organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[2-({[1-(4-Chloro­phen­yl)-1H-pyrazol-3-yl]­­oxy}meth­yl)phen­yl]-N-meth­­oxy­hydrazinecarboxamide

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bNational Research Centre for Grapes, Pune 412 307, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 3 September 2012; accepted 6 September 2012; online 12 September 2012)

In the title compound, C18H18ClN5O3, the hydrazinecarboxamide N—N—C(O)—N unit is nearly planar [maximum deviation = 0.074 (2) Å] and is inclined at a dihedral angle of 57.43 (7)° with respect to the plane of the attached benzene ring. The chloro­phenyl group makes dihedral angles of 19.71 (7) and 34.07 (6)° with the pyrazole and benzene rings, respectively. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers that are further linked into chains along the a-axis direction by N—H⋯N hydrogen bonds. In addition, ππ stacking inter­actions are observed between benzene rings [centroid–centroid distance = 3.680 (1) Å].

Related literature

For the biological activity of pyraclostrobin (systematic name: methyl N-{2-[1-(4-chloro­phen­yl)-1H-pyrazol-3-yloxymeth­yl]phen­yl}), see: Esteve-Turrillas et al. (2011[Esteve-Turrillas, F. A., Mercader, J. V., Agulló, C., Abad-Somovilla, A. & Abad-Fuentes, A. (2011). J. Chromatogr. A, 30, 4902-4909.]); Mercader et al. (2008[Mercader, J. V., Suárez-Pantaleón, C., Agulló, C., Abad-Somovilla, A. & Abad-Fuentes, A. (2008). J. Agric. Food Chem. 56, 7682-7690.]); Patel et al. (2012[Patel, J. S., Gudmestad, N. C., Meinhardt, S. & Adhikari, T. B. (2012). Crop Prot. 34, 37-41.]). For a related structure, see: Attia et al. (2012[Attia, M. I., Ghabbour, H. A., El-Azzouny, A. A., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, o671.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18ClN5O3

  • Mr = 387.82

  • Monoclinic, P 21 /n

  • a = 7.6830 (4) Å

  • b = 9.1597 (4) Å

  • c = 26.1083 (12) Å

  • β = 91.683 (4)°

  • V = 1836.55 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.832, Tmax = 1.000

  • 27359 measured reflections

  • 3616 independent reflections

  • 2922 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.112

  • S = 1.12

  • 3616 reflections

  • 256 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H51⋯N6i 0.88 (2) 2.28 (2) 3.080 (3) 153 (2)
N6—H61⋯O1ii 0.86 (2) 2.34 (2) 3.120 (3) 152 (2)
N6—H62⋯N15ii 0.87 (3) 2.56 (3) 3.408 (3) 164 (2)
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyraclostrobin, which belongs to the latest generation of strobilurin family of fungicides, shows a broad antifungal activity spectrum and higher efficiency and security profiles than previous fungicides (Patel et al., 2012; Esteve-Turrillas et al., 2011; Mercader et al., 2008).

In the title compound all bond lengths and angles are normal and correspond to those observed in the related structure (Attia et al., 2012). The hydrazinecarboxamide moiety (N2,N5,N6/O1/C1) is nearly planar with a maximum deviation of 0.074 (2) Å at atom N6, and is inclined at an angle of 57.43 (7)° with the benzene ring (C7–C12). The dihedral angle between the benzene rings is 34.07 (6)°. Chlorophenyl group makes a dihedral angle of 19.71 (7)° with the pyrazole ring. In the crystal, N6—H61···O1 hydrogen bonds link pairs of molecules to form inversion dimers and dimers are connected via N6—H62···N15 and N5—H51···N6 hydrogen bonds to form chains along the a axis of the unit cell (Table 1, Fig. 2). The crystal structure is further stabilized by ππ interactions between the benzene ring (C19—C24) of the molecule at (x, y, z) and the benzene ring of an inversion related molecule at (- x, 1 - y, -z)[centroid separation = 3.680 (1) Å, interplanar spacing = 3.396 Å and centroid shift = 1.41 Å].

Related literature top

For the biological activity of pyraclostrobin (systematic name: methyl N-{2-[1-(4-chlorophenyl)-1H-pyrazol-3-yloxymethyl]phenyl}), see: Esteve-Turrillas et al. (2011); Mercader et al. (2008); Patel et al. (2012). For a related structure, see: Attia et al. (2012).

Experimental top

Pyraclostrobin (0.373 g, 0.001 mol) was dissolved in 5 ml methanol and to it hydrazine hydrate (0.1 g, 0.002 mol) solution was added and refluxed at 70°C for 1 h. The reaction mixture was then cooled and compound was separated out by removal of the solvent under reduced pressure. The product was dissolved in methanol and kept for slow evaporation of solvent to get crystals of the title compound (m.p. 398 K).

Refinement top

The N-bound H atoms were located in a difference Fourier map and freely refined. All other H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Pyraclostrobin, which belongs to the latest generation of strobilurin family of fungicides, shows a broad antifungal activity spectrum and higher efficiency and security profiles than previous fungicides (Patel et al., 2012; Esteve-Turrillas et al., 2011; Mercader et al., 2008).

In the title compound all bond lengths and angles are normal and correspond to those observed in the related structure (Attia et al., 2012). The hydrazinecarboxamide moiety (N2,N5,N6/O1/C1) is nearly planar with a maximum deviation of 0.074 (2) Å at atom N6, and is inclined at an angle of 57.43 (7)° with the benzene ring (C7–C12). The dihedral angle between the benzene rings is 34.07 (6)°. Chlorophenyl group makes a dihedral angle of 19.71 (7)° with the pyrazole ring. In the crystal, N6—H61···O1 hydrogen bonds link pairs of molecules to form inversion dimers and dimers are connected via N6—H62···N15 and N5—H51···N6 hydrogen bonds to form chains along the a axis of the unit cell (Table 1, Fig. 2). The crystal structure is further stabilized by ππ interactions between the benzene ring (C19—C24) of the molecule at (x, y, z) and the benzene ring of an inversion related molecule at (- x, 1 - y, -z)[centroid separation = 3.680 (1) Å, interplanar spacing = 3.396 Å and centroid shift = 1.41 Å].

For the biological activity of pyraclostrobin (systematic name: methyl N-{2-[1-(4-chlorophenyl)-1H-pyrazol-3-yloxymethyl]phenyl}), see: Esteve-Turrillas et al. (2011); Mercader et al. (2008); Patel et al. (2012). For a related structure, see: Attia et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with the atom-labeling scheme. The thermal ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed down the b axis. The dotted lines show intermolecular N—H···O and N—H···N hydrogen bonds.
N-[2-({[1-(4-Chlorophenyl)-1H-pyrazol-3-yl]oxy}methyl)phenyl]- N-methoxyhydrazinecarboxamide top
Crystal data top
C18H18ClN5O3F(000) = 808
Mr = 387.82Dx = 1.403 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 14322 reflections
a = 7.6830 (4) Åθ = 3.5–28.0°
b = 9.1597 (4) ŵ = 0.24 mm1
c = 26.1083 (12) ÅT = 293 K
β = 91.683 (4)°Plate, colourless
V = 1836.55 (15) Å30.3 × 0.2 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3616 independent reflections
Radiation source: fine-focus sealed tube2922 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scanh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1111
Tmin = 0.832, Tmax = 1.000l = 3232
27359 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0328P)2 + 1.1459P]
where P = (Fo2 + 2Fc2)/3
3616 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C18H18ClN5O3V = 1836.55 (15) Å3
Mr = 387.82Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6830 (4) ŵ = 0.24 mm1
b = 9.1597 (4) ÅT = 293 K
c = 26.1083 (12) Å0.3 × 0.2 × 0.2 mm
β = 91.683 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3616 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2922 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 1.000Rint = 0.037
27359 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.21 e Å3
3616 reflectionsΔρmin = 0.23 e Å3
256 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.85943 (10)0.62565 (8)0.12909 (3)0.0738 (2)
C10.2793 (3)0.0901 (2)0.06670 (7)0.0343 (4)
O10.43612 (17)0.10159 (17)0.05818 (5)0.0413 (4)
N20.2112 (2)0.0929 (2)0.11646 (6)0.0417 (4)
O30.03330 (18)0.13060 (17)0.12029 (6)0.0459 (4)
C40.0602 (3)0.0201 (4)0.14807 (11)0.0706 (8)
H4B0.18120.04590.15060.106*
H4A0.01480.01160.18180.106*
H4C0.04740.07140.13050.106*
N50.1626 (2)0.0688 (2)0.03072 (6)0.0394 (4)
N60.2138 (2)0.0411 (2)0.02087 (7)0.0408 (4)
C70.3083 (3)0.1280 (2)0.16026 (8)0.0404 (5)
C80.2614 (3)0.2474 (3)0.19022 (9)0.0556 (6)
H80.17030.30740.18060.067*
C90.3496 (4)0.2774 (3)0.23418 (10)0.0668 (8)
H90.31770.35710.25440.080*
C100.4843 (4)0.1895 (4)0.24800 (9)0.0648 (8)
H100.54560.21100.27720.078*
C110.5297 (3)0.0690 (3)0.21873 (8)0.0534 (6)
H110.62050.00940.22890.064*
C120.4424 (3)0.0350 (3)0.17444 (7)0.0409 (5)
C130.4906 (3)0.0949 (3)0.14239 (8)0.0453 (5)
H1310.38750.13350.12660.054*
H1320.57290.06620.11540.054*
O130.5663 (2)0.2046 (2)0.17350 (6)0.0566 (4)
C140.6187 (3)0.3245 (3)0.14708 (9)0.0480 (6)
N150.6511 (2)0.3234 (2)0.09724 (7)0.0454 (4)
N160.7001 (2)0.4639 (2)0.08603 (7)0.0464 (5)
C170.6965 (4)0.5466 (3)0.12880 (11)0.0653 (7)
H170.72430.64530.13050.078*
C180.6457 (4)0.4619 (3)0.16864 (11)0.0636 (7)
H180.63180.48890.20290.076*
C190.7379 (3)0.5041 (2)0.03455 (9)0.0425 (5)
C200.6784 (3)0.4182 (2)0.00479 (9)0.0425 (5)
H200.61310.33490.00270.051*
C210.7157 (3)0.4559 (2)0.05512 (9)0.0464 (5)
H210.67770.39750.08170.056*
C220.8103 (3)0.5816 (3)0.06560 (10)0.0504 (6)
C230.8675 (3)0.6674 (3)0.02681 (11)0.0584 (7)
H230.93050.75170.03440.070*
C240.8325 (3)0.6298 (3)0.02355 (11)0.0548 (6)
H240.87200.68820.04990.066*
H610.305 (3)0.013 (3)0.0208 (8)0.045 (7)*
H620.251 (3)0.123 (3)0.0344 (10)0.053 (7)*
H510.053 (3)0.051 (3)0.0385 (9)0.051 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0739 (5)0.0668 (5)0.0798 (5)0.0013 (4)0.0113 (4)0.0195 (4)
C10.0345 (11)0.0338 (10)0.0345 (10)0.0024 (8)0.0004 (8)0.0022 (8)
O10.0298 (7)0.0558 (9)0.0381 (8)0.0005 (7)0.0013 (6)0.0025 (7)
N20.0273 (8)0.0621 (12)0.0357 (9)0.0054 (8)0.0017 (7)0.0022 (8)
O30.0298 (7)0.0595 (10)0.0481 (9)0.0076 (7)0.0048 (6)0.0012 (7)
C40.0473 (15)0.100 (2)0.0640 (17)0.0128 (15)0.0123 (12)0.0124 (16)
N50.0324 (9)0.0516 (11)0.0342 (9)0.0018 (8)0.0015 (7)0.0015 (8)
N60.0385 (10)0.0487 (12)0.0350 (10)0.0009 (10)0.0010 (8)0.0004 (9)
C70.0348 (11)0.0544 (13)0.0315 (10)0.0046 (10)0.0055 (8)0.0015 (9)
C80.0558 (15)0.0615 (16)0.0491 (14)0.0044 (12)0.0036 (11)0.0096 (12)
C90.0723 (18)0.0781 (19)0.0495 (15)0.0057 (16)0.0056 (13)0.0237 (14)
C100.0602 (16)0.097 (2)0.0370 (13)0.0140 (16)0.0012 (11)0.0177 (14)
C110.0413 (12)0.0837 (19)0.0352 (11)0.0048 (12)0.0002 (9)0.0012 (12)
C120.0325 (10)0.0583 (13)0.0315 (10)0.0065 (10)0.0032 (8)0.0008 (10)
C130.0417 (12)0.0565 (14)0.0379 (11)0.0034 (10)0.0058 (9)0.0032 (10)
O130.0651 (11)0.0650 (11)0.0401 (9)0.0129 (9)0.0058 (8)0.0076 (8)
C140.0415 (12)0.0543 (14)0.0486 (13)0.0016 (10)0.0084 (10)0.0117 (11)
N150.0462 (11)0.0394 (10)0.0509 (11)0.0045 (8)0.0033 (8)0.0064 (8)
N160.0448 (11)0.0346 (10)0.0603 (12)0.0004 (8)0.0084 (9)0.0097 (9)
C170.0774 (19)0.0471 (15)0.0722 (18)0.0012 (13)0.0139 (15)0.0197 (14)
C180.0702 (17)0.0653 (17)0.0558 (16)0.0017 (14)0.0075 (13)0.0215 (14)
C190.0344 (11)0.0321 (11)0.0612 (14)0.0038 (9)0.0066 (10)0.0039 (10)
C200.0354 (11)0.0301 (10)0.0623 (14)0.0002 (9)0.0062 (10)0.0001 (10)
C210.0397 (12)0.0377 (12)0.0622 (15)0.0043 (10)0.0054 (10)0.0019 (11)
C220.0400 (12)0.0404 (12)0.0708 (16)0.0064 (10)0.0005 (11)0.0076 (12)
C230.0481 (14)0.0370 (13)0.090 (2)0.0070 (11)0.0034 (13)0.0050 (13)
C240.0499 (14)0.0357 (12)0.0793 (18)0.0051 (11)0.0109 (12)0.0061 (12)
Geometric parameters (Å, º) top
Cl1—C221.737 (3)C12—C131.495 (3)
C1—O11.223 (2)C13—O131.427 (3)
C1—N51.332 (3)C13—H1310.9700
C1—N21.387 (2)C13—H1320.9700
N2—O31.411 (2)O13—C141.352 (3)
N2—C71.420 (3)C14—N151.318 (3)
O3—C41.427 (3)C14—C181.397 (3)
C4—H4B0.9600N15—N161.370 (3)
C4—H4A0.9600N16—C171.349 (3)
C4—H4C0.9600N16—C191.415 (3)
N5—N61.415 (2)C17—C181.346 (4)
N5—H510.88 (2)C17—H170.9300
N6—H610.86 (2)C18—H180.9300
N6—H620.87 (3)C19—C201.382 (3)
C7—C81.386 (3)C19—C241.387 (3)
C7—C121.395 (3)C20—C211.380 (3)
C8—C91.378 (4)C20—H200.9300
C8—H80.9300C21—C221.385 (3)
C9—C101.368 (4)C21—H210.9300
C9—H90.9300C22—C231.364 (4)
C10—C111.382 (4)C23—C241.378 (4)
C10—H100.9300C23—H230.9300
C11—C121.389 (3)C24—H240.9300
C11—H110.9300
O1—C1—N5124.34 (18)O13—C13—H131109.7
O1—C1—N2120.78 (18)C12—C13—H131109.7
N5—C1—N2114.83 (17)O13—C13—H132109.7
C1—N2—O3114.16 (16)C12—C13—H132109.7
C1—N2—C7124.46 (16)H131—C13—H132108.2
O3—N2—C7114.70 (15)C14—O13—C13113.70 (17)
N2—O3—C4109.54 (17)N15—C14—O13122.9 (2)
O3—C4—H4B109.5N15—C14—C18112.3 (2)
O3—C4—H4A109.5O13—C14—C18124.9 (2)
H4B—C4—H4A109.5C14—N15—N16104.28 (18)
O3—C4—H4C109.5C17—N16—N15110.6 (2)
H4B—C4—H4C109.5C17—N16—C19129.7 (2)
H4A—C4—H4C109.5N15—N16—C19119.64 (17)
C1—N5—N6121.57 (17)C18—C17—N16108.3 (2)
C1—N5—H51121.9 (15)C18—C17—H17125.8
N6—N5—H51115.1 (15)N16—C17—H17125.8
N5—N6—H61107.8 (15)C17—C18—C14104.5 (2)
N5—N6—H62108.1 (16)C17—C18—H18127.7
H61—N6—H62104 (2)C14—C18—H18127.7
C8—C7—C12120.9 (2)C20—C19—C24120.1 (2)
C8—C7—N2120.0 (2)C20—C19—N16119.6 (2)
C12—C7—N2119.00 (19)C24—C19—N16120.3 (2)
C9—C8—C7120.1 (2)C21—C20—C19120.1 (2)
C9—C8—H8120.0C21—C20—H20120.0
C7—C8—H8120.0C19—C20—H20120.0
C10—C9—C8119.8 (3)C20—C21—C22119.3 (2)
C10—C9—H9120.1C20—C21—H21120.4
C8—C9—H9120.1C22—C21—H21120.4
C9—C10—C11120.4 (2)C23—C22—C21120.7 (2)
C9—C10—H10119.8C23—C22—Cl1120.6 (2)
C11—C10—H10119.8C21—C22—Cl1118.7 (2)
C10—C11—C12121.2 (2)C22—C23—C24120.4 (2)
C10—C11—H11119.4C22—C23—H23119.8
C12—C11—H11119.4C24—C23—H23119.8
C11—C12—C7117.6 (2)C23—C24—C19119.4 (2)
C11—C12—C13121.8 (2)C23—C24—H24120.3
C7—C12—C13120.64 (18)C19—C24—H24120.3
O13—C13—C12109.90 (17)
O1—C1—N2—O3158.54 (18)C13—O13—C14—N1521.2 (3)
N5—C1—N2—O323.9 (3)C13—O13—C14—C18159.2 (2)
O1—C1—N2—C78.8 (3)O13—C14—N15—N16179.8 (2)
N5—C1—N2—C7173.6 (2)C18—C14—N15—N160.1 (3)
C1—N2—O3—C4125.3 (2)C14—N15—N16—C170.0 (2)
C7—N2—O3—C481.9 (2)C14—N15—N16—C19177.28 (18)
O1—C1—N5—N67.2 (3)N15—N16—C17—C180.2 (3)
N2—C1—N5—N6170.22 (19)C19—N16—C17—C18177.1 (2)
C1—N2—C7—C8118.9 (2)N16—C17—C18—C140.3 (3)
O3—N2—C7—C830.7 (3)N15—C14—C18—C170.2 (3)
C1—N2—C7—C1265.6 (3)O13—C14—C18—C17179.9 (2)
O3—N2—C7—C12144.89 (18)C17—N16—C19—C20157.9 (2)
C12—C7—C8—C91.2 (4)N15—N16—C19—C2018.7 (3)
N2—C7—C8—C9176.6 (2)C17—N16—C19—C2421.4 (3)
C7—C8—C9—C100.5 (4)N15—N16—C19—C24161.9 (2)
C8—C9—C10—C111.5 (4)C24—C19—C20—C211.2 (3)
C9—C10—C11—C120.9 (4)N16—C19—C20—C21179.50 (19)
C10—C11—C12—C70.6 (3)C19—C20—C21—C221.2 (3)
C10—C11—C12—C13179.9 (2)C20—C21—C22—C230.4 (3)
C8—C7—C12—C111.7 (3)C20—C21—C22—Cl1178.87 (16)
N2—C7—C12—C11177.21 (19)C21—C22—C23—C240.3 (4)
C8—C7—C12—C13179.1 (2)Cl1—C22—C23—C24178.14 (19)
N2—C7—C12—C133.6 (3)C22—C23—C24—C190.2 (4)
C11—C12—C13—O1327.3 (3)C20—C19—C24—C230.5 (3)
C7—C12—C13—O13153.51 (19)N16—C19—C24—C23179.8 (2)
C12—C13—O13—C14178.05 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H51···N6i0.88 (2)2.28 (2)3.080 (3)153 (2)
N6—H61···O1ii0.86 (2)2.34 (2)3.120 (3)152 (2)
N6—H62···N15ii0.87 (3)2.56 (3)3.408 (3)164 (2)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H18ClN5O3
Mr387.82
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.6830 (4), 9.1597 (4), 26.1083 (12)
β (°) 91.683 (4)
V3)1836.55 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.832, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
27359, 3616, 2922
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.112, 1.12
No. of reflections3616
No. of parameters256
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H51···N6i0.88 (2)2.28 (2)3.080 (3)153 (2)
N6—H61···O1ii0.86 (2)2.34 (2)3.120 (3)152 (2)
N6—H62···N15ii0.87 (3)2.56 (3)3.408 (3)164 (2)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

References

First citationAttia, M. I., Ghabbour, H. A., El-Azzouny, A. A., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, o671.  CSD CrossRef IUCr Journals Google Scholar
First citationEsteve-Turrillas, F. A., Mercader, J. V., Agulló, C., Abad-Somovilla, A. & Abad-Fuentes, A. (2011). J. Chromatogr. A, 30, 4902–4909.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMercader, J. V., Suárez-Pantaleón, C., Agulló, C., Abad-Somovilla, A. & Abad-Fuentes, A. (2008). J. Agric. Food Chem. 56, 7682–7690.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPatel, J. S., Gudmestad, N. C., Meinhardt, S. & Adhikari, T. B. (2012). Crop Prot. 34, 37–41.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds