organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Quinoline-8-sulfonamide1

aDepartment of Organic Chemistry, The Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland, and bInstitute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
*Correspondence e-mail: kmarciniec@sum.edu.pl

(Received 18 July 2012; accepted 27 August 2012; online 1 September 2012)

In the title compound, C9H8N2O2S, the sulfamoyl NH2 group is involved in intra­molecular N—H⋯N and inter­molecular N—H⋯O hydrogen bonding. In the crystal, molecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers, which are further associated through ππ stacking inter­actions between the quinoline benzene rings [centroid–centroid distance = 3.649 (1) Å] into a one-dimensional polymeric structure extending along the a axis.

Related literature

For the use of the quinoline­sulfamoyl unit in medicinal chemistry, see: Borras et al. (1999[Borras, J., Scozzafava, A., Menabuoni, L., Mincione, F., Briganti, F., Mincione, G. & Supuran, C. T. (1999). Bioorg. Med. Chem. pp. 2397-2406.]); Eveloch et al. (1981[Eveloch, J. L., Bocian, D. F. & Sudmeier, J. L. (1981). Biochemistry, 20, 4951-4954.]); Zajdel et al. (2011[Zajdel, P., Marciniec, K., Maślankiewicz, A., Paluchowska, M. H., Satała, G., Partyka, A., Jastrzębska-Więsek, M., Wróbel, D., Wesołowska, A., Duszyńska, B., Bojarski, A. J. & Pawłowski, M. (2011). Bioorg. Med. Chem. pp. 6750-6759.], 2012[Zajdel, P., Marciniec, K., Maślankiewicz, A., Satała, G., Duszyńska, B., Bojarski, A. J., Partyka, A., Jastrzębska-Więsek, M., Wróbel, D., Wesołowska, A. & Pawłowski, M. (2012). Bioorg. Med. Chem. pp. 1545-1556.]). For the synthesis, see: Maślankiewicz et al. (2007[Maślankiewicz, A., Marciniec, K., Pawłowski, M. & Zajdel, P. (2007). Heterocycles, 71, 1975-1990.]). For hydrogen-bonding motifs in sufonamides, see: Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For graph-set notation of hydrgen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N2O2S

  • Mr = 208.23

  • Monoclinic, P 21 /n

  • a = 8.9431 (3) Å

  • b = 10.4542 (2) Å

  • c = 10.4648 (2) Å

  • β = 109.313 (2)°

  • V = 923.33 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 298 K

  • 0.34 × 0.21 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abington, England.]) Tmin = 0.898, Tmax = 0.944

  • 5936 measured reflections

  • 1636 independent reflections

  • 1446 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.095

  • S = 0.97

  • 1636 reflections

  • 135 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O2i 0.87 (2) 2.15 (3) 3.013 (2) 169 (2)
N2—H2N⋯N1 0.83 (2) 2.33 (2) 2.921 (2) 129 (2)
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abington, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abington, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Jmol (Hanson, 2010[Hanson, R. M. (2010). J. Appl. Cryst. 43, 1250-1260.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Quinolinesulfamoyl moiety is being more and more frequently incorporated into molecules of biologically active compounds such as carbonic anhydrase inhibitors (Borras et al., 1999) and 5-HT receptors ligands (Zajdel et al., 2011; Zajdel et al., 2012). Since the quinoline drugs as well as sulfonamides strongly interact with enzymatic receptors via their nitrogen atoms (Eveloch et al., 1981) we studied the crystal structure of the title compound, to evaluate the spatial environment of the nitrogen atoms.

The molecular conformation of quinoline-8-sulfonamide with the adopted atomic numbering is presented in Fig.1. The sulfonamide group participates in both intra- and intermolecular hydrogen bonding. The H2 atom of the sulfamoyl group shows an intramolecular contact with the N1 atom of the quinoline ring system (Table 1) resulting in the graph-set motif of S(6) (Bernstein et al., 1995). In the crystal, the molecules form dimers through N2—H1···O2 hydrogen bonds (Table 1). It is interesting to note that the most commonly observed hydrogen bonding in sulfonamides in the studies reported by Adsmond &Grant (2001) consing of S=O···H—N chains (50 occurrences in 39 different sulfonamide structures) is absent in the title compound.

A π-π stacking interaction is observed between the benzene C4A/C5—C8/C8A rings of neighboring dimers with the centroid-to-centroid distance, Cg···Cg (1 - x, 2 - y, -z) of 3.649 (1) Å and interplanar spacing of 3.373 (1) Å (Fig. 2). The ππ stacking interaction connects the dimers along the [100] direction forming one-dimesional polymeric structure.

Related literature top

For the use of the quinolinesulfamoyl unit in medicinal chemistry, see: Borras et al. (1999); Eveloch et al. (1981); Zajdel et al. (2011, 2012). For the synthesis, see: Maślankiewicz et al. (2007). For hydrogen-bonding motifs in sufonamides, see: Adsmond & Grant (2001). For graph-set notation of hydrgen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by the reaction of 8-quinolinesulfonylchloride with an excess ammonia at temperature of 45°C according to the procedure reported by Maślankiewicz et al. (2007). Single crystals of the title compound suitable for X-ray structure determination were obtained by recrystallization from an ethanolic solution.

Refinement top

The hydrogen atoms participating in hydrogen bonding were located in a difference Fourier map and freely refined. Other hydrogen atoms were introduced in geometrically idealized positions and refined using a riding-model approximation with C—H distances of 0.93 Å and with Uiso(H)= 1.2Ueq(C).

Structure description top

Quinolinesulfamoyl moiety is being more and more frequently incorporated into molecules of biologically active compounds such as carbonic anhydrase inhibitors (Borras et al., 1999) and 5-HT receptors ligands (Zajdel et al., 2011; Zajdel et al., 2012). Since the quinoline drugs as well as sulfonamides strongly interact with enzymatic receptors via their nitrogen atoms (Eveloch et al., 1981) we studied the crystal structure of the title compound, to evaluate the spatial environment of the nitrogen atoms.

The molecular conformation of quinoline-8-sulfonamide with the adopted atomic numbering is presented in Fig.1. The sulfonamide group participates in both intra- and intermolecular hydrogen bonding. The H2 atom of the sulfamoyl group shows an intramolecular contact with the N1 atom of the quinoline ring system (Table 1) resulting in the graph-set motif of S(6) (Bernstein et al., 1995). In the crystal, the molecules form dimers through N2—H1···O2 hydrogen bonds (Table 1). It is interesting to note that the most commonly observed hydrogen bonding in sulfonamides in the studies reported by Adsmond &Grant (2001) consing of S=O···H—N chains (50 occurrences in 39 different sulfonamide structures) is absent in the title compound.

A π-π stacking interaction is observed between the benzene C4A/C5—C8/C8A rings of neighboring dimers with the centroid-to-centroid distance, Cg···Cg (1 - x, 2 - y, -z) of 3.649 (1) Å and interplanar spacing of 3.373 (1) Å (Fig. 2). The ππ stacking interaction connects the dimers along the [100] direction forming one-dimesional polymeric structure.

For the use of the quinolinesulfamoyl unit in medicinal chemistry, see: Borras et al. (1999); Eveloch et al. (1981); Zajdel et al. (2011, 2012). For the synthesis, see: Maślankiewicz et al. (2007). For hydrogen-bonding motifs in sufonamides, see: Adsmond & Grant (2001). For graph-set notation of hydrgen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Jmol (Hanson, 2010) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. π-π stacking interactions (green dashed line) and hydrogen bonds (black dashed lines) in the title crystal structure. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. Crystal packing of the title compound along the c axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
Quinoline-8-sulfonamide top
Crystal data top
C9H8N2O2SF(000) = 432
Mr = 208.23Dx = 1.498 Mg m3
Monoclinic, P21/nMelting point: 457.2 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.9431 (3) ÅCell parameters from 5251 reflections
b = 10.4542 (2) Åθ = 3.1–34.5°
c = 10.4648 (2) ŵ = 0.32 mm1
β = 109.313 (2)°T = 298 K
V = 923.33 (4) Å3Polyhedron, colourless
Z = 40.34 × 0.21 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3 CCD
diffractometer
1636 independent reflections
Radiation source: fine-focus sealed tube1446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 16.0328 pixels mm-1θmax = 25.1°, θmin = 3.1°
ω–scanh = 810
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1211
Tmin = 0.898, Tmax = 0.944l = 1210
5936 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.075P)2 + 0.1368P]
where P = (Fo2 + 2Fc2)/3
1636 reflections(Δ/σ)max = 0.001
135 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C9H8N2O2SV = 923.33 (4) Å3
Mr = 208.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9431 (3) ŵ = 0.32 mm1
b = 10.4542 (2) ÅT = 298 K
c = 10.4648 (2) Å0.34 × 0.21 × 0.18 mm
β = 109.313 (2)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3 CCD
diffractometer
1636 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
1446 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.944Rint = 0.014
5936 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.31 e Å3
1636 reflectionsΔρmin = 0.36 e Å3
135 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.66396 (4)0.87959 (4)0.17318 (4)0.03962 (18)
O10.69562 (15)0.80754 (13)0.29483 (13)0.0560 (4)
O20.52811 (14)0.84522 (13)0.05984 (13)0.0542 (4)
N10.98319 (16)0.98818 (14)0.31765 (14)0.0438 (3)
N20.6409 (2)1.02696 (16)0.2070 (2)0.0501 (4)
C21.1202 (2)1.03811 (18)0.3911 (2)0.0556 (5)
H21.12421.08480.46780.067*
C31.2598 (2)1.0245 (2)0.3596 (2)0.0637 (6)
H31.35411.05960.41600.076*
C41.2566 (2)0.96016 (18)0.2470 (2)0.0568 (5)
H41.34850.95200.22450.068*
C4A1.1134 (2)0.90515 (16)0.16339 (19)0.0430 (4)
C51.0985 (2)0.83950 (17)0.0427 (2)0.0513 (5)
H51.18710.82870.01610.062*
C60.9568 (2)0.79162 (18)0.0357 (2)0.0540 (5)
H60.94870.74950.11610.065*
C70.8221 (2)0.80560 (16)0.00428 (17)0.0448 (4)
H70.72540.77220.04940.054*
C80.83294 (17)0.86792 (14)0.12156 (15)0.0341 (4)
C8A0.97904 (17)0.92153 (14)0.20522 (15)0.0351 (3)
H1N0.603 (3)1.071 (2)0.133 (3)0.059 (6)*
H2N0.722 (3)1.057 (2)0.263 (3)0.065 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0313 (3)0.0447 (3)0.0465 (3)0.00383 (16)0.01779 (19)0.00320 (17)
O10.0532 (8)0.0673 (9)0.0553 (8)0.0052 (6)0.0284 (6)0.0151 (6)
O20.0352 (6)0.0582 (8)0.0648 (8)0.0102 (5)0.0106 (6)0.0017 (6)
N10.0371 (7)0.0500 (8)0.0436 (8)0.0022 (6)0.0122 (6)0.0040 (6)
N20.0378 (8)0.0549 (10)0.0613 (10)0.0023 (7)0.0215 (8)0.0066 (9)
C20.0484 (10)0.0542 (11)0.0545 (11)0.0042 (8)0.0039 (8)0.0058 (8)
C30.0357 (10)0.0557 (12)0.0876 (16)0.0070 (8)0.0040 (10)0.0055 (11)
C40.0326 (8)0.0488 (10)0.0919 (15)0.0036 (7)0.0247 (9)0.0119 (10)
C4A0.0367 (9)0.0358 (8)0.0629 (11)0.0066 (7)0.0250 (8)0.0120 (7)
C50.0562 (11)0.0431 (9)0.0718 (12)0.0111 (8)0.0443 (10)0.0076 (9)
C60.0732 (13)0.0457 (10)0.0560 (10)0.0069 (9)0.0389 (10)0.0030 (8)
C70.0509 (10)0.0404 (9)0.0448 (9)0.0021 (7)0.0181 (8)0.0018 (7)
C80.0337 (8)0.0322 (8)0.0396 (8)0.0008 (6)0.0166 (6)0.0045 (6)
C8A0.0333 (8)0.0328 (8)0.0418 (8)0.0017 (6)0.0161 (7)0.0047 (6)
Geometric parameters (Å, º) top
S1—O11.4247 (13)C4—C4A1.413 (3)
S1—O21.4348 (12)C4—H40.9300
S1—N21.6092 (17)C4A—C51.405 (3)
S1—C81.7693 (15)C4A—C8A1.419 (2)
N1—C21.320 (2)C5—C61.357 (3)
N1—C8A1.357 (2)C5—H50.9300
N2—H1N0.87 (2)C6—C71.407 (2)
N2—H2N0.83 (2)C6—H60.9300
C2—C31.400 (3)C7—C81.364 (2)
C2—H20.9300C7—H70.9300
C3—C41.349 (3)C8—C8A1.425 (2)
C3—H30.9300
O1—S1—O2118.03 (8)C5—C4A—C4123.55 (17)
O1—S1—N2108.14 (10)C5—C4A—C8A119.89 (16)
O2—S1—N2106.66 (9)C4—C4A—C8A116.54 (17)
O1—S1—C8107.39 (7)C6—C5—C4A121.06 (15)
O2—S1—C8107.79 (8)C6—C5—H5119.5
N2—S1—C8108.52 (7)C4A—C5—H5119.5
C2—N1—C8A117.50 (15)C5—C6—C7120.09 (16)
S1—N2—H1N110.7 (15)C5—C6—H6120.0
S1—N2—H2N112.0 (16)C7—C6—H6120.0
H1N—N2—H2N115 (2)C8—C7—C6120.29 (16)
N1—C2—C3123.47 (19)C8—C7—H7119.9
N1—C2—H2118.3C6—C7—H7119.9
C3—C2—H2118.3C7—C8—C8A121.20 (14)
C4—C3—C2119.58 (17)C7—C8—S1119.61 (12)
C4—C3—H3120.2C8A—C8—S1119.17 (12)
C2—C3—H3120.2N1—C8A—C4A123.12 (15)
C3—C4—C4A119.77 (17)N1—C8A—C8119.41 (13)
C3—C4—H4120.1C4A—C8A—C8117.45 (15)
C4A—C4—H4120.1
C8A—N1—C2—C30.7 (3)O1—S1—C8—C8A64.59 (13)
N1—C2—C3—C41.7 (3)O2—S1—C8—C8A167.26 (12)
C2—C3—C4—C4A1.2 (3)N2—S1—C8—C8A52.10 (15)
C3—C4—C4A—C5178.30 (18)C2—N1—C8A—C4A0.8 (2)
C3—C4—C4A—C8A0.2 (3)C2—N1—C8A—C8178.87 (15)
C4—C4A—C5—C6178.12 (17)C5—C4A—C8A—N1177.31 (15)
C8A—C4A—C5—C60.4 (3)C4—C4A—C8A—N11.3 (2)
C4A—C5—C6—C71.0 (3)C5—C4A—C8A—C80.8 (2)
C5—C6—C7—C80.4 (3)C4—C4A—C8A—C8179.37 (14)
C6—C7—C8—C8A0.8 (2)C7—C8—C8A—N1176.81 (15)
C6—C7—C8—S1177.78 (13)S1—C8—C8A—N14.61 (19)
O1—S1—C8—C7114.02 (14)C7—C8—C8A—C4A1.4 (2)
O2—S1—C8—C714.14 (15)S1—C8—C8A—C4A177.22 (11)
N2—S1—C8—C7129.30 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O2i0.87 (2)2.15 (3)3.013 (2)169 (2)
N2—H2N···N10.83 (2)2.33 (2)2.921 (2)129 (2)
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC9H8N2O2S
Mr208.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.9431 (3), 10.4542 (2), 10.4648 (2)
β (°) 109.313 (2)
V3)923.33 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.34 × 0.21 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3 CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.898, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
5936, 1636, 1446
Rint0.014
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.095, 0.97
No. of reflections1636
No. of parameters135
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.36

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Jmol (Hanson, 2010) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O2i0.87 (2)2.15 (3)3.013 (2)169 (2)
N2—H2N···N10.83 (2)2.33 (2)2.921 (2)129 (2)
Symmetry code: (i) x+1, y+2, z.
 

Footnotes

1Part CXXXII in the series of Azinyl Sulfides.

Acknowledgements

This study was supported by the Medical University of Silesia, grant No. KNW-1–073/P/1/0.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBorras, J., Scozzafava, A., Menabuoni, L., Mincione, F., Briganti, F., Mincione, G. & Supuran, C. T. (1999). Bioorg. Med. Chem. pp. 2397–2406.  Web of Science CrossRef Google Scholar
First citationEveloch, J. L., Bocian, D. F. & Sudmeier, J. L. (1981). Biochemistry, 20, 4951–4954.  PubMed Web of Science Google Scholar
First citationHanson, R. M. (2010). J. Appl. Cryst. 43, 1250–1260.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaślankiewicz, A., Marciniec, K., Pawłowski, M. & Zajdel, P. (2007). Heterocycles, 71, 1975–1990.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abington, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZajdel, P., Marciniec, K., Maślankiewicz, A., Paluchowska, M. H., Satała, G., Partyka, A., Jastrzębska-Więsek, M., Wróbel, D., Wesołowska, A., Duszyńska, B., Bojarski, A. J. & Pawłowski, M. (2011). Bioorg. Med. Chem. pp. 6750–6759.  Web of Science CrossRef Google Scholar
First citationZajdel, P., Marciniec, K., Maślankiewicz, A., Satała, G., Duszyńska, B., Bojarski, A. J., Partyka, A., Jastrzębska-Więsek, M., Wróbel, D., Wesołowska, A. & Pawłowski, M. (2012). Bioorg. Med. Chem. pp. 1545–1556.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds