organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 6-(4-bromo­phen­yl)-4-(4-fluoro­phen­yl)-2-oxo­cyclo­hex-3-ene-1-carboxyl­ate

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574153, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 4 September 2012; accepted 6 September 2012; online 12 September 2012)

There are two independent mol­ecules in the asymmetric unit of the title compound, C21H18BrFO3, in which the dihedral angles between the fluoro­phenyl and bromo­phenyl groups are 77.0 (1) and 85.8 (1)°. In one of the mol­ecules, two methine C—H groups of the cyclo­hexene ring are disordered over two sets of sites in a 0.53 (2):0.47 (2) ratio. In both mol­ecules, the atoms of the ethyl group were refined as disordered over two sets of sites with occupancies of 0.67 (2):0.33 (2) and 0.63 (4):0.37 (4). The cyclo­hexene rings have slightly distorted sofa conformations in both mol­ecules. In the crystal, C—H⋯O inter­actions link mol­ecules into chains along the b axis.

Related literature

For background to the synthesis, see: Sreevidya et al. (2010[Sreevidya, T. V., Narayana, B. & Yathirajan, H. S. (2010). Cent. Eur. J. Chem. 8, 171-181.]); Padmavathi et al. (2000[Padmavathi, V., Reddy, B. J. M., Balaiah, A., Reddy, K. V. & Reddy, D. B. (2000). Molecules, 5, 1281-1286.]); Senguttuvan & Nagarajan (2010[Senguttuvan, S. & Nagarajan, S. (2010). Int. J. Chem. 2, 108-112.]); Butcher et al. (2011[Butcher, R. J., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1346-o1347.]). For related structures, see: Dutkiewicz et al. (2011a[Dutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011a). Acta Cryst. E67, o334-o335.],b[Dutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011b). Acta Cryst. E67, o336.],c[Dutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011c). Acta Cryst. E67, o445-o446.]); Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864-o865.]); Harrison et al. (2010[Harrison, W. T. A., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). Acta Cryst. E66, o2478.]). For ring conformations, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18BrFO3

  • Mr = 417.26

  • Triclinic, [P \overline 1]

  • a = 11.8886 (5) Å

  • b = 13.3481 (5) Å

  • c = 13.4128 (5) Å

  • α = 77.214 (3)°

  • β = 66.757 (4)°

  • γ = 87.856 (3)°

  • V = 1904.27 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.19 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.816, Tmax = 1.000

  • 27878 measured reflections

  • 7484 independent reflections

  • 4086 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.139

  • S = 1.02

  • 7484 reflections

  • 526 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5A—H5A1⋯O1Bi 0.97 2.58 3.388 (5) 141
C14A—H14A⋯O1Bi 0.93 2.58 3.445 (6) 154
C5B—H5B1⋯O1Aii 0.97 2.55 3.351 (4) 140
C5B—H5B2⋯O2Aiii 0.97 2.59 3.457 (5) 149
Symmetry codes: (i) x, y-1, z-1; (ii) x, y, z+1; (iii) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Michael addition of ethyl acetoacetate to chalcones yields 4,6-diaryl-2-oxo -cyclohex-3-ene-1-carboxylate derivatives (Sreevidya et al., 2010), which could be used as efficient synthons for building spiro compounds or as intermediates in the synthesis of isoxazoles, pyrazoles and quinazolines (Padmavathi et al., 2000; Senguttuvan & Nagarajan,2010; Butcher et al., 2011). The crystal structure of some cyclohexenone derivatives, viz., methyl 4,6-bis(4-fluorophenyl)-2-oxo cyclohex-3-ene-1-carboxylate (Fun et al., 2010), (1RS,6SR)-ethyl 4-(4-chlorophenyl)-6-(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate toluene hemisolvate (Dutkiewicz et al., 2011a), (1RS,6SR)-ethyl 4,6-bis(4-fluorophenyl)-2-oxocyclohex-3]-ene-1-carboxylate (Dutkiewicz et al., 2011b), (1RS,6SR)-ethyl 4-(2,4-dichlorophenyl)-6-(4-fluorophenyl) -2-oxocyclohex-3-ene-1-carboxylate (Dutkiewicz et al.,2011c) and ethyl 4-(2,4-dichlorophenyl)-6-(6-methoxy-2-naphthyl)-2-oxocyclohex-3-ene-1- carboxylate(Harrison et al., 2010) have been reported. In view of the importance of cyclohexenone derivatives, the title compound (I) was prepared and its crystal structure is reported.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those to those observed in the related structures (Dutkiewicz et al., 2011a,b,c; Fun et al., 2010; Harrison et al., 2010). The cyclohexene rings have slightly distorted sofa conformations in both the molecules [asymmetry parameters: ΔCs(C3A—C6A) = 4.11 for molecule A; ΔCs(C2B—C5B) = 4.58 /4.65 for molecule B (Duax & Norton, 1975)]. The fluorophenyl and bromophenyl rings are inclined to each other forming dihedral angles of 77.0 (1)° in molecule A and 85.8 (1)° in molecule B. In molecule B, C1 and C6 are disordered over two sites with a 0.53 (2):0.47 (2) ratio. The atoms of the ethyl group were refined as disordered over two sets of sites with occupancies of 0.67 (2)/0.33 (2) and 0.63 (4)/0.37 (4). In the crystal structure C—H···O hydrogen bonds create chains of molecules along the y direction (Table 1, Fig. 2).

Related literature top

For background to the synthesis, see: Sreevidya et al. (2010); Padmavathi et al. (2000); Senguttuvan & Nagarajan (2010); Butcher et al. (2011). For related structures, see: Dutkiewicz et al. (2011a,b,c); Fun et al. (2010); Harrison et al. (2010). For ring conformations, see: Duax & Norton (1975).

Experimental top

(2E)-3-(4-Bromophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (3.05 g, 0.01 mol) and ethyl acetoacetate (1.30 g, 0.01 mol) were refluxed for 8 h in 30 ml absolute alcohol in presence of 10% NaOH. The reaction mixture was cooled to room temperature and the precipitate obtained was filtered. Single crystals were grown by slow evaporation from absolute alcohol (m.p.= 403 K).

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.98 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Iin the refinement process restraints were imposed on C-C [1.52 (1) Å] and C-O [1.42 (1) Å] distances of the disordered molecular fragments.

Structure description top

Michael addition of ethyl acetoacetate to chalcones yields 4,6-diaryl-2-oxo -cyclohex-3-ene-1-carboxylate derivatives (Sreevidya et al., 2010), which could be used as efficient synthons for building spiro compounds or as intermediates in the synthesis of isoxazoles, pyrazoles and quinazolines (Padmavathi et al., 2000; Senguttuvan & Nagarajan,2010; Butcher et al., 2011). The crystal structure of some cyclohexenone derivatives, viz., methyl 4,6-bis(4-fluorophenyl)-2-oxo cyclohex-3-ene-1-carboxylate (Fun et al., 2010), (1RS,6SR)-ethyl 4-(4-chlorophenyl)-6-(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate toluene hemisolvate (Dutkiewicz et al., 2011a), (1RS,6SR)-ethyl 4,6-bis(4-fluorophenyl)-2-oxocyclohex-3]-ene-1-carboxylate (Dutkiewicz et al., 2011b), (1RS,6SR)-ethyl 4-(2,4-dichlorophenyl)-6-(4-fluorophenyl) -2-oxocyclohex-3-ene-1-carboxylate (Dutkiewicz et al.,2011c) and ethyl 4-(2,4-dichlorophenyl)-6-(6-methoxy-2-naphthyl)-2-oxocyclohex-3-ene-1- carboxylate(Harrison et al., 2010) have been reported. In view of the importance of cyclohexenone derivatives, the title compound (I) was prepared and its crystal structure is reported.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those to those observed in the related structures (Dutkiewicz et al., 2011a,b,c; Fun et al., 2010; Harrison et al., 2010). The cyclohexene rings have slightly distorted sofa conformations in both the molecules [asymmetry parameters: ΔCs(C3A—C6A) = 4.11 for molecule A; ΔCs(C2B—C5B) = 4.58 /4.65 for molecule B (Duax & Norton, 1975)]. The fluorophenyl and bromophenyl rings are inclined to each other forming dihedral angles of 77.0 (1)° in molecule A and 85.8 (1)° in molecule B. In molecule B, C1 and C6 are disordered over two sites with a 0.53 (2):0.47 (2) ratio. The atoms of the ethyl group were refined as disordered over two sets of sites with occupancies of 0.67 (2)/0.33 (2) and 0.63 (4)/0.37 (4). In the crystal structure C—H···O hydrogen bonds create chains of molecules along the y direction (Table 1, Fig. 2).

For background to the synthesis, see: Sreevidya et al. (2010); Padmavathi et al. (2000); Senguttuvan & Nagarajan (2010); Butcher et al. (2011). For related structures, see: Dutkiewicz et al. (2011a,b,c); Fun et al. (2010); Harrison et al. (2010). For ring conformations, see: Duax & Norton (1975).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed along the a axis. The broken lines show intermolecular C—H···O interactions.
Ethyl 6-(4-bromophenyl)-4-(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate top
Crystal data top
C21H18BrFO3Z = 4
Mr = 417.26F(000) = 848
Triclinic, P1Dx = 1.455 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.8886 (5) ÅCell parameters from 7575 reflections
b = 13.3481 (5) Åθ = 3.4–29.0°
c = 13.4128 (5) ŵ = 2.19 mm1
α = 77.214 (3)°T = 293 K
β = 66.757 (4)°Block, colourless
γ = 87.856 (3)°0.3 × 0.2 × 0.2 mm
V = 1904.27 (13) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
7484 independent reflections
Radiation source: fine-focus sealed tube4086 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1616
Tmin = 0.816, Tmax = 1.000l = 1616
27878 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.8556P]
where P = (Fo2 + 2Fc2)/3
7484 reflections(Δ/σ)max = 0.002
526 parametersΔρmax = 0.49 e Å3
8 restraintsΔρmin = 0.52 e Å3
Crystal data top
C21H18BrFO3γ = 87.856 (3)°
Mr = 417.26V = 1904.27 (13) Å3
Triclinic, P1Z = 4
a = 11.8886 (5) ÅMo Kα radiation
b = 13.3481 (5) ŵ = 2.19 mm1
c = 13.4128 (5) ÅT = 293 K
α = 77.214 (3)°0.3 × 0.2 × 0.2 mm
β = 66.757 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
7484 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
4086 reflections with I > 2σ(I)
Tmin = 0.816, Tmax = 1.000Rint = 0.049
27878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0548 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.02Δρmax = 0.49 e Å3
7484 reflectionsΔρmin = 0.52 e Å3
526 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.77287 (6)0.17028 (4)0.44941 (5)0.1056 (2)
Br20.75908 (7)0.51689 (5)0.54046 (6)0.1305 (3)
F10.3550 (3)0.2225 (2)0.2653 (2)0.1048 (10)
F21.0871 (3)0.6057 (2)1.3044 (3)0.1287 (12)
O1A0.7343 (3)0.4848 (2)0.0562 (3)0.0910 (10)
O2A0.8428 (3)0.3445 (3)0.2372 (3)0.1018 (12)
O3A0.6423 (3)0.3555 (3)0.2950 (3)0.0949 (11)
C1A0.7418 (3)0.3066 (3)0.1261 (3)0.0520 (9)
H1A0.82320.28720.08060.062*
C2A0.7087 (4)0.3978 (3)0.0551 (3)0.0598 (10)
C3A0.6499 (3)0.3773 (3)0.0146 (3)0.0577 (10)
H3A0.63520.43290.06260.069*
C4A0.6151 (3)0.2825 (3)0.0142 (3)0.0464 (9)
C5A0.6395 (3)0.1900 (3)0.0593 (3)0.0501 (9)
H5A10.71430.16120.01610.060*
H5A20.57300.13840.08440.060*
C6A0.6521 (3)0.2134 (3)0.1607 (3)0.0496 (9)
H6A0.57160.23260.20810.060*
C7A0.6846 (4)0.1189 (3)0.2291 (3)0.0507 (9)
C8A0.5945 (4)0.0566 (3)0.3168 (3)0.0676 (12)
H8A0.51330.07320.33430.081*
C9A0.6201 (5)0.0302 (4)0.3803 (4)0.0795 (14)
H9A0.55640.07240.43800.095*
C10A0.7393 (5)0.0543 (3)0.3583 (4)0.0652 (11)
C11A0.8305 (4)0.0051 (3)0.2706 (4)0.0759 (13)
H11A0.91170.01150.25340.091*
C12A0.8028 (4)0.0903 (3)0.2068 (4)0.0743 (13)
H12A0.86650.12990.14640.089*
C13A0.5498 (3)0.2674 (3)0.0844 (3)0.0497 (9)
C14A0.5490 (4)0.1739 (3)0.1135 (3)0.0630 (11)
H14A0.59260.12080.09080.076*
C15A0.4850 (4)0.1583 (4)0.1752 (4)0.0752 (13)
H15A0.48530.09560.19470.090*
C16A0.4208 (4)0.2374 (4)0.2072 (3)0.0703 (12)
C17A0.4188 (4)0.3300 (4)0.1807 (3)0.0704 (12)
H17A0.37520.38270.20390.084*
C18A0.4830 (4)0.3439 (3)0.1188 (3)0.0636 (11)
H18A0.48150.40680.09940.076*
C19A0.7507 (5)0.3369 (3)0.2249 (4)0.0639 (11)
O1B0.7894 (3)1.0258 (2)0.8969 (3)0.0813 (9)
O2B0.6448 (3)0.9414 (3)0.7664 (3)0.1059 (12)
O3B0.8394 (3)0.9849 (3)0.6646 (3)0.0984 (11)
C2B0.8113 (4)0.9352 (3)0.9076 (3)0.0615 (11)
C3B0.8562 (3)0.8817 (3)0.9891 (3)0.0524 (9)
H3B0.86480.91761.03800.063*
C4B0.8864 (3)0.7835 (3)0.9984 (3)0.0448 (9)
C5B0.8690 (3)0.7201 (3)0.9254 (3)0.0483 (9)
H5B10.79590.67490.96760.058*
H5B20.93850.67760.90200.058*
C7B0.8113 (5)0.7136 (3)0.7658 (4)0.0650 (12)
C8B0.9083 (5)0.6896 (3)0.6797 (4)0.0730 (13)
H8B0.98670.71390.66520.088*
C9B0.8935 (4)0.6307 (3)0.6137 (4)0.0737 (13)
H9B0.96140.61450.55600.088*
C10B0.7785 (5)0.5958 (3)0.6333 (4)0.0657 (12)
C11B0.6797 (4)0.6188 (4)0.7187 (4)0.0741 (12)
H11B0.60120.59520.73220.089*
C12B0.6965 (5)0.6773 (4)0.7847 (4)0.0791 (13)
H12B0.62880.69240.84340.095*
C13B0.9384 (3)0.7348 (3)1.0797 (3)0.0488 (9)
C14B0.9309 (4)0.6287 (3)1.1197 (3)0.0649 (11)
H14B0.89170.58661.09510.078*
C15B0.9806 (4)0.5851 (3)1.1950 (4)0.0834 (14)
H15B0.97520.51421.22140.100*
C16B1.0380 (4)0.6482 (4)1.2301 (4)0.0754 (13)
C17B1.0500 (4)0.7517 (3)1.1916 (4)0.0723 (12)
H17B1.09130.79261.21550.087*
C18B1.0003 (4)0.7949 (3)1.1171 (3)0.0599 (10)
H18B1.00790.86591.09070.072*
C19B0.7485 (5)0.9349 (3)0.7526 (4)0.0682 (12)
C1B0.825 (2)0.8778 (8)0.8156 (15)0.065 (4)0.53 (2)
H1B0.90430.91100.76220.078*0.53 (2)
C6B0.8566 (13)0.7901 (9)0.8195 (11)0.043 (2)0.53 (2)
H6B0.94310.80230.76820.051*0.53 (2)
C1D0.7572 (13)0.8634 (10)0.8570 (11)0.041 (3)0.47 (2)
H1D0.67120.85240.90940.049*0.47 (2)
C6D0.795 (2)0.7666 (9)0.8617 (14)0.051 (4)0.47 (2)
H6D0.71650.73140.91450.062*0.47 (2)
C20B0.825 (2)1.0523 (11)0.5699 (10)0.139 (6)0.670 (17)
H20C0.74811.03630.56690.167*0.670 (17)
H20D0.89171.04550.50100.167*0.670 (17)
C21B0.8291 (12)1.1592 (8)0.5877 (12)0.133 (6)0.670 (17)
H21A0.81391.20750.53030.199*0.670 (17)
H21B0.90831.17550.58520.199*0.670 (17)
H21C0.76731.16290.65910.199*0.670 (17)
C20D0.7758 (19)1.053 (2)0.608 (2)0.110 (10)0.330 (17)
H20E0.72691.09720.65500.132*0.330 (17)
H20F0.72131.01270.59180.132*0.330 (17)
C21D0.868 (2)1.117 (3)0.501 (2)0.160 (12)0.330 (17)
H21D0.82611.16100.46170.240*0.330 (17)
H21E0.91721.07230.45480.240*0.330 (17)
H21F0.92041.15790.51730.240*0.330 (17)
C20A0.659 (3)0.371 (4)0.3923 (19)0.098 (9)0.37 (4)
H20A0.69310.43980.37880.117*0.37 (4)
H20B0.71300.32150.41130.117*0.37 (4)
C21A0.533 (3)0.355 (5)0.484 (3)0.126 (14)0.37 (4)
H21G0.53540.37480.54810.190*0.37 (4)
H21H0.50500.28440.50380.190*0.37 (4)
H21I0.47720.39740.45950.190*0.37 (4)
C20C0.624 (2)0.4003 (15)0.3906 (11)0.099 (6)0.63 (4)
H20G0.55840.44780.40210.119*0.63 (4)
H20H0.69820.43560.38140.119*0.63 (4)
C21C0.589 (4)0.3070 (16)0.484 (2)0.150 (9)0.63 (4)
H21J0.58170.32640.55130.225*0.63 (4)
H21K0.65170.25830.46680.225*0.63 (4)
H21L0.51250.27650.49460.225*0.63 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1496 (6)0.0713 (4)0.1123 (5)0.0181 (3)0.0823 (4)0.0029 (3)
Br20.1991 (7)0.1141 (5)0.1657 (6)0.0466 (5)0.1374 (6)0.0866 (5)
F10.112 (2)0.141 (3)0.105 (2)0.0235 (19)0.0783 (18)0.0513 (19)
F20.194 (3)0.093 (2)0.156 (3)0.007 (2)0.145 (3)0.001 (2)
O1A0.130 (3)0.0419 (17)0.130 (3)0.0011 (18)0.080 (2)0.0210 (18)
O2A0.089 (2)0.124 (3)0.137 (3)0.021 (2)0.074 (2)0.064 (2)
O3A0.081 (2)0.133 (3)0.090 (2)0.005 (2)0.0300 (19)0.070 (2)
C1A0.054 (2)0.047 (2)0.063 (2)0.0052 (18)0.0262 (19)0.0231 (19)
C2A0.070 (3)0.039 (2)0.080 (3)0.005 (2)0.036 (2)0.019 (2)
C3A0.071 (3)0.039 (2)0.071 (3)0.0051 (19)0.039 (2)0.0081 (19)
C4A0.048 (2)0.045 (2)0.046 (2)0.0056 (17)0.0174 (17)0.0124 (17)
C5A0.061 (2)0.043 (2)0.056 (2)0.0043 (18)0.0306 (19)0.0149 (18)
C6A0.057 (2)0.045 (2)0.055 (2)0.0024 (18)0.0284 (19)0.0141 (18)
C7A0.061 (3)0.047 (2)0.056 (2)0.0033 (19)0.034 (2)0.0153 (19)
C8A0.057 (3)0.059 (3)0.074 (3)0.001 (2)0.022 (2)0.002 (2)
C9A0.085 (3)0.065 (3)0.074 (3)0.005 (3)0.027 (3)0.008 (2)
C10A0.088 (3)0.049 (2)0.073 (3)0.006 (2)0.052 (3)0.008 (2)
C11A0.066 (3)0.068 (3)0.095 (3)0.008 (2)0.042 (3)0.002 (3)
C12A0.064 (3)0.065 (3)0.079 (3)0.000 (2)0.026 (2)0.008 (2)
C13A0.056 (2)0.052 (2)0.046 (2)0.0076 (19)0.0226 (19)0.0148 (18)
C14A0.070 (3)0.065 (3)0.073 (3)0.020 (2)0.041 (2)0.030 (2)
C15A0.084 (3)0.084 (3)0.086 (3)0.019 (3)0.049 (3)0.048 (3)
C16A0.069 (3)0.100 (4)0.057 (3)0.011 (3)0.035 (2)0.030 (3)
C17A0.080 (3)0.078 (3)0.064 (3)0.021 (3)0.043 (2)0.012 (2)
C18A0.073 (3)0.056 (3)0.070 (3)0.009 (2)0.038 (2)0.012 (2)
C19A0.072 (3)0.054 (3)0.084 (3)0.008 (2)0.045 (3)0.026 (2)
O1B0.122 (3)0.0407 (17)0.115 (2)0.0241 (16)0.077 (2)0.0292 (17)
O2B0.089 (3)0.113 (3)0.129 (3)0.000 (2)0.058 (2)0.027 (2)
O3B0.100 (3)0.097 (3)0.095 (3)0.004 (2)0.040 (2)0.012 (2)
C2B0.081 (3)0.040 (2)0.077 (3)0.007 (2)0.043 (2)0.018 (2)
C3B0.062 (2)0.044 (2)0.062 (2)0.0060 (18)0.031 (2)0.0206 (19)
C4B0.043 (2)0.040 (2)0.054 (2)0.0004 (16)0.0208 (17)0.0122 (17)
C5B0.054 (2)0.038 (2)0.062 (2)0.0081 (17)0.0297 (19)0.0156 (18)
C7B0.106 (4)0.043 (2)0.076 (3)0.023 (2)0.063 (3)0.024 (2)
C8B0.083 (3)0.059 (3)0.098 (4)0.006 (2)0.055 (3)0.022 (3)
C9B0.083 (3)0.076 (3)0.075 (3)0.020 (3)0.038 (3)0.033 (3)
C10B0.099 (4)0.049 (2)0.081 (3)0.021 (2)0.065 (3)0.025 (2)
C11B0.078 (3)0.071 (3)0.085 (3)0.005 (3)0.043 (3)0.020 (3)
C12B0.097 (4)0.083 (3)0.069 (3)0.021 (3)0.037 (3)0.034 (3)
C13B0.054 (2)0.046 (2)0.051 (2)0.0056 (18)0.0234 (19)0.0145 (18)
C14B0.079 (3)0.048 (2)0.084 (3)0.001 (2)0.052 (2)0.010 (2)
C15B0.113 (4)0.052 (3)0.104 (4)0.002 (3)0.073 (3)0.001 (3)
C16B0.099 (3)0.063 (3)0.087 (3)0.004 (3)0.066 (3)0.005 (3)
C17B0.096 (3)0.061 (3)0.083 (3)0.001 (2)0.057 (3)0.019 (2)
C18B0.079 (3)0.047 (2)0.066 (3)0.004 (2)0.041 (2)0.013 (2)
C19B0.094 (4)0.047 (3)0.088 (4)0.012 (3)0.062 (3)0.017 (2)
C1B0.099 (12)0.029 (5)0.085 (9)0.008 (6)0.060 (9)0.002 (5)
C6B0.053 (6)0.028 (5)0.041 (6)0.012 (5)0.017 (5)0.001 (4)
C1D0.026 (5)0.040 (6)0.055 (7)0.002 (5)0.014 (5)0.009 (5)
C6D0.086 (11)0.021 (5)0.052 (8)0.012 (6)0.037 (8)0.005 (5)
C20B0.209 (18)0.122 (11)0.044 (10)0.031 (11)0.027 (11)0.030 (8)
C21B0.167 (10)0.097 (9)0.124 (12)0.018 (7)0.067 (9)0.017 (7)
C20D0.16 (2)0.113 (19)0.023 (12)0.050 (15)0.022 (15)0.026 (10)
C21D0.18 (2)0.19 (3)0.077 (17)0.01 (2)0.029 (15)0.006 (19)
C20A0.13 (2)0.095 (19)0.096 (18)0.045 (14)0.056 (13)0.068 (15)
C21A0.097 (19)0.20 (5)0.075 (15)0.010 (16)0.015 (13)0.06 (2)
C20C0.100 (13)0.122 (16)0.093 (10)0.001 (9)0.036 (10)0.064 (8)
C21C0.18 (3)0.17 (2)0.102 (11)0.035 (14)0.048 (16)0.025 (12)
Geometric parameters (Å, º) top
Br1—C10A1.884 (4)C5B—H5B10.9700
Br2—C10B1.881 (4)C5B—H5B20.9700
F1—C16A1.349 (4)C7B—C8B1.360 (6)
F2—C16B1.356 (4)C7B—C12B1.373 (6)
O1A—C2A1.217 (4)C7B—C6D1.547 (13)
O2A—C19A1.181 (5)C7B—C6B1.589 (11)
O3A—C19A1.315 (5)C8B—C9B1.368 (6)
O3A—C20A1.451 (10)C8B—H8B0.9300
O3A—C20C1.469 (8)C9B—C10B1.366 (6)
C1A—C19A1.512 (5)C9B—H9B0.9300
C1A—C2A1.513 (5)C10B—C11B1.361 (6)
C1A—C6A1.534 (5)C11B—C12B1.375 (6)
C1A—H1A0.9800C11B—H11B0.9300
C2A—C3A1.442 (5)C12B—H12B0.9300
C3A—C4A1.344 (5)C13B—C14B1.392 (5)
C3A—H3A0.9300C13B—C18B1.397 (5)
C4A—C13A1.484 (5)C14B—C15B1.376 (5)
C4A—C5A1.498 (5)C14B—H14B0.9300
C5A—C6A1.523 (5)C15B—C16B1.366 (6)
C5A—H5A10.9700C15B—H15B0.9300
C5A—H5A20.9700C16B—C17B1.356 (6)
C6A—C7A1.520 (5)C17B—C18B1.365 (5)
C6A—H6A0.9800C17B—H17B0.9300
C7A—C8A1.365 (5)C18B—H18B0.9300
C7A—C12A1.375 (5)C19B—C1B1.544 (13)
C8A—C9A1.379 (5)C19B—C1D1.548 (13)
C8A—H8A0.9300C1B—C6B1.213 (16)
C9A—C10A1.370 (6)C1B—H1B0.9800
C9A—H9A0.9300C6B—H6B0.9800
C10A—C11A1.355 (6)C1D—C6D1.350 (15)
C11A—C12A1.377 (5)C1D—H1D0.9800
C11A—H11A0.9300C6D—H6D0.9800
C12A—H12A0.9300C20B—C21B1.502 (10)
C13A—C18A1.380 (5)C20B—H20C0.9700
C13A—C14A1.389 (5)C20B—H20D0.9700
C14A—C15A1.375 (5)C21B—H21A0.9600
C14A—H14A0.9300C21B—H21B0.9600
C15A—C16A1.372 (6)C21B—H21C0.9600
C15A—H15A0.9300C20D—C21D1.514 (10)
C16A—C17A1.356 (6)C20D—H20E0.9700
C17A—C18A1.373 (5)C20D—H20F0.9700
C17A—H17A0.9300C21D—H21D0.9600
C18A—H18A0.9300C21D—H21E0.9600
O1B—C2B1.216 (4)C21D—H21F0.9600
O2B—C19B1.176 (5)C20A—C21A1.503 (10)
O3B—C19B1.306 (6)C20A—H20A0.9700
O3B—C20D1.437 (10)C20A—H20B0.9700
O3B—C20B1.449 (8)C21A—H21G0.9600
C2B—C3B1.442 (5)C21A—H21H0.9600
C2B—C1B1.546 (14)C21A—H21I0.9600
C2B—C1D1.571 (13)C20C—C21C1.495 (10)
C3B—C4B1.338 (5)C20C—H20G0.9700
C3B—H3B0.9300C20C—H20H0.9700
C4B—C13B1.476 (5)C21C—H21J0.9600
C4B—C5B1.503 (5)C21C—H21K0.9600
C5B—C6D1.482 (13)C21C—H21L0.9600
C5B—C6B1.574 (12)
C19A—O3A—C20A106.5 (12)C9B—C10B—Br2119.2 (4)
C19A—O3A—C20C123.6 (11)C10B—C11B—C12B119.6 (4)
C19A—C1A—C2A110.1 (3)C10B—C11B—H11B120.2
C19A—C1A—C6A112.4 (3)C12B—C11B—H11B120.2
C2A—C1A—C6A111.5 (3)C7B—C12B—C11B121.2 (4)
C19A—C1A—H1A107.5C7B—C12B—H12B119.4
C2A—C1A—H1A107.5C11B—C12B—H12B119.4
C6A—C1A—H1A107.5C14B—C13B—C18B117.5 (3)
O1A—C2A—C3A122.2 (4)C14B—C13B—C4B122.2 (3)
O1A—C2A—C1A120.0 (4)C18B—C13B—C4B120.4 (3)
C3A—C2A—C1A117.8 (3)C15B—C14B—C13B121.1 (4)
C4A—C3A—C2A123.9 (4)C15B—C14B—H14B119.5
C4A—C3A—H3A118.1C13B—C14B—H14B119.5
C2A—C3A—H3A118.1C16B—C15B—C14B118.7 (4)
C3A—C4A—C13A121.0 (3)C16B—C15B—H15B120.7
C3A—C4A—C5A120.3 (3)C14B—C15B—H15B120.7
C13A—C4A—C5A118.7 (3)C17B—C16B—F2118.6 (4)
C4A—C5A—C6A113.4 (3)C17B—C16B—C15B122.4 (4)
C4A—C5A—H5A1108.9F2—C16B—C15B119.0 (4)
C6A—C5A—H5A1108.9C16B—C17B—C18B118.9 (4)
C4A—C5A—H5A2108.9C16B—C17B—H17B120.6
C6A—C5A—H5A2108.9C18B—C17B—H17B120.6
H5A1—C5A—H5A2107.7C17B—C18B—C13B121.5 (4)
C7A—C6A—C5A111.7 (3)C17B—C18B—H18B119.2
C7A—C6A—C1A113.2 (3)C13B—C18B—H18B119.2
C5A—C6A—C1A110.7 (3)O2B—C19B—O3B124.2 (4)
C7A—C6A—H6A107.0O2B—C19B—C1B138.0 (10)
C5A—C6A—H6A107.0O3B—C19B—C1B97.8 (9)
C1A—C6A—H6A107.0O2B—C19B—C1D109.0 (7)
C8A—C7A—C12A116.4 (4)O3B—C19B—C1D126.7 (7)
C8A—C7A—C6A120.3 (4)C6B—C1B—C19B127.8 (9)
C12A—C7A—C6A123.3 (4)C6B—C1B—C2B122.4 (9)
C7A—C8A—C9A122.1 (4)C19B—C1B—C2B106.2 (10)
C7A—C8A—H8A119.0C6B—C1B—H1B96.3
C9A—C8A—H8A119.0C19B—C1B—H1B96.3
C10A—C9A—C8A120.0 (4)C2B—C1B—H1B96.3
C10A—C9A—H9A120.0C1B—C6B—C5B123.0 (9)
C8A—C9A—H9A120.0C1B—C6B—C7B121.9 (9)
C11A—C10A—C9A119.2 (4)C5B—C6B—C7B105.1 (8)
C11A—C10A—Br1121.4 (4)C1B—C6B—H6B100.5
C9A—C10A—Br1119.4 (3)C5B—C6B—H6B100.5
C10A—C11A—C12A119.8 (4)C7B—C6B—H6B100.5
C10A—C11A—H11A120.1C6D—C1D—C19B124.6 (10)
C12A—C11A—H11A120.1C6D—C1D—C2B117.0 (9)
C7A—C12A—C11A122.4 (4)C19B—C1D—C2B104.7 (9)
C7A—C12A—H12A118.8C6D—C1D—H1D102.4
C11A—C12A—H12A118.8C19B—C1D—H1D102.4
C18A—C13A—C14A117.5 (3)C2B—C1D—H1D102.4
C18A—C13A—C4A121.3 (4)C1D—C6D—C5B124.0 (9)
C14A—C13A—C4A121.1 (3)C1D—C6D—C7B119.6 (9)
C15A—C14A—C13A121.3 (4)C5B—C6D—C7B112.0 (10)
C15A—C14A—H14A119.4C1D—C6D—H6D97.0
C13A—C14A—H14A119.4C5B—C6D—H6D97.0
C16A—C15A—C14A118.4 (4)C7B—C6D—H6D97.0
C16A—C15A—H15A120.8O3B—C20B—C21B105.3 (9)
C14A—C15A—H15A120.8O3B—C20B—H20C110.7
F1—C16A—C17A118.5 (4)C21B—C20B—H20C110.7
F1—C16A—C15A119.1 (4)O3B—C20B—H20D110.7
C17A—C16A—C15A122.4 (4)C21B—C20B—H20D110.7
C16A—C17A—C18A118.3 (4)H20C—C20B—H20D108.8
C16A—C17A—H17A120.9C20B—C21B—H21A109.5
C18A—C17A—H17A120.9C20B—C21B—H21B109.5
C17A—C18A—C13A122.1 (4)H21A—C21B—H21B109.5
C17A—C18A—H18A119.0C20B—C21B—H21C109.5
C13A—C18A—H18A119.0H21A—C21B—H21C109.5
O2A—C19A—O3A124.3 (4)H21B—C21B—H21C109.5
O2A—C19A—C1A124.7 (5)O3B—C20D—C21D109.3 (18)
O3A—C19A—C1A111.0 (4)O3B—C20D—H20E109.8
C19B—O3B—C20D101.7 (9)C21D—C20D—H20E109.8
C19B—O3B—C20B124.3 (10)O3B—C20D—H20F109.8
O1B—C2B—C3B122.9 (4)C21D—C20D—H20F109.8
O1B—C2B—C1B120.9 (5)H20E—C20D—H20F108.3
C3B—C2B—C1B114.3 (5)C20D—C21D—H21D109.5
O1B—C2B—C1D120.2 (5)C20D—C21D—H21E109.5
C3B—C2B—C1D114.8 (5)H21D—C21D—H21E109.5
C4B—C3B—C2B123.8 (3)C20D—C21D—H21F109.5
C4B—C3B—H3B118.1H21D—C21D—H21F109.5
C2B—C3B—H3B118.1H21E—C21D—H21F109.5
C3B—C4B—C13B121.1 (3)O3A—C20A—C21A105 (2)
C3B—C4B—C5B120.6 (3)O3A—C20A—H20A110.6
C13B—C4B—C5B118.3 (3)C21A—C20A—H20A110.6
C6D—C5B—C4B115.2 (5)O3A—C20A—H20B110.6
C4B—C5B—C6B111.5 (5)C21A—C20A—H20B110.6
C6D—C5B—H5B182.3H20A—C20A—H20B108.8
C4B—C5B—H5B1109.3C20A—C21A—H21G109.5
C6B—C5B—H5B1109.3C20A—C21A—H21H109.5
C6D—C5B—H5B2127.5H21G—C21A—H21H109.5
C4B—C5B—H5B2109.3C20A—C21A—H21I109.5
C6B—C5B—H5B2109.3H21G—C21A—H21I109.5
H5B1—C5B—H5B2108.0H21H—C21A—H21I109.5
C8B—C7B—C12B117.9 (4)O3A—C20C—C21C101.9 (15)
C8B—C7B—C6D135.5 (9)O3A—C20C—H20G111.4
C12B—C7B—C6D106.4 (9)C21C—C20C—H20G111.4
C8B—C7B—C6B109.8 (7)O3A—C20C—H20H111.4
C12B—C7B—C6B132.1 (7)C21C—C20C—H20H111.4
C7B—C8B—C9B121.8 (4)H20G—C20C—H20H109.3
C7B—C8B—H8B119.1C20C—C21C—H21J109.5
C9B—C8B—H8B119.1C20C—C21C—H21K109.5
C10B—C9B—C8B119.5 (4)H21J—C21C—H21K109.5
C10B—C9B—H9B120.2C20C—C21C—H21L109.5
C8B—C9B—H9B120.2H21J—C21C—H21L109.5
C11B—C10B—C9B120.0 (4)H21K—C21C—H21L109.5
C11B—C10B—Br2120.9 (4)
C19A—C1A—C2A—O1A25.6 (6)C18B—C13B—C14B—C15B1.3 (6)
C6A—C1A—C2A—O1A151.1 (4)C4B—C13B—C14B—C15B179.7 (4)
C19A—C1A—C2A—C3A156.1 (4)C13B—C14B—C15B—C16B0.1 (7)
C6A—C1A—C2A—C3A30.5 (5)C14B—C15B—C16B—C17B1.5 (8)
O1A—C2A—C3A—C4A176.8 (4)C14B—C15B—C16B—F2180.0 (4)
C1A—C2A—C3A—C4A4.9 (6)F2—C16B—C17B—C18B179.8 (4)
C2A—C3A—C4A—C13A177.2 (3)C15B—C16B—C17B—C18B1.7 (8)
C2A—C3A—C4A—C5A1.6 (6)C16B—C17B—C18B—C13B0.3 (7)
C3A—C4A—C5A—C6A24.7 (5)C14B—C13B—C18B—C17B1.1 (6)
C13A—C4A—C5A—C6A154.1 (3)C4B—C13B—C18B—C17B179.5 (4)
C4A—C5A—C6A—C7A176.5 (3)C20D—O3B—C19B—O2B7.7 (17)
C4A—C5A—C6A—C1A49.5 (4)C20B—O3B—C19B—O2B2.4 (10)
C19A—C1A—C6A—C7A57.6 (4)C20D—O3B—C19B—C1B171.8 (17)
C2A—C1A—C6A—C7A178.2 (3)C20B—O3B—C19B—C1B178.1 (9)
C19A—C1A—C6A—C5A176.2 (3)C20D—O3B—C19B—C1D168.8 (17)
C2A—C1A—C6A—C5A52.0 (4)C20B—O3B—C19B—C1D178.9 (9)
C5A—C6A—C7A—C8A93.4 (4)O2B—C19B—C1B—C6B82 (2)
C1A—C6A—C7A—C8A141.0 (4)O3B—C19B—C1B—C6B98.4 (16)
C5A—C6A—C7A—C12A85.6 (5)C1D—C19B—C1B—C6B86.5 (17)
C1A—C6A—C7A—C12A40.0 (5)O2B—C19B—C1B—C2B76.4 (12)
C12A—C7A—C8A—C9A0.3 (6)O3B—C19B—C1B—C2B103.0 (11)
C6A—C7A—C8A—C9A179.4 (4)C1D—C19B—C1B—C2B72 (2)
C7A—C8A—C9A—C10A2.1 (7)O1B—C2B—C1B—C6B173.6 (10)
C8A—C9A—C10A—C11A3.2 (7)C3B—C2B—C1B—C6B8.5 (18)
C8A—C9A—C10A—Br1177.6 (3)C1D—C2B—C1B—C6B89.1 (16)
C9A—C10A—C11A—C12A1.8 (7)O1B—C2B—C1B—C19B26.3 (16)
Br1—C10A—C11A—C12A178.9 (4)C3B—C2B—C1B—C19B168.5 (8)
C8A—C7A—C12A—C11A1.7 (7)C1D—C2B—C1B—C19B71 (2)
C6A—C7A—C12A—C11A179.2 (4)C19B—C1B—C6B—C5B146.3 (18)
C10A—C11A—C12A—C7A0.7 (7)C2B—C1B—C6B—C5B9.1 (18)
C3A—C4A—C13A—C18A24.5 (5)C19B—C1B—C6B—C7B6 (2)
C5A—C4A—C13A—C18A154.3 (4)C2B—C1B—C6B—C7B149.5 (16)
C3A—C4A—C13A—C14A158.6 (4)C6D—C5B—C6B—C1B81.1 (17)
C5A—C4A—C13A—C14A22.6 (5)C4B—C5B—C6B—C1B22.5 (12)
C18A—C13A—C14A—C15A0.6 (6)C6D—C5B—C6B—C7B64.7 (15)
C4A—C13A—C14A—C15A177.6 (4)C4B—C5B—C6B—C7B168.4 (5)
C13A—C14A—C15A—C16A0.4 (7)C8B—C7B—C6B—C1B114.5 (11)
C14A—C15A—C16A—F1178.3 (4)C12B—C7B—C6B—C1B59.3 (13)
C14A—C15A—C16A—C17A0.3 (7)C6D—C7B—C6B—C1B84.3 (18)
F1—C16A—C17A—C18A178.1 (4)C8B—C7B—C6B—C5B99.1 (8)
C15A—C16A—C17A—C18A0.5 (7)C12B—C7B—C6B—C5B87.0 (8)
C16A—C17A—C18A—C13A0.8 (6)C6D—C7B—C6B—C5B62.0 (15)
C14A—C13A—C18A—C17A0.8 (6)O2B—C19B—C1D—C6D106.5 (10)
C4A—C13A—C18A—C17A177.8 (4)O3B—C19B—C1D—C6D76.5 (12)
C20A—O3A—C19A—O2A8 (2)C1B—C19B—C1D—C6D70.4 (15)
C20C—O3A—C19A—O2A7.8 (12)O2B—C19B—C1D—C2B114.7 (7)
C20A—O3A—C19A—C1A173.0 (19)O3B—C19B—C1D—C2B62.3 (9)
C20C—O3A—C19A—C1A171.1 (10)C1B—C19B—C1D—C2B68.4 (16)
C2A—C1A—C19A—O2A110.4 (5)O1B—C2B—C1D—C6D173.3 (9)
C6A—C1A—C19A—O2A124.6 (5)C3B—C2B—C1D—C6D22.7 (11)
C2A—C1A—C19A—O3A68.6 (4)C1B—C2B—C1D—C6D73.2 (15)
C6A—C1A—C19A—O3A56.4 (5)O1B—C2B—C1D—C19B30.8 (10)
O1B—C2B—C3B—C4B176.6 (4)C3B—C2B—C1D—C19B165.3 (5)
C1B—C2B—C3B—C4B11.8 (11)C1B—C2B—C1D—C19B69.4 (16)
C1D—C2B—C3B—C4B19.9 (8)C19B—C1D—C6D—C5B143.6 (17)
C2B—C3B—C4B—C13B176.6 (3)C2B—C1D—C6D—C5B9.3 (18)
C2B—C3B—C4B—C5B2.9 (6)C19B—C1D—C6D—C7B10.9 (17)
C3B—C4B—C5B—C6D11.8 (11)C2B—C1D—C6D—C7B145.3 (15)
C13B—C4B—C5B—C6D168.8 (10)C4B—C5B—C6D—C1D7.8 (18)
C3B—C4B—C5B—C6B18.8 (7)C6B—C5B—C6D—C1D81.0 (16)
C13B—C4B—C5B—C6B160.7 (6)C4B—C5B—C6D—C7B164.0 (8)
C12B—C7B—C8B—C9B0.4 (6)C6B—C5B—C6D—C7B75 (2)
C6D—C7B—C8B—C9B172.3 (7)C8B—C7B—C6D—C1D105.7 (13)
C6B—C7B—C8B—C9B175.3 (5)C12B—C7B—C6D—C1D81.0 (13)
C7B—C8B—C9B—C10B0.9 (7)C6B—C7B—C6D—C1D79.9 (14)
C8B—C9B—C10B—C11B0.7 (6)C8B—C7B—C6D—C5B51.8 (16)
C8B—C9B—C10B—Br2178.9 (3)C12B—C7B—C6D—C5B121.6 (12)
C9B—C10B—C11B—C12B0.1 (7)C6B—C7B—C6D—C5B78 (2)
Br2—C10B—C11B—C12B179.6 (3)C19B—O3B—C20B—C21B98.4 (16)
C8B—C7B—C12B—C11B0.3 (7)C20D—O3B—C20B—C21B74 (4)
C6D—C7B—C12B—C11B175.0 (5)C19B—O3B—C20D—C21D179 (3)
C6B—C7B—C12B—C11B173.2 (7)C20B—O3B—C20D—C21D20 (3)
C10B—C11B—C12B—C7B0.5 (7)C19A—O3A—C20A—C21A161 (4)
C3B—C4B—C13B—C14B156.9 (4)C20C—O3A—C20A—C21A56 (5)
C5B—C4B—C13B—C14B23.6 (5)C19A—O3A—C20C—C21C99 (2)
C3B—C4B—C13B—C18B24.7 (5)C20A—O3A—C20C—C21C55 (5)
C5B—C4B—C13B—C18B154.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5A—H5A1···O1Bi0.972.583.388 (5)141
C14A—H14A···O1Bi0.932.583.445 (6)154
C5B—H5B1···O1Aii0.972.553.351 (4)140
C5B—H5B2···O2Aiii0.972.593.457 (5)149
Symmetry codes: (i) x, y1, z1; (ii) x, y, z+1; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H18BrFO3
Mr417.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.8886 (5), 13.3481 (5), 13.4128 (5)
α, β, γ (°)77.214 (3), 66.757 (4), 87.856 (3)
V3)1904.27 (13)
Z4
Radiation typeMo Kα
µ (mm1)2.19
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.816, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
27878, 7484, 4086
Rint0.049
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.139, 1.02
No. of reflections7484
No. of parameters526
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.52

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5A—H5A1···O1Bi0.972.583.388 (5)141
C14A—H14A···O1Bi0.932.583.445 (6)154
C5B—H5B1···O1Aii0.972.553.351 (4)140
C5B—H5B2···O2Aiii0.972.593.457 (5)149
Symmetry codes: (i) x, y1, z1; (ii) x, y, z+1; (iii) x+2, y+1, z+1.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. BN thanks the UGC for financial assistance through the BSR one-time grant for the purchase of chemicals. MS thanks the DST for providing financial help for the research work through an INSPIRE Fellowship.

References

First citationButcher, R. J., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1346–o1347.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.  Google Scholar
First citationDutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011a). Acta Cryst. E67, o334–o335.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011b). Acta Cryst. E67, o336.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011c). Acta Cryst. E67, o445–o446.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). Acta Cryst. E66, o2478.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPadmavathi, V., Reddy, B. J. M., Balaiah, A., Reddy, K. V. & Reddy, D. B. (2000). Molecules, 5, 1281–1286.  Web of Science CrossRef CAS Google Scholar
First citationSenguttuvan, S. & Nagarajan, S. (2010). Int. J. Chem. 2, 108–112.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreevidya, T. V., Narayana, B. & Yathirajan, H. S. (2010). Cent. Eur. J. Chem. 8, 171–181.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds