metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2.2.2-Cryptand)potassium bis­­(cyanato-κN)(5,10,15,20-tetra­phenyl­por­phy­rin­ato-κ4N)cobaltate(III) chloro­benzene hemisolvate

aUniversité de Monastir, Faculté des Sciences de Monastir, Avenue de l'Environnement, 5019 Monastir, Tunisia, and bLaboratoire de Chimie de Coordination, CNRS UPR 8241, 205 route de Narbonne, 31077 Toulouse, Cedex 04, France
*Correspondence e-mail: hnasri1@gmail.com

(Received 17 July 2012; accepted 6 September 2012; online 15 September 2012)

In the title compound, [K(C18H36N2O6)][Co(NCO)2(C44H28N4)]·0.5C6H5Cl or [K(2,2,2-crypt)+][CoIII(NCO)2(TPP)]·0.5C6H5Cl, the CoIII ion is octa­hedrally coordin­ated by two axial N-bonded NCO anions and four pyrrole N atoms of the porphyrin. There is a major ruffling distortion of the porphyrin: the dihedral angles between trans pyrrole rings are 34.32 (14) and 34.72 (14)°. The potassium ion is coordinated by the six O atoms and two N atoms of the cryptand-222 mol­ecule and a weak K—O [3.407 (3) Å] bond to one of the cyanate O atoms also occurs. The packing also features weak C—H⋯O and C—H⋯π inter­actions. The contribution to the scattering of the disordered chloro­benzene solvent mol­ecules was removed with the SQUEEZE function in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155].

Related literature

For general background to cobalt and iron porphyrin species and their applications, see: Sanders et al. (2000[Sanders, J. K. M., Bampos, N., Clyde-Watson, Z., Kim, H.-J., Mak, C. C. & Webb, J. S. (2000). The Porphyrin Handbook, Vol. 3, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1-200. San Diego: Academic Press.]); Dhifet et al. (2010[Dhifet, M., Belkhiria, M. S., Daran, J.-C., Schulz, C. E. & Nasri, H. (2010). Inorg. Chim. Acta, 363, 3208-3213.]); Mansour et al. (2010[Mansour, A., Belkhiria, M. S., Daran, J.-C. & Nasri, H. (2010). Acta Cryst. E66, m509-m510.]). For the synthesis of the [CoII(TPP)] complex, see: Madure & Scheidt (1976[Madure, P. & Scheidt, W. R. (1976). Inorg. Chem. 15, 3182-3184.]). For the synthesis of CoII tetra­phenyl­porphyrins, see: Iimuna et al. (1988[Iimuna, Y., Sakurai, T. & Yamamoto, K. (1988). Bull. Chem. Soc. Jpn, 61, 821-826.]). For refinement details concerning the use of SQUEEZE, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). For related structures, see: Englert et al. (2002[Englert, U., Haring, A., Hu, C. & Kalf, I. (2002). Z. Anorg. Allg. Chem. 628, 1173-1179.]); Bresciani-Pahor et al. (1990[Bresciani-Pahor, N., Zangrando, E. & Antolini, L. (1990). Acta Cryst. C46, 1793-1795.]); Ali et al. (2011[Ali, B. B., Belkhiria, M. S., Giorgi, M. & Nasri, H. (2011). Open J. Inorg. Chem. 1, 39-46.]); Konarev et al. (2003[Konarev, D., Khasanov, S. S., Saito, G., Lybovskaya, R. N., Yoshida, Y. & Otsuka, A. (2003). Chem. Eur. J. 9, 3837-3848.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For further details of geometric distortions in related compounds, see: Jentzen et al. (1997[Jentzen, W., Song, X. & Shelnutt, J. A. (1997). J. Phys. Chem. B, 101, 1684-1699.]).

[Scheme 1]

Experimental

Crystal data
  • [K(C18H36N2O6)][Co(NCO)2(C44H28N4)]·0.5C6H5Cl

  • Mr = 1227.63

  • Monoclinic, P 21 /n

  • a = 14.7716 (5) Å

  • b = 23.7255 (9) Å

  • c = 18.0458 (7) Å

  • β = 90.325 (3)°

  • V = 6324.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 180 K

  • 0.45 × 0.37 × 0.36 mm

Data collection
  • Agilent Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.770, Tmax = 1.000

  • 32355 measured reflections

  • 11118 independent reflections

  • 8660 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.122

  • S = 1.08

  • 11118 reflections

  • 744 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N6 1.905 (2)
Co1—N5 1.919 (2)
Co1—N1 1.9454 (19)
Co1—N4 1.947 (2)
Co1—N2 1.952 (2)
Co1—N3 1.9567 (19)

Table 2
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the N2/C6–C9 and N4/C16–C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C50—H50A⋯O2i 0.97 2.59 3.555 (4) 171
C57—H57BCg2 0.97 2.83 3.783 (4) 168
C60—H60BCg4ii 0.97 2.60 3.437 (3) 145
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{3\over 2}}, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Iron and cobalt porphyrin complexes have been used for many decades as biomimetic models for hemoproteines. These species are actually used in a variety of others domains (i.e.; catalysis, bio-sensors). Several iron and cobalt metalloporphyrins have been synthesized and characterized by our group (Dhifet et al., 2010; Mansour et al., 2010).

We report herein on the molecular structure of the title compound for which the asymmetric unit contains one ion complex [CoIII(TPP)(NCO)2]-, the [K(2,2,2-crypt)]+ counterion and one half chlorobenzene solvent. For (I), the cobalt is coordinated to the four N atoms of the porphyrin ring and the N atoms from the two NCO- trans axial ligands (Fig.1). The two axial Co–N(NCO) bond lengths for (I) [1.905 (2) and 1.919 (2) Å] are in the range [1.898 (6) - 1.936 (7) Å] found for six-coordinated Co(III) complexes (CSD refcodes IFUVOU; Englert et al., 2002 and KEYMEC; Bresciani-Pahor et al., 1990) (CSD, version 5.32; Allen, 2002).

As seen in figure 1, the oxygen atom O2 of one cyanato-N axial ligand is weakly bonded to the potassium of the counterion [K(2,2,2-crypt)]+ with a distance of 3.407 (3) Å. The average K–O(2,2,2-crypt) distance is 2.831 (2) Å and the average K–N(2,2,2-crypt) bond length is 3.016 (2) Å.The porphyrin core is far from being planar, with deviations of atoms from the least-squares plane of CoN4C20, ranging from -0.586 (2) to 0.607 (2) Å. It is noteworthy the relationship between the ruffling of the porphyrin core and the mean equatorial Co—Np distance; the CoN4C20 moiety is ruffled as the Co—Np distance decreases, (Iimuna et al., 1988). Thus, the practically planar porphyrin core of the ion complex [Co(OEP)(NO2)2]- (OEP is the octaethylporphyrin) (Ali et al., 2011) presents a Co—Np of 1.988 (2) Å while for the very ruffled structure[CoII(TPP)] (Konarev et al., 2003) the Co—Np bond length value is 1.923 (4) Å. Therefore, the Co—Np distance of (I) [1.950 (2) Å] is normal for a cobalt ruffled TPP complex. On the other hand Normal Structural Decomposition (NSD) calculations (Jentzen, et al.,1997) confirm the unusually important deformation of the porphyrin core with a major ruffling distortions of 78%.

The crystal packing features weak C—H······π interactions (Table 1 and Fig. 2)

Related literature top

For general background to cobalt and iron porphyrin species and their applications, see: Sanders et al. (2000); Dhifet et al. (2010); Mansour et al. (2010). For the synthesis of the [CoII(TPP)] complex, see: Madure & Scheidt (1976). For the synthesis of CoIII tetraphenylporphyrins, see: Iimuna et al. (1988). For refinement details concerning the use of SQUEEZE, see: Spek (2009). For related structures, see: Englert et al. (2002); Bresciani-Pahor et al. (1990); Ali et al. (2011); Konarev et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002). For further details of geometric distortions in related compounds, see: Jentzen et al. (1997).

Experimental top

The reaction of the [CoII(TPP)] complex (Madure & Scheidt, 1976) (15 mg, 0.022 mmol) with an excess of potasium cyanate KOCN (50 mg, 0.62 mmol) and cryptand-222 (50 mg, 0.13 mmol) in chlorobenzene (4 ml) under air overnight give a red-brown solution. Dark purple prisms of the title complex were obtained by diffusion of hexanes through the chlorobenzene solution.

Refinement top

Hydrogen atoms were placed using assumed geometrically idealized positions (C—H aromatic = 0.95 Å) and constrained to ride on their parent atoms, with U(H) = 1.2 Ueq(C).

There are four cavities of 224 Å3 each. PLATON estimated that each cavity contains 33 electrons which may correspond to a half solvent molecule of chlorobenzene by asymmetric unit as suggested by chemical analyses. These residual electron density was difficult to modelize and therefore, the SQUEEZE function of PLATON (Spek, 2009) was used to eliminate the contribution of the electron density in the solvent region from the intensity data, and the solvent-free model was employed for the final refinement.

Structure description top

Iron and cobalt porphyrin complexes have been used for many decades as biomimetic models for hemoproteines. These species are actually used in a variety of others domains (i.e.; catalysis, bio-sensors). Several iron and cobalt metalloporphyrins have been synthesized and characterized by our group (Dhifet et al., 2010; Mansour et al., 2010).

We report herein on the molecular structure of the title compound for which the asymmetric unit contains one ion complex [CoIII(TPP)(NCO)2]-, the [K(2,2,2-crypt)]+ counterion and one half chlorobenzene solvent. For (I), the cobalt is coordinated to the four N atoms of the porphyrin ring and the N atoms from the two NCO- trans axial ligands (Fig.1). The two axial Co–N(NCO) bond lengths for (I) [1.905 (2) and 1.919 (2) Å] are in the range [1.898 (6) - 1.936 (7) Å] found for six-coordinated Co(III) complexes (CSD refcodes IFUVOU; Englert et al., 2002 and KEYMEC; Bresciani-Pahor et al., 1990) (CSD, version 5.32; Allen, 2002).

As seen in figure 1, the oxygen atom O2 of one cyanato-N axial ligand is weakly bonded to the potassium of the counterion [K(2,2,2-crypt)]+ with a distance of 3.407 (3) Å. The average K–O(2,2,2-crypt) distance is 2.831 (2) Å and the average K–N(2,2,2-crypt) bond length is 3.016 (2) Å.The porphyrin core is far from being planar, with deviations of atoms from the least-squares plane of CoN4C20, ranging from -0.586 (2) to 0.607 (2) Å. It is noteworthy the relationship between the ruffling of the porphyrin core and the mean equatorial Co—Np distance; the CoN4C20 moiety is ruffled as the Co—Np distance decreases, (Iimuna et al., 1988). Thus, the practically planar porphyrin core of the ion complex [Co(OEP)(NO2)2]- (OEP is the octaethylporphyrin) (Ali et al., 2011) presents a Co—Np of 1.988 (2) Å while for the very ruffled structure[CoII(TPP)] (Konarev et al., 2003) the Co—Np bond length value is 1.923 (4) Å. Therefore, the Co—Np distance of (I) [1.950 (2) Å] is normal for a cobalt ruffled TPP complex. On the other hand Normal Structural Decomposition (NSD) calculations (Jentzen, et al.,1997) confirm the unusually important deformation of the porphyrin core with a major ruffling distortions of 78%.

The crystal packing features weak C—H······π interactions (Table 1 and Fig. 2)

For general background to cobalt and iron porphyrin species and their applications, see: Sanders et al. (2000); Dhifet et al. (2010); Mansour et al. (2010). For the synthesis of the [CoII(TPP)] complex, see: Madure & Scheidt (1976). For the synthesis of CoIII tetraphenylporphyrins, see: Iimuna et al. (1988). For refinement details concerning the use of SQUEEZE, see: Spek (2009). For related structures, see: Englert et al. (2002); Bresciani-Pahor et al. (1990); Ali et al. (2011); Konarev et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002). For further details of geometric distortions in related compounds, see: Jentzen et al. (1997).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I). Displacement ellipsoids are drawn at 50% and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A unit-cell packing of (I). The H atoms have been omitted for clarity.
(Cryptand-222)potassium bis(cyanato-κN)(5,10,15,20-tetraphenylporphyrinato-κ4N) cobaltate(III) chlorobenzene hemisolvate top
Crystal data top
[K(C18H36N2O6)][Co(NCO)2(C44H28N4)]·0.5C6H5ClF(000) = 2572
Mr = 1227.63Dx = 1.289 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 15544 reflections
a = 14.7716 (5) Åθ = 2.9–28.5°
b = 23.7255 (9) ŵ = 0.42 mm1
c = 18.0458 (7) ÅT = 180 K
β = 90.325 (3)°Prism, dark purple
V = 6324.3 (4) Å30.45 × 0.37 × 0.36 mm
Z = 4
Data collection top
Agilent Xcalibur Sapphire2
diffractometer
11118 independent reflections
Radiation source: fine-focus sealed tube8660 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 8.2632 pixels mm-1θmax = 25.4°, θmin = 2.9°
ω scansh = 1717
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2828
Tmin = 0.770, Tmax = 1.000l = 2121
32355 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.059P)2 + 2.0072P]
where P = (Fo2 + 2Fc2)/3
11118 reflections(Δ/σ)max = 0.001
744 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[K(C18H36N2O6)][Co(NCO)2(C44H28N4)]·0.5C6H5ClV = 6324.3 (4) Å3
Mr = 1227.63Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.7716 (5) ŵ = 0.42 mm1
b = 23.7255 (9) ÅT = 180 K
c = 18.0458 (7) Å0.45 × 0.37 × 0.36 mm
β = 90.325 (3)°
Data collection top
Agilent Xcalibur Sapphire2
diffractometer
11118 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
8660 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.041
32355 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.08Δρmax = 0.48 e Å3
11118 reflectionsΔρmin = 0.44 e Å3
744 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F\^2\^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F\^2\^, conventional R-factors R are based on F, with F set to zero for negative F\^2\^. The threshold expression of F\^2\^ > σ(F\^2\^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F\^2\^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.41746 (2)0.303450 (12)0.765205 (17)0.01882 (9)
C10.47891 (17)0.39649 (9)0.86413 (13)0.0235 (5)
C20.44331 (18)0.43899 (10)0.91286 (14)0.0276 (6)
H20.47670.46320.94290.033*
C30.35298 (19)0.43709 (10)0.90664 (14)0.0294 (6)
H30.31210.46050.93060.035*
C40.33076 (17)0.39238 (9)0.85634 (13)0.0230 (5)
C50.24276 (17)0.37482 (10)0.84014 (13)0.0253 (5)
C60.22553 (17)0.32218 (10)0.80872 (13)0.0244 (5)
C70.13941 (18)0.29475 (11)0.80660 (14)0.0299 (6)
H70.08390.31100.81790.036*
C80.15321 (18)0.24125 (11)0.78530 (14)0.0293 (6)
H80.10980.21290.78200.035*
C90.24770 (17)0.23612 (10)0.76861 (13)0.0238 (5)
C100.28527 (17)0.19042 (10)0.73197 (13)0.0241 (5)
C110.36628 (17)0.19416 (9)0.69492 (13)0.0224 (5)
C120.39758 (18)0.15473 (10)0.64005 (14)0.0278 (6)
H120.37090.12040.62820.033*
C130.47214 (18)0.17655 (10)0.60926 (14)0.0270 (6)
H130.50480.16120.57020.032*
C140.49231 (17)0.22821 (9)0.64795 (13)0.0223 (5)
C150.57212 (17)0.25833 (10)0.64124 (13)0.0235 (5)
C160.59676 (17)0.29995 (9)0.69188 (13)0.0223 (5)
C170.68682 (17)0.32199 (10)0.69911 (14)0.0264 (5)
H170.73550.31430.66820.032*
C180.68778 (17)0.35588 (10)0.75877 (13)0.0264 (5)
H180.73760.37520.77770.032*
C190.59776 (16)0.35666 (9)0.78786 (13)0.0225 (5)
C200.56930 (17)0.39076 (10)0.84542 (13)0.0238 (5)
C210.16630 (17)0.41203 (10)0.86122 (14)0.0281 (6)
C220.10054 (19)0.39637 (13)0.91157 (16)0.0397 (7)
H220.10440.36170.93530.048*
C230.0292 (2)0.43226 (16)0.92653 (19)0.0533 (9)
H230.01500.42140.96010.064*
C240.0229 (2)0.48400 (15)0.8922 (2)0.0578 (10)
H240.02550.50780.90240.069*
C250.0885 (2)0.50028 (13)0.84275 (19)0.0481 (8)
H250.08490.53530.81980.058*
C260.15956 (19)0.46445 (11)0.82740 (16)0.0346 (6)
H260.20370.47560.79390.042*
C270.23115 (17)0.13731 (10)0.72881 (14)0.0249 (5)
C280.22305 (19)0.10503 (11)0.79248 (15)0.0319 (6)
H280.25240.11620.83580.038*
C290.17119 (19)0.05600 (11)0.79182 (16)0.0360 (6)
H290.16590.03460.83480.043*
C300.12785 (19)0.03908 (11)0.72810 (16)0.0372 (7)
H300.09320.00640.72770.045*
C310.1362 (2)0.07110 (12)0.66462 (17)0.0407 (7)
H310.10740.05970.62120.049*
C320.1868 (2)0.11986 (11)0.66523 (15)0.0353 (6)
H320.19110.14130.62230.042*
C330.63888 (17)0.24296 (10)0.58356 (13)0.0254 (5)
C340.68263 (19)0.19139 (11)0.58344 (14)0.0332 (6)
H340.66770.16450.61880.040*
C350.7481 (2)0.17922 (13)0.53169 (16)0.0416 (7)
H350.77690.14440.53240.050*
C360.7708 (2)0.21855 (14)0.47908 (16)0.0420 (7)
H360.81500.21040.44420.050*
C370.7283 (2)0.26982 (14)0.47815 (15)0.0417 (7)
H370.74390.29650.44270.050*
C380.66182 (18)0.28206 (11)0.52997 (14)0.0306 (6)
H380.63260.31680.52860.037*
C390.63795 (17)0.42845 (11)0.88148 (14)0.0284 (6)
C400.6803 (2)0.41314 (13)0.94660 (16)0.0444 (7)
H400.66400.37990.97030.053*
C410.7472 (2)0.44727 (16)0.9770 (2)0.0573 (10)
H410.77600.43631.02060.069*
C420.7712 (2)0.49646 (18)0.9438 (2)0.0615 (11)
H420.81630.51900.96440.074*
C430.7286 (3)0.51238 (17)0.8804 (2)0.0758 (13)
H430.74410.54620.85780.091*
C440.6618 (3)0.47817 (14)0.84890 (19)0.0600 (10)
H440.63330.48940.80530.072*
C450.4371 (2)0.21365 (13)0.87625 (18)0.0491 (8)
C460.38075 (19)0.39021 (11)0.64692 (15)0.0335 (6)
C470.3658 (2)0.27299 (13)0.4394 (2)0.0548 (9)
H47A0.36280.26860.38600.066*
H47B0.38460.23710.46030.066*
C480.4367 (2)0.31679 (14)0.4579 (2)0.0562 (9)
H48A0.43830.32320.51100.067*
H48B0.49590.30350.44270.067*
C490.4834 (2)0.40924 (16)0.4333 (2)0.0605 (10)
H49A0.54140.39540.41630.073*
H49B0.48840.41700.48600.073*
C500.4594 (2)0.46173 (16)0.3930 (2)0.0612 (10)
H50A0.50950.48810.39540.073*
H50B0.44730.45320.34130.073*
C510.3611 (2)0.53924 (13)0.39513 (19)0.0509 (8)
H51A0.34420.53530.34340.061*
H51B0.41350.56380.39830.061*
C520.2841 (2)0.56410 (13)0.43784 (19)0.0514 (9)
H52A0.30030.56460.49000.062*
H52B0.27570.60290.42220.062*
C530.1342 (3)0.55264 (13)0.4859 (2)0.0576 (9)
H53A0.07320.54320.46990.069*
H53B0.13780.59330.49060.069*
C540.1513 (3)0.52678 (15)0.5594 (2)0.0592 (10)
H54A0.21470.53110.57260.071*
H54B0.11530.54570.59660.071*
C550.1432 (3)0.44287 (19)0.62748 (18)0.0674 (11)
H55A0.10430.46010.66420.081*
H55B0.20560.44820.64300.081*
C560.1229 (3)0.38185 (19)0.6216 (2)0.0713 (12)
H56A0.12250.36510.67060.086*
H56B0.06360.37650.59940.086*
C570.1897 (3)0.29637 (16)0.5833 (2)0.0693 (11)
H57A0.13500.28120.56100.083*
H57B0.19080.28560.63510.083*
C580.2706 (3)0.27272 (14)0.54518 (19)0.0585 (10)
H58A0.32460.28670.56980.070*
H58B0.26990.23200.55060.070*
C590.2074 (2)0.25531 (12)0.4243 (2)0.0550 (9)
H59A0.15140.25540.45200.066*
H59B0.22690.21640.41940.066*
C600.1894 (2)0.27852 (12)0.34906 (18)0.0494 (8)
H60A0.24470.27860.32040.059*
H60B0.14530.25520.32350.059*
C610.1234 (3)0.35410 (14)0.28719 (18)0.0569 (9)
H61A0.08300.32650.26520.068*
H61B0.17370.35990.25370.068*
C620.0750 (3)0.40724 (14)0.2980 (2)0.0630 (11)
H62A0.04680.41880.25170.076*
H62B0.02790.40220.33460.076*
C630.0916 (2)0.50148 (13)0.3325 (2)0.0552 (9)
H63A0.04590.49770.37060.066*
H63B0.06190.51280.28680.066*
C640.1597 (2)0.54490 (13)0.35509 (19)0.0535 (9)
H64A0.20820.54550.31910.064*
H64B0.13110.58170.35480.064*
N10.40830 (13)0.36760 (8)0.83187 (10)0.0214 (4)
N40.54411 (13)0.32126 (8)0.74713 (10)0.0212 (4)
N30.42573 (13)0.23860 (8)0.69859 (10)0.0210 (4)
N20.29024 (14)0.28625 (8)0.78308 (11)0.0227 (4)
N50.45202 (15)0.25569 (8)0.84641 (11)0.0264 (5)
N60.38396 (15)0.35109 (8)0.68460 (11)0.0274 (5)
N70.27608 (18)0.28639 (10)0.46648 (14)0.0430 (6)
N80.19817 (17)0.53412 (9)0.42903 (14)0.0410 (6)
O50.12856 (15)0.46853 (9)0.55713 (11)0.0465 (5)
O60.18960 (15)0.35528 (9)0.57740 (11)0.0495 (6)
O70.13645 (15)0.44939 (8)0.32216 (12)0.0486 (6)
O80.15602 (14)0.33395 (8)0.35576 (10)0.0404 (5)
O30.38214 (14)0.48576 (9)0.42561 (12)0.0486 (5)
O40.41566 (14)0.36779 (9)0.42072 (13)0.0508 (6)
O10.4232 (2)0.17042 (12)0.9080 (2)0.1138 (14)
O20.3746 (2)0.42972 (10)0.60550 (16)0.0767 (8)
K10.24151 (4)0.41042 (2)0.45285 (3)0.03328 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02012 (17)0.01555 (15)0.02083 (17)0.00058 (13)0.00273 (13)0.00084 (12)
C10.0275 (13)0.0187 (11)0.0244 (12)0.0016 (10)0.0011 (10)0.0010 (9)
C20.0311 (14)0.0226 (12)0.0291 (14)0.0005 (11)0.0003 (11)0.0057 (10)
C30.0352 (15)0.0224 (12)0.0306 (14)0.0055 (11)0.0049 (12)0.0070 (10)
C40.0251 (13)0.0195 (11)0.0245 (12)0.0025 (10)0.0058 (10)0.0001 (9)
C50.0271 (13)0.0242 (12)0.0246 (13)0.0035 (11)0.0068 (11)0.0013 (10)
C60.0243 (13)0.0225 (12)0.0263 (13)0.0027 (10)0.0040 (10)0.0009 (10)
C70.0232 (13)0.0336 (14)0.0330 (14)0.0010 (11)0.0036 (11)0.0041 (11)
C80.0266 (14)0.0299 (13)0.0315 (14)0.0054 (11)0.0051 (11)0.0041 (11)
C90.0239 (13)0.0240 (12)0.0235 (13)0.0045 (10)0.0029 (10)0.0005 (10)
C100.0262 (13)0.0203 (11)0.0259 (13)0.0021 (10)0.0006 (11)0.0011 (10)
C110.0267 (13)0.0175 (11)0.0230 (12)0.0014 (10)0.0008 (10)0.0016 (9)
C120.0316 (14)0.0186 (11)0.0331 (14)0.0030 (11)0.0005 (12)0.0054 (10)
C130.0305 (14)0.0237 (12)0.0269 (13)0.0018 (11)0.0045 (11)0.0067 (10)
C140.0255 (13)0.0200 (11)0.0215 (12)0.0023 (10)0.0048 (10)0.0003 (9)
C150.0251 (13)0.0228 (12)0.0225 (12)0.0024 (10)0.0035 (10)0.0010 (9)
C160.0248 (13)0.0195 (11)0.0227 (12)0.0004 (10)0.0039 (10)0.0021 (9)
C170.0233 (13)0.0278 (12)0.0280 (13)0.0000 (11)0.0072 (11)0.0005 (10)
C180.0229 (13)0.0268 (12)0.0294 (13)0.0036 (11)0.0001 (11)0.0000 (10)
C190.0240 (12)0.0200 (11)0.0237 (12)0.0006 (10)0.0004 (10)0.0005 (9)
C200.0266 (13)0.0210 (11)0.0237 (12)0.0005 (10)0.0009 (10)0.0021 (9)
C210.0242 (13)0.0276 (13)0.0324 (14)0.0043 (11)0.0001 (11)0.0081 (11)
C220.0320 (16)0.0477 (17)0.0394 (16)0.0060 (14)0.0075 (13)0.0080 (13)
C230.0315 (17)0.074 (2)0.055 (2)0.0108 (17)0.0154 (15)0.0185 (18)
C240.0386 (19)0.058 (2)0.077 (2)0.0253 (17)0.0063 (18)0.0314 (19)
C250.0456 (19)0.0334 (15)0.065 (2)0.0136 (14)0.0168 (17)0.0156 (15)
C260.0335 (15)0.0286 (13)0.0418 (16)0.0025 (12)0.0046 (13)0.0070 (11)
C270.0230 (13)0.0183 (11)0.0335 (14)0.0004 (10)0.0058 (11)0.0010 (10)
C280.0334 (15)0.0284 (13)0.0340 (14)0.0059 (12)0.0037 (12)0.0012 (11)
C290.0374 (16)0.0299 (14)0.0408 (16)0.0061 (12)0.0104 (13)0.0043 (12)
C300.0309 (15)0.0254 (13)0.0554 (18)0.0088 (12)0.0091 (14)0.0043 (12)
C310.0465 (18)0.0325 (14)0.0432 (17)0.0109 (14)0.0078 (14)0.0055 (13)
C320.0424 (17)0.0282 (13)0.0354 (15)0.0066 (13)0.0007 (13)0.0012 (11)
C330.0253 (13)0.0293 (13)0.0215 (12)0.0036 (11)0.0039 (11)0.0048 (10)
C340.0359 (16)0.0342 (14)0.0296 (14)0.0027 (12)0.0092 (12)0.0026 (11)
C350.0348 (16)0.0427 (16)0.0475 (18)0.0013 (14)0.0121 (14)0.0158 (14)
C360.0332 (16)0.0577 (19)0.0355 (16)0.0083 (15)0.0159 (13)0.0176 (14)
C370.0442 (18)0.0562 (19)0.0247 (14)0.0169 (16)0.0079 (13)0.0007 (13)
C380.0302 (14)0.0354 (14)0.0262 (13)0.0076 (12)0.0027 (11)0.0005 (11)
C390.0243 (13)0.0303 (13)0.0305 (14)0.0012 (11)0.0026 (11)0.0106 (11)
C400.0481 (18)0.0414 (16)0.0435 (17)0.0026 (15)0.0126 (15)0.0097 (13)
C410.047 (2)0.070 (2)0.055 (2)0.0054 (19)0.0209 (17)0.0286 (18)
C420.0329 (17)0.089 (3)0.063 (2)0.0231 (19)0.0139 (17)0.048 (2)
C430.092 (3)0.069 (3)0.066 (3)0.054 (2)0.007 (2)0.011 (2)
C440.082 (3)0.0515 (19)0.0464 (19)0.0357 (19)0.0145 (18)0.0040 (15)
C450.049 (2)0.0412 (17)0.057 (2)0.0164 (15)0.0276 (16)0.0204 (16)
C460.0340 (16)0.0243 (13)0.0424 (16)0.0012 (12)0.0089 (13)0.0045 (12)
C470.053 (2)0.0377 (17)0.073 (2)0.0085 (16)0.0169 (18)0.0033 (16)
C480.0392 (18)0.056 (2)0.074 (2)0.0100 (16)0.0148 (17)0.0026 (17)
C490.0287 (17)0.070 (2)0.083 (3)0.0081 (17)0.0014 (17)0.002 (2)
C500.043 (2)0.064 (2)0.076 (3)0.0132 (18)0.0169 (19)0.0054 (19)
C510.052 (2)0.0425 (17)0.058 (2)0.0203 (16)0.0025 (17)0.0153 (15)
C520.062 (2)0.0315 (15)0.061 (2)0.0159 (16)0.0053 (18)0.0033 (14)
C530.061 (2)0.0330 (16)0.079 (3)0.0044 (16)0.006 (2)0.0078 (16)
C540.059 (2)0.061 (2)0.058 (2)0.0080 (18)0.0128 (18)0.0287 (18)
C550.062 (2)0.107 (3)0.0325 (18)0.033 (2)0.0034 (17)0.0015 (19)
C560.060 (2)0.099 (3)0.055 (2)0.017 (2)0.0177 (19)0.043 (2)
C570.084 (3)0.065 (2)0.059 (2)0.013 (2)0.002 (2)0.0353 (19)
C580.074 (3)0.0403 (17)0.061 (2)0.0016 (18)0.019 (2)0.0234 (16)
C590.058 (2)0.0271 (14)0.079 (2)0.0070 (15)0.0261 (19)0.0040 (15)
C600.051 (2)0.0359 (16)0.061 (2)0.0028 (15)0.0174 (16)0.0191 (15)
C610.077 (3)0.0516 (19)0.0422 (19)0.0125 (18)0.0268 (17)0.0014 (15)
C620.068 (2)0.0461 (19)0.075 (2)0.0117 (18)0.043 (2)0.0085 (17)
C630.054 (2)0.0421 (17)0.069 (2)0.0038 (16)0.0225 (17)0.0076 (16)
C640.062 (2)0.0330 (16)0.065 (2)0.0026 (16)0.0159 (18)0.0132 (15)
N10.0227 (10)0.0195 (9)0.0219 (10)0.0020 (8)0.0022 (8)0.0003 (8)
N40.0232 (11)0.0192 (9)0.0214 (10)0.0016 (8)0.0026 (8)0.0006 (8)
N30.0222 (11)0.0189 (9)0.0218 (10)0.0000 (8)0.0032 (9)0.0008 (8)
N20.0239 (11)0.0192 (9)0.0250 (11)0.0001 (8)0.0031 (9)0.0010 (8)
N50.0302 (12)0.0249 (11)0.0243 (11)0.0026 (9)0.0048 (9)0.0009 (9)
N60.0302 (12)0.0243 (11)0.0275 (11)0.0001 (9)0.0003 (9)0.0002 (9)
N70.0441 (15)0.0316 (12)0.0532 (16)0.0029 (11)0.0176 (12)0.0067 (11)
N80.0438 (15)0.0264 (11)0.0527 (15)0.0045 (11)0.0012 (12)0.0003 (10)
O50.0513 (13)0.0543 (13)0.0338 (11)0.0044 (11)0.0017 (10)0.0026 (9)
O60.0465 (13)0.0566 (13)0.0453 (12)0.0041 (11)0.0040 (10)0.0214 (10)
O70.0519 (13)0.0363 (11)0.0574 (13)0.0054 (10)0.0212 (11)0.0077 (10)
O80.0535 (13)0.0325 (10)0.0350 (11)0.0011 (9)0.0174 (9)0.0040 (8)
O30.0372 (12)0.0516 (13)0.0571 (13)0.0105 (10)0.0062 (10)0.0151 (10)
O40.0354 (12)0.0520 (13)0.0649 (14)0.0023 (10)0.0073 (10)0.0074 (11)
O10.115 (3)0.0686 (19)0.158 (3)0.0402 (19)0.081 (2)0.078 (2)
O20.085 (2)0.0508 (14)0.095 (2)0.0036 (14)0.0150 (16)0.0461 (14)
K10.0364 (3)0.0289 (3)0.0346 (3)0.0047 (3)0.0003 (3)0.0018 (2)
Geometric parameters (Å, º) top
Co1—N61.905 (2)C41—C421.359 (5)
Co1—N51.919 (2)C41—H410.9300
Co1—N11.9454 (19)C42—C431.356 (6)
Co1—N41.947 (2)C42—H420.9300
Co1—N21.952 (2)C43—C441.396 (5)
Co1—N31.9567 (19)C43—H430.9300
C1—N11.375 (3)C44—H440.9300
C1—C201.386 (3)C45—N51.155 (3)
C1—C21.439 (3)C45—O11.193 (4)
C2—C31.339 (4)C46—N61.151 (3)
C2—H20.9300C46—O21.202 (3)
C3—C41.433 (3)C47—N71.450 (4)
C3—H30.9300C47—C481.512 (5)
C4—N11.363 (3)C47—H47A0.9700
C4—C51.394 (3)C47—H47B0.9700
C5—C61.394 (3)C48—O41.417 (4)
C5—C211.485 (3)C48—H48A0.9700
C6—N21.364 (3)C48—H48B0.9700
C6—C71.429 (4)C49—O41.420 (4)
C7—C81.342 (4)C49—C501.484 (5)
C7—H70.9300C49—H49A0.9700
C8—C91.435 (4)C49—H49B0.9700
C8—H80.9300C50—O31.408 (4)
C9—N21.370 (3)C50—H50A0.9700
C9—C101.387 (3)C50—H50B0.9700
C10—C111.377 (4)C51—O31.417 (4)
C10—C271.493 (3)C51—C521.498 (5)
C11—N31.373 (3)C51—H51A0.9700
C11—C121.440 (3)C51—H51B0.9700
C12—C131.341 (4)C52—N81.463 (4)
C12—H120.9300C52—H52A0.9700
C13—C141.441 (3)C52—H52B0.9700
C13—H130.9300C53—N81.466 (4)
C14—N31.369 (3)C53—C541.481 (5)
C14—C151.384 (3)C53—H53A0.9700
C15—C161.392 (3)C53—H53B0.9700
C15—C331.483 (3)C54—O51.423 (4)
C16—N41.365 (3)C54—H54A0.9700
C16—C171.435 (3)C54—H54B0.9700
C17—C181.344 (3)C55—O51.423 (4)
C17—H170.9300C55—C561.482 (6)
C18—C191.432 (4)C55—H55A0.9700
C18—H180.9300C55—H55B0.9700
C19—N41.366 (3)C56—O61.419 (4)
C19—C201.384 (3)C56—H56A0.9700
C20—C391.498 (3)C56—H56B0.9700
C21—C221.385 (4)C57—O61.402 (4)
C21—C261.389 (4)C57—C581.491 (5)
C22—C231.382 (4)C57—H57A0.9700
C22—H220.9300C57—H57B0.9700
C23—C241.378 (5)C58—N71.460 (4)
C23—H230.9300C58—H58A0.9700
C24—C251.376 (5)C58—H58B0.9700
C24—H240.9300C59—N71.464 (4)
C25—C261.380 (4)C59—C601.487 (5)
C25—H250.9300C59—H59A0.9700
C26—H260.9300C59—H59B0.9700
C27—C321.382 (4)C60—O81.410 (3)
C27—C281.387 (4)C60—H60A0.9700
C28—C291.393 (4)C60—H60B0.9700
C28—H280.9300C61—O81.409 (3)
C29—C301.373 (4)C61—C621.463 (5)
C29—H290.9300C61—H61A0.9700
C30—C311.381 (4)C61—H61B0.9700
C30—H300.9300C62—O71.417 (4)
C31—C321.377 (4)C62—H62A0.9700
C31—H310.9300C62—H62B0.9700
C32—H320.9300C63—O71.415 (4)
C33—C381.384 (4)C63—C641.495 (5)
C33—C341.384 (4)C63—H63A0.9700
C34—C351.379 (4)C63—H63B0.9700
C34—H340.9300C64—N81.470 (4)
C35—C361.374 (4)C64—H64A0.9700
C35—H350.9300C64—H64B0.9700
C36—C371.369 (4)N7—K12.996 (2)
C36—H360.9300N8—K13.034 (2)
C37—C381.390 (4)O5—K12.874 (2)
C37—H370.9300O6—K12.715 (2)
C38—H380.9300O7—K12.964 (2)
C39—C441.365 (4)O8—K12.8161 (18)
C39—C401.377 (4)O3—K12.786 (2)
C40—C411.389 (4)O4—K12.827 (2)
C40—H400.9300O2—K13.407 (3)
N6—Co1—N5179.60 (10)C49—C50—H50A109.9
N6—Co1—N189.38 (8)O3—C50—H50B109.9
N5—Co1—N190.51 (8)C49—C50—H50B109.9
N6—Co1—N489.37 (9)H50A—C50—H50B108.3
N5—Co1—N490.25 (8)O3—C51—C52108.6 (3)
N1—Co1—N490.23 (8)O3—C51—H51A110.0
N6—Co1—N290.23 (9)C52—C51—H51A110.0
N5—Co1—N290.15 (9)O3—C51—H51B110.0
N1—Co1—N289.48 (8)C52—C51—H51B110.0
N4—Co1—N2179.51 (8)H51A—C51—H51B108.4
N6—Co1—N390.82 (8)N8—C52—C51114.4 (3)
N5—Co1—N389.29 (8)N8—C52—H52A108.7
N1—Co1—N3179.48 (9)C51—C52—H52A108.7
N4—Co1—N390.25 (8)N8—C52—H52B108.7
N2—Co1—N390.04 (8)C51—C52—H52B108.7
N1—C1—C20125.3 (2)H52A—C52—H52B107.6
N1—C1—C2109.2 (2)N8—C53—C54113.2 (3)
C20—C1—C2125.0 (2)N8—C53—H53A108.9
C3—C2—C1107.0 (2)C54—C53—H53A108.9
C3—C2—H2126.5N8—C53—H53B108.9
C1—C2—H2126.5C54—C53—H53B108.9
C2—C3—C4107.6 (2)H53A—C53—H53B107.7
C2—C3—H3126.2O5—C54—C53109.7 (3)
C4—C3—H3126.2O5—C54—H54A109.7
N1—C4—C5126.0 (2)C53—C54—H54A109.7
N1—C4—C3109.5 (2)O5—C54—H54B109.7
C5—C4—C3124.3 (2)C53—C54—H54B109.7
C6—C5—C4121.4 (2)H54A—C54—H54B108.2
C6—C5—C21120.0 (2)O5—C55—C56108.9 (3)
C4—C5—C21118.6 (2)O5—C55—H55A109.9
N2—C6—C5124.8 (2)C56—C55—H55A109.9
N2—C6—C7109.4 (2)O5—C55—H55B109.9
C5—C6—C7125.4 (2)C56—C55—H55B109.9
C8—C7—C6107.6 (2)H55A—C55—H55B108.3
C8—C7—H7126.2O6—C56—C55109.5 (3)
C6—C7—H7126.2O6—C56—H56A109.8
C7—C8—C9106.8 (2)C55—C56—H56A109.8
C7—C8—H8126.6O6—C56—H56B109.8
C9—C8—H8126.6C55—C56—H56B109.8
N2—C9—C10125.8 (2)H56A—C56—H56B108.2
N2—C9—C8109.4 (2)O6—C57—C58109.9 (3)
C10—C9—C8123.9 (2)O6—C57—H57A109.7
C11—C10—C9122.1 (2)C58—C57—H57A109.7
C11—C10—C27120.2 (2)O6—C57—H57B109.7
C9—C10—C27117.5 (2)C58—C57—H57B109.7
N3—C11—C10125.7 (2)H57A—C57—H57B108.2
N3—C11—C12108.9 (2)N7—C58—C57114.5 (3)
C10—C11—C12125.1 (2)N7—C58—H58A108.6
C13—C12—C11107.6 (2)C57—C58—H58A108.6
C13—C12—H12126.2N7—C58—H58B108.6
C11—C12—H12126.2C57—C58—H58B108.6
C12—C13—C14107.2 (2)H58A—C58—H58B107.6
C12—C13—H13126.4N7—C59—C60114.1 (3)
C14—C13—H13126.4N7—C59—H59A108.7
N3—C14—C15125.5 (2)C60—C59—H59A108.7
N3—C14—C13109.2 (2)N7—C59—H59B108.7
C15—C14—C13124.8 (2)C60—C59—H59B108.7
C14—C15—C16121.9 (2)H59A—C59—H59B107.6
C14—C15—C33120.3 (2)O8—C60—C59109.2 (2)
C16—C15—C33117.5 (2)O8—C60—H60A109.9
N4—C16—C15126.5 (2)C59—C60—H60A109.9
N4—C16—C17109.3 (2)O8—C60—H60B109.9
C15—C16—C17123.8 (2)C59—C60—H60B109.9
C18—C17—C16107.2 (2)H60A—C60—H60B108.3
C18—C17—H17126.4O8—C61—C62109.9 (3)
C16—C17—H17126.4O8—C61—H61A109.7
C17—C18—C19107.2 (2)C62—C61—H61A109.7
C17—C18—H18126.4O8—C61—H61B109.7
C19—C18—H18126.4C62—C61—H61B109.7
N4—C19—C20125.8 (2)H61A—C61—H61B108.2
N4—C19—C18109.4 (2)O7—C62—C61109.7 (3)
C20—C19—C18124.7 (2)O7—C62—H62A109.7
C19—C20—C1122.5 (2)C61—C62—H62A109.7
C19—C20—C39117.9 (2)O7—C62—H62B109.7
C1—C20—C39119.1 (2)C61—C62—H62B109.7
C22—C21—C26118.7 (3)H62A—C62—H62B108.2
C22—C21—C5123.1 (2)O7—C63—C64108.8 (3)
C26—C21—C5118.2 (2)O7—C63—H63A109.9
C23—C22—C21120.1 (3)C64—C63—H63A109.9
C23—C22—H22120.0O7—C63—H63B109.9
C21—C22—H22120.0C64—C63—H63B109.9
C24—C23—C22120.7 (3)H63A—C63—H63B108.3
C24—C23—H23119.7N8—C64—C63112.6 (3)
C22—C23—H23119.7N8—C64—H64A109.1
C25—C24—C23119.7 (3)C63—C64—H64A109.1
C25—C24—H24120.2N8—C64—H64B109.1
C23—C24—H24120.2C63—C64—H64B109.1
C24—C25—C26119.8 (3)H64A—C64—H64B107.8
C24—C25—H25120.1C4—N1—C1106.55 (19)
C26—C25—H25120.1C4—N1—Co1126.81 (16)
C25—C26—C21121.1 (3)C1—N1—Co1126.64 (16)
C25—C26—H26119.5C16—N4—C19106.8 (2)
C21—C26—H26119.5C16—N4—Co1126.43 (16)
C32—C27—C28118.7 (2)C19—N4—Co1126.74 (16)
C32—C27—C10122.4 (2)C14—N3—C11106.93 (19)
C28—C27—C10118.9 (2)C14—N3—Co1126.82 (16)
C27—C28—C29120.3 (2)C11—N3—Co1126.24 (16)
C27—C28—H28119.9C6—N2—C9106.6 (2)
C29—C28—H28119.9C6—N2—Co1127.08 (16)
C30—C29—C28120.3 (3)C9—N2—Co1126.24 (17)
C30—C29—H29119.8C45—N5—Co1144.6 (2)
C28—C29—H29119.8C46—N6—Co1159.8 (2)
C29—C30—C31119.4 (2)C47—N7—C58109.6 (3)
C29—C30—H30120.3C47—N7—C59110.2 (3)
C31—C30—H30120.3C58—N7—C59110.6 (3)
C32—C31—C30120.4 (3)C47—N7—K1110.08 (18)
C32—C31—H31119.8C58—N7—K1106.72 (19)
C30—C31—H31119.8C59—N7—K1109.55 (17)
C31—C32—C27120.9 (3)C52—N8—C53109.9 (2)
C31—C32—H32119.6C52—N8—C64110.2 (2)
C27—C32—H32119.6C53—N8—C64109.6 (3)
C38—C33—C34118.4 (2)C52—N8—K1105.81 (18)
C38—C33—C15119.5 (2)C53—N8—K1109.09 (17)
C34—C33—C15122.1 (2)C64—N8—K1112.16 (17)
C35—C34—C33121.0 (3)C54—O5—C55110.8 (3)
C35—C34—H34119.5C54—O5—K1110.26 (18)
C33—C34—H34119.5C55—O5—K1107.03 (19)
C36—C35—C34120.1 (3)C57—O6—C56113.6 (3)
C36—C35—H35120.0C57—O6—K1122.9 (2)
C34—C35—H35120.0C56—O6—K1116.86 (18)
C37—C36—C35119.8 (3)C63—O7—C62110.9 (3)
C37—C36—H36120.1C63—O7—K1114.28 (18)
C35—C36—H36120.1C62—O7—K1110.89 (17)
C36—C37—C38120.2 (3)C61—O8—C60111.0 (2)
C36—C37—H37119.9C61—O8—K1118.53 (17)
C38—C37—H37119.9C60—O8—K1119.91 (16)
C33—C38—C37120.5 (3)C50—O3—C51112.2 (2)
C33—C38—H38119.8C50—O3—K1114.90 (19)
C37—C38—H38119.8C51—O3—K1118.75 (18)
C44—C39—C40118.6 (3)C48—O4—C49111.3 (2)
C44—C39—C20120.3 (2)C48—O4—K1113.93 (19)
C40—C39—C20121.1 (2)C49—O4—K1111.12 (19)
C39—C40—C41120.1 (3)C46—O2—K1116.0 (2)
C39—C40—H40119.9O6—K1—O3132.03 (7)
C41—C40—H40119.9O6—K1—O894.41 (7)
C42—C41—C40120.9 (3)O3—K1—O8129.47 (7)
C42—C41—H41119.6O6—K1—O4105.01 (7)
C40—C41—H41119.6O3—K1—O460.87 (7)
C43—C42—C41119.4 (3)O8—K1—O492.71 (6)
C43—C42—H42120.3O6—K1—O561.40 (7)
C41—C42—H42120.3O3—K1—O5104.12 (7)
C42—C43—C44120.3 (4)O8—K1—O5117.15 (7)
C42—C43—H43119.8O4—K1—O5146.94 (6)
C44—C43—H43119.8O6—K1—O7131.30 (7)
C39—C44—C43120.7 (3)O3—K1—O792.70 (6)
C39—C44—H44119.6O8—K1—O758.33 (5)
C43—C44—H44119.6O4—K1—O7114.92 (7)
N5—C45—O1178.7 (5)O5—K1—O793.90 (6)
N6—C46—O2177.0 (3)O6—K1—N760.51 (7)
N7—C47—C48114.1 (3)O3—K1—N7121.17 (7)
N7—C47—H47A108.7O8—K1—N759.61 (6)
C48—C47—H47A108.7O4—K1—N760.71 (7)
N7—C47—H47B108.7O5—K1—N7121.10 (7)
C48—C47—H47B108.7O7—K1—N7117.38 (6)
H47A—C47—H47B107.6O6—K1—N8121.53 (7)
O4—C48—C47109.4 (3)O3—K1—N860.75 (7)
O4—C48—H48A109.8O8—K1—N8116.20 (6)
C47—C48—H48A109.8O4—K1—N8120.57 (7)
O4—C48—H48B109.8O5—K1—N860.39 (7)
C47—C48—H48B109.8O7—K1—N858.42 (6)
H48A—C48—H48B108.2N7—K1—N8175.79 (7)
O4—C49—C50109.7 (3)O6—K1—O263.88 (6)
O4—C49—H49A109.7O3—K1—O268.21 (6)
C50—C49—H49A109.7O8—K1—O2147.62 (6)
O4—C49—H49B109.7O4—K1—O272.07 (7)
C50—C49—H49B109.7O5—K1—O274.97 (7)
H49A—C49—H49B108.2O7—K1—O2154.01 (6)
O3—C50—C49109.1 (3)N7—K1—O288.18 (6)
O3—C50—H50A109.9N8—K1—O296.02 (6)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the N2/C6–C9 and N4/C16–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C50—H50A···O2i0.972.593.555 (4)171
C57—H57B···Cg20.972.833.783 (4)168
C60—H60B···Cg4ii0.972.603.437 (3)145
Symmetry codes: (i) x+1, y+1, z+1; (ii) x3/2, y1/2, z3/2.

Experimental details

Crystal data
Chemical formula[K(C18H36N2O6)][Co(NCO)2(C44H28N4)]·0.5C6H5Cl
Mr1227.63
Crystal system, space groupMonoclinic, P21/n
Temperature (K)180
a, b, c (Å)14.7716 (5), 23.7255 (9), 18.0458 (7)
β (°) 90.325 (3)
V3)6324.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.45 × 0.37 × 0.36
Data collection
DiffractometerAgilent Xcalibur Sapphire2
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.770, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
32355, 11118, 8660
Rint0.041
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.122, 1.08
No. of reflections11118
No. of parameters744
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.44

Computer programs: CrysAlis PRO (Agilent, 2010), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
Co1—N61.905 (2)Co1—N41.947 (2)
Co1—N51.919 (2)Co1—N21.952 (2)
Co1—N11.9454 (19)Co1—N31.9567 (19)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the N2/C6–C9 and N4/C16–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C50—H50A···O2i0.972.593.555 (4)171
C57—H57B···Cg20.972.833.783 (4)168
C60—H60B···Cg4ii0.972.603.437 (3)145
Symmetry codes: (i) x+1, y+1, z+1; (ii) x3/2, y1/2, z3/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAli, B. B., Belkhiria, M. S., Giorgi, M. & Nasri, H. (2011). Open J. Inorg. Chem. 1, 39–46.  CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBresciani-Pahor, N., Zangrando, E. & Antolini, L. (1990). Acta Cryst. C46, 1793–1795.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDhifet, M., Belkhiria, M. S., Daran, J.-C., Schulz, C. E. & Nasri, H. (2010). Inorg. Chim. Acta, 363, 3208–3213.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnglert, U., Haring, A., Hu, C. & Kalf, I. (2002). Z. Anorg. Allg. Chem. 628, 1173–1179.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIimuna, Y., Sakurai, T. & Yamamoto, K. (1988). Bull. Chem. Soc. Jpn, 61, 821–826.  Google Scholar
First citationJentzen, W., Song, X. & Shelnutt, J. A. (1997). J. Phys. Chem. B, 101, 1684–1699.  CrossRef CAS Web of Science Google Scholar
First citationKonarev, D., Khasanov, S. S., Saito, G., Lybovskaya, R. N., Yoshida, Y. & Otsuka, A. (2003). Chem. Eur. J. 9, 3837–3848.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMadure, P. & Scheidt, W. R. (1976). Inorg. Chem. 15, 3182–3184.  Google Scholar
First citationMansour, A., Belkhiria, M. S., Daran, J.-C. & Nasri, H. (2010). Acta Cryst. E66, m509–m510.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSanders, J. K. M., Bampos, N., Clyde-Watson, Z., Kim, H.-J., Mak, C. C. & Webb, J. S. (2000). The Porphyrin Handbook, Vol. 3, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1–200. San Diego: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds