 2011) and as an inhibitor of steroid-5-reductase (Picard et al., 2000). In our research group, we are interested in the synthesis of nitrogen containing compounds with potential biological activity such as oximes and isoxazoles. In order to accomplish this objective the 1-benzylpiperidin-4-one O-2-bromobenzyl oxime (I) was synthesized with the aim of evaluating its in vitro antimicrobial activity. The molecular structure of I is shown in Fig. 1. A single crystal XRD study has been carried out for (I) to confirm the sterochemistry stablished by NMR studies. Analisis of torsion angles, and least-square plane calculation, indicate that piperidone ring adopts a chair conformation with the smallest displacement parameters q2= 0.078 (2) and q3= 0.549 (2) Å, total puckering amplitude, QT= 0.554 (2) Å and φ2= -176 (2)° (Cremer & Pople, 1975). This conformational behavior is similar to that reported by other similar systems (Parthiban et al., 2009). The least-squares fit of two phenyl rings C2/C3/C4/C5/C6/C7 and C14/C15/C16/C17/C18/C19 with a r.m.s deviation of fitted atoms of 0.0.009 and 0.004 Å respectively, shows a dihedral angle of 64.10 (7)° between the rings. The crystal packing shows no classical hydrogen bonds.

Related literature top

For the use of the oxime function in organic synthesis, see: Mikhaleva et al. (2006). For properties of the oxime function, see: Parthiban et al. (2011); Jayabharathi et al. (2011); Picard et al. (2000); For related structures, see: Parthiban et al. (2009); For details of ring-puckering conformational analysis, see: Cremer & Pople (1975).

Experimental top

In a two necks round bottom flask a mixture of 1-benzylpiperidin-4-one oxime (204 mg, 1 mmol), NaOH (80 mg, 2 mmol) in dry acetone (1.5 ml) was refluxed for 30 minutes, and then 2-bromobenzyl bromide (275 mg, 1,1 mmol) was added and subsequently stirred for 3 h. The reaction mixture was neutralized with acetic acid, extracted with AcOEt and dried with anhydrous Na2SO4. The combined organic layers were evaporated under low pressure to dryness. Purification of the crude mixture by flash column chromatography with 15% (v/v) AcOEt/hexane yielded compound 1 as a pale yellow solid (250 mg, 67% yield) mp 340.5 - 342.0 K. 1-benzylpiperidin-4-oneO-2-bromobenzyl oxime 1H NMR (300 MHz) δ, 7.56 (dd, 1H, Ar—H), 7.43–7.27 (m, 7H, Ar—H), 7.17 (td, 1H, Ar—H), 5.16 (s, 2H, O—CH2—Ar) 3.58 (s, 2H, N—CH2—Ph), 2.73 (t, 2H, N=C—CH2), 2.59 (t, 2H, N—CH2), 2.56 (t, 2H, N—CH2), 2.39 (t, 2H, N=C—CH2). 13C-NMR δ, 158.3 (C=N), 138.0 (C), 137.5(C), 132.5 (Ar—H), 129.2, 129.1, 128.9, 128.3, 127.2, 122.7 (C—Br), 74.5 (O—CH2—Ar), 62.5 (N—CH2—Ar), 53.5 (N—CH2), 52.4 (N—CH2), 31.4 (N=C—CH2), 25.5 (N=C—CH2). MS—EI M+ m/z: 372.1, 374.1, 100%: 91.1.

Refinement top

The H-atoms were positioned geometrically [C—H= 0.95 Å for aromatic and C—H = 0.99 Å for methylene, and with Uiso(H) (1.2 and 1.5 x Ueq of the parent atom respectively].

Structure description top

The oxime function is a versatile intermediate in organic synthesis, for example, it can be readily transformed into important groups such as carbonyl, amino, nitro, cyano and can be used as a convenient protective group (Mikhaleva et al., 2006). The oxime function is also an important pharmacophore group, particularly oximes of the piperidone and their ethers possess a wide spectrum of biological activity such as cytotoxic (Parthiban et al., 2011), antimicrobial (Jayabharathi et al., 2011) and as an inhibitor of steroid-5-reductase (Picard et al., 2000). In our research group, we are interested in the synthesis of nitrogen containing compounds with potential biological activity such as oximes and isoxazoles. In order to accomplish this objective the 1-benzylpiperidin-4-one O-2-bromobenzyl oxime (I) was synthesized with the aim of evaluating its in vitro antimicrobial activity. The molecular structure of I is shown in Fig. 1. A single crystal XRD study has been carried out for (I) to confirm the sterochemistry stablished by NMR studies. Analisis of torsion angles, and least-square plane calculation, indicate that piperidone ring adopts a chair conformation with the smallest displacement parameters q2= 0.078 (2) and q3= 0.549 (2) Å, total puckering amplitude, QT= 0.554 (2) Å and φ2= -176 (2)° (Cremer & Pople, 1975). This conformational behavior is similar to that reported by other similar systems (Parthiban et al., 2009). The least-squares fit of two phenyl rings C2/C3/C4/C5/C6/C7 and C14/C15/C16/C17/C18/C19 with a r.m.s deviation of fitted atoms of 0.0.009 and 0.004 Å respectively, shows a dihedral angle of 64.10 (7)° between the rings. The crystal packing shows no classical hydrogen bonds.

For the use of the oxime function in organic synthesis, see: Mikhaleva et al. (2006). For properties of the oxime function, see: Parthiban et al. (2011); Jayabharathi et al. (2011); Picard et al. (2000); For related structures, see: Parthiban et al. (2009); For details of ring-puckering conformational analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
1-Benzylpiperidin-4-one O-(2-bromobenzyl)oxime top
Crystal data top
C19H21BrN2OF(000) = 768
Mr = 373.29Dx = 1.448 Mg m3
Monoclinic, P21/cMelting point: 341(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 21.1586 (5) ÅCell parameters from 4022 reflections
b = 5.6731 (2) Åθ = 3.2–30.0°
c = 14.6425 (4) ŵ = 2.41 mm1
β = 103.037 (3)°T = 123 K
V = 1712.31 (9) Å3Cut from large needle, colourless
Z = 40.40 × 0.12 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
4525 independent reflections
Radiation source: fine-focus sealed tube3556 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 30.0°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 2928
Tmin = 0.448, Tmax = 1.000k = 77
9090 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0294P)2 + 0.3261P]
where P = (Fo2 + 2Fc2)/3
4525 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
C19H21BrN2OV = 1712.31 (9) Å3
Mr = 373.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.1586 (5) ŵ = 2.41 mm1
b = 5.6731 (2) ÅT = 123 K
c = 14.6425 (4) Å0.40 × 0.12 × 0.05 mm
β = 103.037 (3)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
4525 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3556 reflections with I > 2σ(I)
Tmin = 0.448, Tmax = 1.000Rint = 0.032
9090 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
4525 reflectionsΔρmin = 0.69 e Å3
208 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.089592 (10)0.38045 (4)0.610086 (15)0.02227 (8)
O10.19320 (7)0.9868 (3)0.78376 (10)0.0186 (3)
N10.25028 (8)0.8872 (3)0.84339 (13)0.0182 (4)
N20.31211 (8)1.2442 (3)1.08828 (12)0.0178 (4)
C10.15948 (10)0.8022 (4)0.72769 (15)0.0185 (5)
H1A0.19120.70230.70520.022*
H1B0.12990.87160.67210.022*
C20.12070 (9)0.6498 (4)0.77892 (14)0.0141 (4)
C30.08859 (9)0.4501 (4)0.73724 (14)0.0155 (4)
C40.05440 (10)0.3014 (4)0.78332 (16)0.0200 (5)
H40.03380.16450.75310.024*
C50.05072 (10)0.3551 (4)0.87379 (16)0.0223 (5)
H50.02780.25380.90670.027*
C60.08033 (10)0.5564 (4)0.91680 (15)0.0212 (5)
H60.07690.59500.97860.025*
C70.11498 (10)0.7015 (4)0.86974 (15)0.0183 (5)
H70.13530.83890.90000.022*
C80.27666 (10)1.0359 (4)0.90613 (15)0.0164 (4)
C90.25232 (10)1.2752 (4)0.92308 (15)0.0202 (5)
H9A0.20851.29900.88270.024*
H9B0.28151.39680.90680.024*
C100.24949 (10)1.3006 (4)1.02568 (15)0.0214 (5)
H10A0.23721.46431.03750.026*
H10B0.21581.19391.03930.026*
C110.32969 (10)0.9998 (4)1.07409 (15)0.0188 (5)
H11A0.29570.89341.08710.023*
H11B0.37100.96101.11870.023*
C120.33726 (10)0.9598 (4)0.97427 (15)0.0188 (5)
H12A0.37471.05120.96340.023*
H12B0.34550.79070.96490.023*
C130.30752 (11)1.2827 (5)1.18558 (15)0.0246 (5)
H13A0.27781.16391.20240.030*
H13B0.28861.44031.19070.030*
C140.37229 (10)1.2669 (4)1.25436 (15)0.0198 (5)
C150.38856 (11)1.0734 (4)1.31350 (15)0.0222 (5)
H150.35880.94671.31020.027*
C160.44798 (12)1.0645 (4)1.37719 (16)0.0258 (5)
H160.45870.93161.41710.031*
C170.49166 (11)1.2485 (5)1.38284 (16)0.0263 (5)
H170.53211.24331.42720.032*
C180.47616 (11)1.4401 (4)1.32351 (17)0.0249 (5)
H180.50621.56581.32630.030*
C190.41685 (11)1.4481 (4)1.26022 (16)0.0229 (5)
H190.40651.58051.21990.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02297 (11)0.02514 (14)0.01779 (12)0.00154 (10)0.00266 (8)0.00613 (10)
O10.0158 (7)0.0169 (8)0.0189 (8)0.0016 (6)0.0045 (6)0.0019 (7)
N10.0136 (8)0.0198 (10)0.0194 (9)0.0013 (7)0.0002 (7)0.0026 (8)
N20.0140 (8)0.0219 (10)0.0160 (9)0.0038 (7)0.0006 (7)0.0017 (8)
C10.0175 (10)0.0189 (11)0.0169 (11)0.0036 (9)0.0011 (8)0.0009 (9)
C20.0122 (9)0.0140 (11)0.0142 (10)0.0022 (8)0.0013 (7)0.0010 (9)
C30.0129 (9)0.0176 (11)0.0143 (10)0.0025 (8)0.0006 (8)0.0020 (9)
C40.0155 (10)0.0183 (11)0.0242 (12)0.0008 (9)0.0005 (9)0.0012 (10)
C50.0188 (10)0.0258 (13)0.0219 (11)0.0007 (9)0.0033 (9)0.0071 (10)
C60.0207 (11)0.0283 (13)0.0139 (10)0.0031 (9)0.0025 (8)0.0033 (10)
C70.0159 (10)0.0199 (11)0.0167 (11)0.0003 (9)0.0015 (8)0.0018 (9)
C80.0147 (10)0.0184 (11)0.0159 (10)0.0007 (8)0.0029 (8)0.0007 (9)
C90.0203 (10)0.0186 (12)0.0183 (11)0.0012 (9)0.0027 (9)0.0008 (10)
C100.0158 (10)0.0253 (12)0.0215 (11)0.0039 (9)0.0008 (9)0.0029 (10)
C110.0160 (10)0.0214 (12)0.0175 (11)0.0010 (9)0.0006 (8)0.0001 (10)
C120.0139 (10)0.0209 (12)0.0199 (11)0.0030 (9)0.0004 (8)0.0018 (10)
C130.0197 (11)0.0363 (14)0.0179 (11)0.0038 (10)0.0046 (9)0.0026 (11)
C140.0184 (10)0.0271 (13)0.0144 (10)0.0033 (9)0.0050 (8)0.0037 (10)
C150.0264 (11)0.0232 (13)0.0176 (11)0.0035 (9)0.0060 (9)0.0023 (10)
C160.0311 (13)0.0288 (14)0.0179 (11)0.0036 (10)0.0059 (10)0.0048 (10)
C170.0211 (11)0.0360 (15)0.0199 (12)0.0007 (10)0.0010 (9)0.0027 (12)
C180.0242 (12)0.0246 (13)0.0258 (13)0.0055 (10)0.0054 (10)0.0013 (11)
C190.0241 (11)0.0227 (12)0.0223 (12)0.0039 (9)0.0059 (9)0.0038 (10)
Geometric parameters (Å, º) top
Br1—C31.908 (2)C9—H9A0.9900
O1—C11.420 (2)C9—H9B0.9900
O1—N11.437 (2)C10—H10A0.9900
N1—C81.279 (3)C10—H10B0.9900
N2—C111.462 (3)C11—C121.523 (3)
N2—C131.466 (3)C11—H11A0.9900
N2—C101.466 (2)C11—H11B0.9900
C1—C21.504 (3)C12—H12A0.9900
C1—H1A0.9900C12—H12B0.9900
C1—H1B0.9900C13—C141.509 (3)
C2—C31.389 (3)C13—H13A0.9900
C2—C71.393 (3)C13—H13B0.9900
C3—C41.382 (3)C14—C191.384 (3)
C4—C51.379 (3)C14—C151.392 (3)
C4—H40.9500C15—C161.387 (3)
C5—C61.384 (3)C15—H150.9500
C5—H50.9500C16—C171.384 (3)
C6—C71.385 (3)C16—H160.9500
C6—H60.9500C17—C181.384 (3)
C7—H70.9500C17—H170.9500
C8—C91.492 (3)C18—C191.382 (3)
C8—C121.500 (3)C18—H180.9500
C9—C101.524 (3)C19—H190.9500
C1—O1—N1107.75 (15)C9—C10—H10A109.3
C8—N1—O1110.33 (17)N2—C10—H10B109.3
C11—N2—C13110.74 (18)C9—C10—H10B109.3
C11—N2—C10109.94 (17)H10A—C10—H10B108.0
C13—N2—C10109.04 (17)N2—C11—C12111.28 (18)
O1—C1—C2113.28 (18)N2—C11—H11A109.4
O1—C1—H1A108.9C12—C11—H11A109.4
C2—C1—H1A108.9N2—C11—H11B109.4
O1—C1—H1B108.9C12—C11—H11B109.4
C2—C1—H1B108.9H11A—C11—H11B108.0
H1A—C1—H1B107.7C8—C12—C11109.66 (18)
C3—C2—C7116.8 (2)C8—C12—H12A109.7
C3—C2—C1121.16 (19)C11—C12—H12A109.7
C7—C2—C1121.99 (19)C8—C12—H12B109.7
C4—C3—C2122.8 (2)C11—C12—H12B109.7
C4—C3—Br1118.18 (16)H12A—C12—H12B108.2
C2—C3—Br1119.04 (16)N2—C13—C14112.97 (18)
C5—C4—C3118.9 (2)N2—C13—H13A109.0
C5—C4—H4120.5C14—C13—H13A109.0
C3—C4—H4120.5N2—C13—H13B109.0
C4—C5—C6120.1 (2)C14—C13—H13B109.0
C4—C5—H5119.9H13A—C13—H13B107.8
C6—C5—H5119.9C19—C14—C15118.5 (2)
C5—C6—C7120.0 (2)C19—C14—C13120.0 (2)
C5—C6—H6120.0C15—C14—C13121.4 (2)
C7—C6—H6120.0C16—C15—C14120.4 (2)
C6—C7—C2121.3 (2)C16—C15—H15119.8
C6—C7—H7119.4C14—C15—H15119.8
C2—C7—H7119.4C17—C16—C15120.3 (2)
N1—C8—C9127.48 (19)C17—C16—H16119.9
N1—C8—C12117.18 (19)C15—C16—H16119.9
C9—C8—C12115.27 (18)C18—C17—C16119.6 (2)
C8—C9—C10109.98 (18)C18—C17—H17120.2
C8—C9—H9A109.7C16—C17—H17120.2
C10—C9—H9A109.7C19—C18—C17119.8 (2)
C8—C9—H9B109.7C19—C18—H18120.1
C10—C9—H9B109.7C17—C18—H18120.1
H9A—C9—H9B108.2C18—C19—C14121.3 (2)
N2—C10—C9111.39 (18)C18—C19—H19119.3
N2—C10—H10A109.3C14—C19—H19119.3
C1—O1—N1—C8169.11 (18)C13—N2—C10—C9177.2 (2)
N1—O1—C1—C278.7 (2)C8—C9—C10—N253.8 (3)
O1—C1—C2—C3175.08 (17)C13—N2—C11—C12177.74 (17)
O1—C1—C2—C75.1 (3)C10—N2—C11—C1261.7 (2)
C7—C2—C3—C42.5 (3)N1—C8—C12—C11127.6 (2)
C1—C2—C3—C4177.67 (19)C9—C8—C12—C1149.4 (3)
C7—C2—C3—Br1175.90 (15)N2—C11—C12—C854.7 (2)
C1—C2—C3—Br13.9 (3)C11—N2—C13—C1468.1 (3)
C2—C3—C4—C51.4 (3)C10—N2—C13—C14170.8 (2)
Br1—C3—C4—C5177.08 (16)N2—C13—C14—C1974.1 (3)
C3—C4—C5—C60.7 (3)N2—C13—C14—C15106.4 (3)
C4—C5—C6—C71.4 (3)C19—C14—C15—C160.5 (3)
C5—C6—C7—C20.2 (3)C13—C14—C15—C16179.0 (2)
C3—C2—C7—C61.7 (3)C14—C15—C16—C170.2 (4)
C1—C2—C7—C6178.5 (2)C15—C16—C17—C181.0 (4)
O1—N1—C8—C93.7 (3)C16—C17—C18—C191.0 (4)
O1—N1—C8—C12179.76 (17)C17—C18—C19—C140.3 (4)
N1—C8—C9—C10127.6 (2)C15—C14—C19—C180.5 (3)
C12—C8—C9—C1049.1 (3)C13—C14—C19—C18179.0 (2)
C11—N2—C10—C961.2 (2)

Experimental details

Crystal data
Chemical formulaC19H21BrN2O
Mr373.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)21.1586 (5), 5.6731 (2), 14.6425 (4)
β (°) 103.037 (3)
V3)1712.31 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.41
Crystal size (mm)0.40 × 0.12 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur E
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.448, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9090, 4525, 3556
Rint0.032
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.078, 1.03
No. of reflections4525
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.69

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database. RMF also thanks the Universidad del Valle, Colombia, and AL thanks Pontificia Universidad Javeriana, Colombia, for partial financial support.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJayabharathi, J., Manimekalai, A. & Padmavathy, M. (2011). Med. Chem. Res. 20, 981–995.  Web of Science CrossRef CAS Google Scholar
First citationMikhaleva, A., Zaitsev, A. B. & Trofimov, B. A. (2006). Russ. Chem. Rev. 75, 797–823.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationParthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 2981–2985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParthiban, P., Pallela, R., Kim, S., Park, D. & Jeong, Y. (2011). Bioorg. Med. Chem. Lett. 21, 6678–6686.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPicard, F., Baston, E., Reichert, W. & Hartmann, R. (2000). Bioorg. Med. Chem. 8, 1479–1487.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds