organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phen­yl)-1-(5-{[(2-phenyl­ethen­yl)sulfon­yl]meth­yl}-1,3,4-oxa­diazol-2-yl)methane­sulfonamide

aDepartment of Chemistry, Sri Venkateswara University, Tirupati 517 502, India, and bCentre for Bioinformatics, Pondicherry University, Puducherry 605 014, India
*Correspondence e-mail: adivireddyp@yahoo.co.in

(Received 8 August 2012; accepted 29 August 2012; online 19 September 2012)

In the title compound, C18H16ClN3O5S2, the dihedral angles between the oxadiazole ring and the phenyl and chloro­benzene rings are 23.4 (2) and 45.4 (2)°, respectively. The C—S—N—C and Cox—C—S—C (ox = oxadiazole) torsion angles are 89.3 (5) and −69.1 (3)°, respectively. A short intra­molecular C—H⋯O contact closes an S(6) ring. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, generating C(10) chains propagating in [001]. The packing is consolidated by C—H⋯O, C—H⋯π and very weak aromatic ππ stacking inter­actions [centroid–centroid separation = 4.085 (2) Å].

Related literature

For the synthesis and biological activity of the title compound, see: Padmaja et al. (2011[Padmaja, A., Muralikrishna, A., Rajasekhar, C. & Padmavathi, V. (2011). Chem. Pharm. Bull. 59, 1509-1517.]); Muralikrishna et al. (2012[Muralikrishna, A., Venkatesh, B. C., Padmavathi, V., Padmaja, A., Kondaiah, P. & Siva Krishna, N. (2012). Eur. J. Med. Chem. 54, 605-614.]). For related structures, see: Ranjith et al. (2009[Ranjith, S., Thenmozhi, S., Manikannan, R., Muthusubramanian, S. & Subbiahpandi, A. (2009). Acta Cryst. E65, o581.]); You et al. (2004[You, X.-L., Lu, C.-R., Zhang, Y. & Zhang, D.-C. (2004). Acta Cryst. C60, o693-o695.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16ClN3O5S2

  • Mr = 453.93

  • Monoclinic, P 21 /c

  • a = 21.1387 (12) Å

  • b = 5.4443 (2) Å

  • c = 18.3484 (11) Å

  • β = 107.810 (7)°

  • V = 2010.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.917, Tmax = 0.974

  • 8939 measured reflections

  • 3541 independent reflections

  • 2114 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.171

  • S = 0.87

  • 3541 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O3 0.93 2.41 3.010 (6) 122
N3—H3⋯O5i 0.86 2.19 2.900 (5) 140
C3—H3B⋯O2ii 0.97 2.38 3.198 (5) 141
C6—H6⋯O4iii 0.93 2.45 3.290 (5) 151
C12—H12⋯O5iii 0.93 2.60 3.242 (5) 127
C14—H14⋯Cgiv 0.93 2.90 3.670 (5) 141
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y, -z+2; (iii) x, y+1, z; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, (I), is a sulfone linked bis-heterocyclic and it has antimicrobial and cytotoxicity activity (Padmaja et al., 2011; Muralikrishna et al., 2012). As part of our ongoing studies on this compound, we now describe its crystal structure.

In the title compound (I) the phenylethenesulfonyl moiety deviates significantly from the plane of dimethyl oxadiazole ring by an (+)-anti-periplanar conformation with the torsion angle (C10, S2, C11 & C12) of 155.0 (5)°. In case of Chlorophenylaminosulfonyl moiety attached with dimethyl oxadiazole and deviates from the plane by an (-)-syn-clinal conformation with the torsion angle (C3, S1, N3 & C4) of 89.3 (5)°. The plane of oxadiazole ring intersect bisectionally to the cholorophenyl ring plane with angle of 45.4 (2) °, whereas it axially intersect with phenyl ring plane by the angle of 23.4 (2) ° (Fig. 1). The strong intermolecular hydrogen bond is formed between N3—H3···.O5 with a distance of 2.900 (5) Å, which generates a C11(10) infinite chain motif (Ranjith et al., 2009) with the hydrogen bond symmetry equivalent (Fig.2). The intermolecular C3—H3B···.O2 makes R22 (8) motif between the adjacent molecules by the contact distance of 3.198 (5) Å and shown in Fig. 3. The intramolecular interaction is formed by C5—H5···.O3 with a distance of 3.010 (6) Å (Fig. 3). In addition to that, the special type of intramolecular interaction also formed between C5—H5···.π (Cg1: O1, C1, N1, N2 & C2), S2—O4···.π (Cg2: C4, C5, C6,C7, C8 & C9) and C7—CL···.π (Cg3: C13, C14, C15, C16, C17 & C18) with a contact distance of 3.17, 3.52 and 4.49 Å respectively (Fig. 4), which contributes for the intramolecular packing. In addition to the aforementioned intermolecular interaction, the C6—H6···.O4 and C12—H12···.O5 makes short contact with the distance of 3.290 (5) and 3.242 (5) Å respectively (Fig. 5). Moreover, the intermolecular C14—H14···.π (Cg: C4, C5, C6,C7 & C8) and π-π (Cg: O1, C1, N1,N2 & C2) stacking interaction (You et al., 2004) is formed by the distance of 3.670 (5) and 4.085 (2) Å respectively (Fig. 6a & b).

Related literature top

For the synthesis and biological activity of the title compound, see: Padmaja et al. (2011); Muralikrishna et al. (2012). For related structures, see: Ranjith et al. (2009); You et al. (2004).

Experimental top

A mixture of p-chlorophenylaminosulfonylacetic acid hydrazide (10 mmol), Z-styrylsulfonylacetic acid (10 mmol) and POCl3 (7 ml) was heated under reflux for 5–7 h. After completion of the reaction (monitored by TLC), the reaction mixture was cooled, the excess POCl3 was removed under reduced pressure and the residue was poured onto crushed ice. The resulting precipitate was filtered, washed with saturated sodium bicarbonate solution and then with water to give 2-(p-Chlorophenylaminosulfonyl-methyl)-5-[Z-(styrylsulfonylmethyl)]-1,3,4-oxadiazole (69%, m.p. = 134–136 °C). Colourless plates were recrystallized from a methanol–dichloromethane (10:1) solution.

Refinement top

The non-hydrogen atoms where refined anisotropically whereas hydrogen atoms were refined isotropically. The H atoms were geometrically placed (N—H = 0.86 Å, and C—H=0.93–0.97 Å) and refined as riding with Uiso (H) = 1.2–1.5 Ueq (parent atom).

Structure description top

The title compound, (I), is a sulfone linked bis-heterocyclic and it has antimicrobial and cytotoxicity activity (Padmaja et al., 2011; Muralikrishna et al., 2012). As part of our ongoing studies on this compound, we now describe its crystal structure.

In the title compound (I) the phenylethenesulfonyl moiety deviates significantly from the plane of dimethyl oxadiazole ring by an (+)-anti-periplanar conformation with the torsion angle (C10, S2, C11 & C12) of 155.0 (5)°. In case of Chlorophenylaminosulfonyl moiety attached with dimethyl oxadiazole and deviates from the plane by an (-)-syn-clinal conformation with the torsion angle (C3, S1, N3 & C4) of 89.3 (5)°. The plane of oxadiazole ring intersect bisectionally to the cholorophenyl ring plane with angle of 45.4 (2) °, whereas it axially intersect with phenyl ring plane by the angle of 23.4 (2) ° (Fig. 1). The strong intermolecular hydrogen bond is formed between N3—H3···.O5 with a distance of 2.900 (5) Å, which generates a C11(10) infinite chain motif (Ranjith et al., 2009) with the hydrogen bond symmetry equivalent (Fig.2). The intermolecular C3—H3B···.O2 makes R22 (8) motif between the adjacent molecules by the contact distance of 3.198 (5) Å and shown in Fig. 3. The intramolecular interaction is formed by C5—H5···.O3 with a distance of 3.010 (6) Å (Fig. 3). In addition to that, the special type of intramolecular interaction also formed between C5—H5···.π (Cg1: O1, C1, N1, N2 & C2), S2—O4···.π (Cg2: C4, C5, C6,C7, C8 & C9) and C7—CL···.π (Cg3: C13, C14, C15, C16, C17 & C18) with a contact distance of 3.17, 3.52 and 4.49 Å respectively (Fig. 4), which contributes for the intramolecular packing. In addition to the aforementioned intermolecular interaction, the C6—H6···.O4 and C12—H12···.O5 makes short contact with the distance of 3.290 (5) and 3.242 (5) Å respectively (Fig. 5). Moreover, the intermolecular C14—H14···.π (Cg: C4, C5, C6,C7 & C8) and π-π (Cg: O1, C1, N1,N2 & C2) stacking interaction (You et al., 2004) is formed by the distance of 3.670 (5) and 4.085 (2) Å respectively (Fig. 6a & b).

For the synthesis and biological activity of the title compound, see: Padmaja et al. (2011); Muralikrishna et al. (2012). For related structures, see: Ranjith et al. (2009); You et al. (2004).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : A view of C11 (10) infinite chain motif is formed between N3—H3···.O5 with the hydrogen bond symmetry equivalent. Infinite chain motif forming atoms are shown in ball and stick model and the hydrogen bond is shown in black dashed line.
[Figure 3] Fig. 3. : A view of R22 (8) ring motifs formed by C3—H3B···O2 interaction between to molecules. The C5—H5···.O3 forms an intramolecuar interaction. The Hydrogen bonds are shown in black dashed lines.
[Figure 4] Fig. 4. : The special type of intramolecular interaction is formed between C5—H5···.pi (Cg1: O1, C1, N1, N2 & C2), S2—O4···.pi (Cg2: C4, C5, C6, C7, C8 & C9) and C7—CL···.pi (Cg3: C13, C14, C15, C16, C17 & C18) with a distance of 3.17, 3.52 and 4.49 Å respectively. The centroids are shown in different color with corresponding labeling.
[Figure 5] Fig. 5. : The intermolecular C12—H12···.O5 and C6—H6···.O4 interaction are shown.
[Figure 6] Fig. 6. : a) The molecular interaction showing the C—H···pi interaction between two molecules, in which the Cg is the centriod of C4—C9 ring. b) The pi-pi stacking interaction also shown between the oxadiazole ring. The contacts distance are shown in black dashed lines.
N-(4-Chlorophenyl)-1-(5-{[(2-phenylethenyl)sulfonyl]methyl}- 1,3,4-oxadiazol-2-yl)methanesulfonamide top
Crystal data top
C18H16ClN3O5S2F(000) = 936
Mr = 453.93Dx = 1.513 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 2041 reflections
a = 21.1387 (12) Åθ = 2.6–29.2°
b = 5.4443 (2) ŵ = 0.43 mm1
c = 18.3484 (11) ÅT = 293 K
β = 107.810 (7)°Plate, colourless
V = 2010.4 (2) Å30.20 × 0.20 × 0.06 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3541 independent reflections
Radiation source: Enhance (Mo) X-ray Source2114 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 15.9821 pixels mm-1θmax = 25.0°, θmin = 2.6°
ω scansh = 2522
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 66
Tmin = 0.917, Tmax = 0.974l = 221
8939 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3541 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C18H16ClN3O5S2V = 2010.4 (2) Å3
Mr = 453.93Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.1387 (12) ŵ = 0.43 mm1
b = 5.4443 (2) ÅT = 293 K
c = 18.3484 (11) Å0.20 × 0.20 × 0.06 mm
β = 107.810 (7)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3541 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2114 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.974Rint = 0.052
8939 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 0.87Δρmax = 0.26 e Å3
3541 reflectionsΔρmin = 0.29 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10737 (6)0.1465 (2)0.99341 (7)0.0506 (4)
S20.20592 (5)0.11531 (16)0.70760 (6)0.0365 (3)
Cl0.40975 (8)0.2776 (3)0.90563 (11)0.0990 (6)
O10.09206 (13)0.0641 (5)0.80065 (15)0.0409 (7)
O50.21845 (15)0.2584 (5)0.64804 (18)0.0506 (8)
O40.22585 (15)0.2151 (5)0.78332 (18)0.0558 (9)
O20.08523 (16)0.0536 (7)1.05419 (19)0.0720 (10)
N10.07298 (17)0.2839 (6)0.7363 (2)0.0450 (9)
C10.09493 (18)0.0632 (7)0.7380 (2)0.0348 (9)
O30.11247 (18)0.4033 (6)0.9846 (2)0.0719 (10)
N30.17730 (17)0.0164 (7)1.0028 (2)0.0574 (11)
H30.18360.11711.02910.069*
N20.05241 (18)0.3095 (7)0.8019 (2)0.0500 (10)
C100.11833 (19)0.0673 (7)0.6803 (2)0.0403 (10)
H10A0.10500.02600.63310.048*
H10B0.09630.22560.67010.048*
C130.3483 (2)0.0561 (7)0.6906 (3)0.0454 (11)
C140.3805 (2)0.0969 (8)0.6365 (3)0.0577 (13)
H140.36840.23160.60400.069*
C70.3391 (2)0.1971 (9)0.9301 (3)0.0568 (13)
C60.2849 (3)0.3435 (8)0.9081 (3)0.0530 (12)
H60.28470.48180.87830.064*
C80.3399 (2)0.0127 (9)0.9717 (3)0.0557 (13)
H80.37670.11580.98390.067*
C90.2858 (2)0.0691 (8)0.9950 (3)0.0496 (11)
H90.28630.20971.02390.059*
C180.3694 (2)0.1416 (8)0.7403 (3)0.0526 (13)
H180.34970.17150.77830.063*
C30.0515 (2)0.0242 (9)0.9082 (2)0.0534 (12)
H3A0.05350.15370.91120.064*
H3B0.00670.07300.90540.064*
C120.2957 (2)0.2238 (7)0.6963 (3)0.0539 (13)
H120.30470.38940.69210.065*
C110.2379 (2)0.1785 (7)0.7066 (3)0.0464 (12)
H110.21270.31120.71370.056*
C50.2297 (2)0.2862 (8)0.9301 (3)0.0513 (12)
H50.19200.38480.91440.062*
C20.06481 (19)0.1027 (8)0.8369 (2)0.0412 (10)
C40.2303 (2)0.0831 (7)0.9755 (2)0.0442 (11)
C170.4193 (2)0.2922 (9)0.7334 (3)0.0633 (15)
H170.43300.42300.76710.076*
C150.4302 (2)0.0575 (10)0.6295 (3)0.0667 (15)
H150.45070.02830.59210.080*
C160.4491 (2)0.2543 (9)0.6781 (4)0.0674 (16)
H160.48200.36100.67330.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0458 (7)0.0765 (9)0.0334 (7)0.0029 (6)0.0177 (5)0.0018 (6)
S20.0403 (6)0.0290 (5)0.0402 (7)0.0032 (4)0.0122 (5)0.0008 (5)
Cl0.0756 (11)0.1391 (14)0.1018 (13)0.0272 (9)0.0562 (10)0.0005 (10)
O10.0424 (17)0.0491 (16)0.0336 (17)0.0029 (13)0.0153 (14)0.0082 (13)
O50.0518 (19)0.0459 (16)0.056 (2)0.0031 (13)0.0189 (16)0.0183 (14)
O40.053 (2)0.0610 (18)0.050 (2)0.0075 (14)0.0103 (16)0.0195 (16)
O20.059 (2)0.123 (3)0.042 (2)0.000 (2)0.0281 (17)0.003 (2)
N10.048 (2)0.050 (2)0.040 (2)0.0115 (17)0.0184 (18)0.0058 (17)
C10.030 (2)0.043 (2)0.029 (2)0.0014 (17)0.0059 (18)0.0037 (18)
O30.091 (3)0.063 (2)0.066 (3)0.0071 (18)0.032 (2)0.0110 (17)
N30.039 (2)0.078 (3)0.057 (3)0.0039 (19)0.0164 (19)0.027 (2)
N20.051 (2)0.060 (2)0.042 (2)0.0137 (18)0.0184 (19)0.0010 (19)
C100.043 (3)0.043 (2)0.037 (3)0.0001 (19)0.015 (2)0.0014 (19)
C130.039 (3)0.038 (2)0.059 (3)0.0046 (19)0.014 (2)0.004 (2)
C140.050 (3)0.054 (3)0.067 (4)0.001 (2)0.014 (3)0.013 (2)
C70.060 (3)0.070 (3)0.048 (3)0.019 (3)0.027 (3)0.014 (3)
C60.069 (4)0.052 (3)0.042 (3)0.006 (2)0.023 (3)0.008 (2)
C80.050 (3)0.063 (3)0.057 (3)0.006 (2)0.022 (3)0.005 (3)
C90.053 (3)0.048 (2)0.048 (3)0.005 (2)0.016 (2)0.007 (2)
C180.039 (3)0.049 (3)0.069 (4)0.001 (2)0.015 (2)0.007 (2)
C30.044 (3)0.083 (3)0.037 (3)0.005 (2)0.020 (2)0.002 (2)
C120.051 (3)0.034 (2)0.080 (4)0.002 (2)0.026 (3)0.006 (2)
C110.042 (3)0.032 (2)0.069 (3)0.0069 (18)0.023 (2)0.003 (2)
C50.047 (3)0.053 (3)0.053 (3)0.000 (2)0.013 (2)0.013 (2)
C20.031 (2)0.059 (3)0.034 (3)0.0007 (19)0.0091 (19)0.001 (2)
C40.041 (3)0.057 (3)0.033 (3)0.009 (2)0.010 (2)0.000 (2)
C170.039 (3)0.057 (3)0.087 (4)0.005 (2)0.010 (3)0.015 (3)
C150.046 (3)0.085 (4)0.075 (4)0.003 (3)0.027 (3)0.010 (3)
C160.043 (3)0.061 (3)0.096 (5)0.002 (2)0.018 (3)0.013 (3)
Geometric parameters (Å, º) top
S1—O31.415 (3)C7—C61.353 (7)
S1—O21.428 (3)C7—C81.370 (7)
S1—N31.600 (4)C6—C51.383 (6)
S1—C31.775 (5)C6—H60.9300
S2—O41.430 (3)C8—C91.373 (6)
S2—O51.431 (3)C8—H80.9300
S2—C111.739 (4)C9—C41.391 (6)
S2—C101.783 (4)C9—H90.9300
Cl—C71.741 (5)C18—C171.371 (6)
O1—C21.354 (5)C18—H180.9300
O1—C11.359 (4)C3—C21.484 (6)
N1—C11.285 (5)C3—H3A0.9700
N1—N21.406 (5)C3—H3B0.9700
C1—C101.480 (5)C12—C111.315 (6)
N3—C41.409 (5)C12—H120.9300
N3—H30.8600C11—H110.9300
N2—C21.283 (5)C5—C41.381 (6)
C10—H10A0.9700C5—H50.9300
C10—H10B0.9700C17—C161.365 (7)
C13—C141.382 (6)C17—H170.9300
C13—C181.393 (6)C15—C161.373 (7)
C13—C121.468 (6)C15—H150.9300
C14—C151.382 (6)C16—H160.9300
C14—H140.9300
O3—S1—O2119.6 (2)C5—C6—H6120.2
O3—S1—O2119.6 (2)C7—C8—C9119.4 (4)
O3—S1—N3110.4 (2)C7—C8—H8120.3
O3—S1—N3110.4 (2)C9—C8—H8120.3
O2—S1—N3105.8 (2)C8—C9—C4120.3 (4)
O3—S1—C3108.9 (2)C8—C9—H9119.9
O3—S1—C3108.9 (2)C4—C9—H9119.9
O2—S1—C3105.4 (2)C17—C18—C13120.1 (5)
N3—S1—C3105.8 (2)C17—C18—H18119.9
O4—S2—O5117.81 (18)C13—C18—H18119.9
O4—S2—C11111.1 (2)C2—C3—S1114.5 (3)
O5—S2—C11109.2 (2)C2—C3—H3A108.6
O4—S2—C10107.48 (19)S1—C3—H3A108.6
O5—S2—C10106.52 (18)C2—C3—H3B108.6
C11—S2—C10103.63 (19)S1—C3—H3B108.6
C2—O1—C1102.1 (3)H3A—C3—H3B107.6
C1—N1—N2106.0 (3)C11—C12—C13130.7 (4)
N1—C1—O1112.8 (4)C11—C12—H12114.7
N1—C1—C10129.0 (4)C13—C12—H12114.7
O1—C1—C10118.1 (3)C12—C11—S2123.7 (3)
C4—N3—S1131.0 (3)C12—C11—H11118.1
C4—N3—H3114.5S2—C11—H11118.1
S1—N3—H3114.5C4—C5—C6120.2 (4)
C2—N2—N1105.8 (3)C4—C5—H5119.9
C1—C10—S2114.5 (3)C6—C5—H5119.9
C1—C10—H10A108.6N2—C2—O1113.3 (4)
S2—C10—H10A108.6N2—C2—C3129.0 (4)
C1—C10—H10B108.6O1—C2—C3117.7 (4)
S2—C10—H10B108.6C5—C4—C9118.9 (4)
H10A—C10—H10B107.6C5—C4—N3124.0 (4)
C14—C13—C18117.8 (4)C9—C4—N3117.1 (4)
C14—C13—C12120.1 (4)C16—C17—C18121.5 (5)
C18—C13—C12122.0 (4)C16—C17—H17119.3
C15—C14—C13121.6 (5)C18—C17—H17119.3
C15—C14—H14119.2C16—C15—C14119.5 (5)
C13—C14—H14119.2C16—C15—H15120.2
C6—C7—C8121.5 (4)C14—C15—H15120.2
C6—C7—Cl119.3 (4)C17—C16—C15119.5 (5)
C8—C7—Cl119.2 (4)C17—C16—H16120.3
C7—C6—C5119.6 (4)C15—C16—H16120.3
C7—C6—H6120.2
N2—N1—C1—O11.1 (4)O2—S1—C3—C2178.8 (3)
N2—N1—C1—C10175.3 (4)N3—S1—C3—C269.4 (4)
C2—O1—C1—N10.9 (4)C14—C13—C12—C11138.1 (6)
C2—O1—C1—C10175.9 (3)C18—C13—C12—C1144.4 (8)
O3—S1—N3—C428.4 (5)C13—C12—C11—S26.0 (9)
O3—S1—N3—C428.4 (5)O4—S2—C11—C1289.9 (5)
O2—S1—N3—C4159.1 (4)O5—S2—C11—C1241.7 (5)
C3—S1—N3—C489.3 (5)C10—S2—C11—C12154.9 (5)
C1—N1—N2—C20.8 (4)C7—C6—C5—C41.1 (7)
N1—C1—C10—S2108.0 (4)N1—N2—C2—O10.2 (5)
O1—C1—C10—S275.8 (4)N1—N2—C2—C3178.2 (4)
O4—S2—C10—C148.6 (3)C1—O1—C2—N20.4 (4)
O5—S2—C10—C1175.8 (3)C1—O1—C2—C3177.8 (3)
C11—S2—C10—C169.1 (3)S1—C3—C2—N276.1 (6)
C18—C13—C14—C152.5 (7)S1—C3—C2—O1106.1 (4)
C12—C13—C14—C15179.9 (5)C6—C5—C4—C93.4 (7)
C8—C7—C6—C52.4 (7)C6—C5—C4—N3177.6 (4)
Cl—C7—C6—C5177.2 (4)C8—C9—C4—C52.3 (7)
C6—C7—C8—C93.5 (7)C8—C9—C4—N3178.6 (4)
Cl—C7—C8—C9176.2 (4)S1—N3—C4—C52.1 (7)
C7—C8—C9—C41.1 (7)S1—N3—C4—C9178.9 (3)
C14—C13—C18—C171.8 (7)C13—C18—C17—C160.3 (7)
C12—C13—C18—C17179.3 (4)C13—C14—C15—C161.1 (8)
O3—S1—C3—C249.3 (4)C18—C17—C16—C151.8 (8)
O3—S1—C3—C249.3 (4)C14—C15—C16—C171.0 (8)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O30.932.413.010 (6)122
N3—H3···O5i0.862.192.900 (5)140
C3—H3B···O2ii0.972.383.198 (5)141
C6—H6···O4iii0.932.453.290 (5)151
C12—H12···O5iii0.932.603.242 (5)127
C14—H14···Cgiv0.932.903.670 (5)141
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y, z+2; (iii) x, y+1, z; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H16ClN3O5S2
Mr453.93
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)21.1387 (12), 5.4443 (2), 18.3484 (11)
β (°) 107.810 (7)
V3)2010.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.20 × 0.20 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.917, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
8939, 3541, 2114
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.171, 0.87
No. of reflections3541
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O30.932.413.010 (6)122
N3—H3···O5i0.862.192.900 (5)140
C3—H3B···O2ii0.972.383.198 (5)141
C6—H6···O4iii0.932.453.290 (5)151
C12—H12···O5iii0.932.603.242 (5)127
C14—H14···Cgiv0.932.903.670 (5)141
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y, z+2; (iii) x, y+1, z; (iv) x, y+1/2, z1/2.
 

Acknowledgements

AP is grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi, for financial assistance under a major research project. AM is thankful to the CSIR for the sanction of a Senior Research Fellowship. MK and RK thank the Centre for Bioinformatics (funded by the Department of Biotechnology and Department of Information Technology, New Delhi, India), Pondicherry University, for providing the computational facilities to carry out this research work. MK also thanks the University Grants Commission (UGC) for a Rajiv Gandhi National Fellowship (No. F. 14–2(SC)/2009 (SA-III)).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMuralikrishna, A., Venkatesh, B. C., Padmavathi, V., Padmaja, A., Kondaiah, P. & Siva Krishna, N. (2012). Eur. J. Med. Chem. 54, 605–614.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPadmaja, A., Muralikrishna, A., Rajasekhar, C. & Padmavathi, V. (2011). Chem. Pharm. Bull. 59, 1509–1517.  CrossRef CAS PubMed Google Scholar
First citationRanjith, S., Thenmozhi, S., Manikannan, R., Muthusubramanian, S. & Subbiahpandi, A. (2009). Acta Cryst. E65, o581.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYou, X.-L., Lu, C.-R., Zhang, Y. & Zhang, D.-C. (2004). Acta Cryst. C60, o693–o695.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds