organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Meth­­oxy-N′-(3,4,5-trihy­dr­oxy­benzyl­­idene)benzohydrazide methanol monosolvate

aAtta-ur-Rahman Research Institute for Natural Products Discovery (RiND), Universiti Tecknologi MARA, Puncak Alam, 42300 Selangor, Malaysia, bFaculty of Pharmacy, Universiti Tecknologi MARA, Puncak Alam, 42300 Selangor, Malaysia, and cH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 14 August 2012; accepted 22 August 2012; online 5 September 2012)

The title compound, C15H14N2O5·CH3OH, displays an E conformation about the azomethine double bond [C=N = 1.277 (2) Å] and the benzene rings are inclined to one another by 18.28 (9)°. An intra­molecular O—H⋯O hydrogen bond occurs between the para-OH group and one of the meta-O atoms of the 3,4,5-trihy­droxy­benzyl­idene group. In the crystal, the components are linked into a three dimensional network by O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds.

Related literature

For the biological activity of benzohydrazides see: Khan et al. (2012[Khan, M. K., Taha, M., Naz, F., Ali, S., Perveen, S. & Choudhary, M. I. (2012). Med. Chem. 8, 705-710.]). For a related structure, see: Bao & Wei (2008[Bao, X. & Wei, Y.-J. (2008). Acta Cryst. E64, o1682.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O5·CH4O

  • Mr = 334.32

  • Monoclinic, P 21 /c

  • a = 11.1846 (7) Å

  • b = 11.1909 (7) Å

  • c = 13.1806 (8) Å

  • β = 110.368 (1)°

  • V = 1546.61 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.20 × 0.14 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.991

  • 8994 measured reflections

  • 2787 independent reflections

  • 2230 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.114

  • S = 1.03

  • 2787 reflections

  • 239 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4i 0.77 (3) 2.52 (2) 3.165 (2) 142 (2)
O1—H1A⋯N1i 0.77 (2) 2.36 (3) 3.040 (2) 147 (2)
O2—H2A⋯O1 0.79 (2) 2.20 (2) 2.643 (2) 117 (2)
O2—H2A⋯O4ii 0.79 (2) 2.22 (2) 2.877 (2) 142 (2)
O3—H3A⋯O4iii 0.86 (2) 1.93 (2) 2.782 (2) 170 (2)
O6—H6A⋯O2iv 0.91 (3) 1.87 (3) 2.771 (2) 171 (2)
N2—H2B⋯O6v 0.80 (2) 2.12 (2) 2.893 (2) 162 (2)
C7—H7A⋯O6v 0.93 2.58 3.297 (3) 134
C14—H14A⋯O6v 0.93 2.37 3.259 (3) 159
C15—H15A⋯O5vi 0.96 2.55 3.224 (3) 127
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) -x, -y+1, -z; (iv) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (v) -x+1, -y+1, -z; (vi) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is a phenyl hydrazine derivative synthesized as a part of our ongoing resaerch to study different biological activities of this medicinally important class of organic compounds (Khan et al. 2012) and establish an structure activity relationship. The structure of title compound (Fig. 1) is similar to that of the previously published N'-(4-Hydroxybenzylidene)-4-methoxybenzohydrazide (Bao et al., 2008) with the difference that 4-Hydroxy benzne ring is replaced by 3,4,5-trihydroxy phenyl ring (C1–C6). The azomethine (C=N,1.277 (2) Å) double bond adopt an E configuration (Fig. 1. The benzene rings (C1–C6 and C9–C14) are each almost planner with dihedral angle 18.28 (9)° between them and maximum deviation of -0.015 (2) Å for C11 atom from the root mean square plane of methoxy substituted benzene ring (C9–C14). The bond lengths and angle were found to be similar as in structurally realted compound (Bao et al., 2008). O1—H1A···O4, O1—N1···O4, O2—H2A···O4, O3—H3A···O4, and C15—H15A···O5 hydrogen bonds link the molecules and form a two-dimensional-network, which is further extended to three-dimensional-network due to the intermolecular linkages (N2—H2B···O6, O6—H6A···O2,C7—H7A···O6 and C14—H14A···O6) made by mathanol solvates (symmetry codes as in Table 2 and Fig. 2).

Related literature top

For the biological activity of benzohydrazides see: Khan et al. (2012). For a related structure, see: Bao & Wei (2008).

Experimental top

The title compound was synthesized by refluxing in methanol (20 ml) a mixture of 2 mmol of 4-methoxybenzohydrazide (0.332 g), 2 mmol 3,4,5-trihydroxybenzaldehyde monohydrated (0.344 g) and catalytical amount of acetic acid for 3 h. The progress of reaction was monitored by TLC. After completion of reaction, the solvent was evaporated by vacuum to afford crude product which was further recrystallized from methanol solution to obtain colourless plates in 77% yield (0.466 g).

Refinement top

H atoms on Methyl, phenyl and methine were positioned geometrically with C—H = 0.95 Å (CH3), and 0.93 Å (CH) and constrained to ride on their parent atoms with Uiso(H)= 1.5Ueq(CH3) 1.2Ueq(CH). The H atoms on the nitrogen (N–H= 0.80 (2) Å) and oxygen (O–H= 0.91 (3)–0.77 (3) Å) atoms were located in difference fourier maps and refined isotropically. A rotating group model was applied to the methyl groups.

Structure description top

The title compound is a phenyl hydrazine derivative synthesized as a part of our ongoing resaerch to study different biological activities of this medicinally important class of organic compounds (Khan et al. 2012) and establish an structure activity relationship. The structure of title compound (Fig. 1) is similar to that of the previously published N'-(4-Hydroxybenzylidene)-4-methoxybenzohydrazide (Bao et al., 2008) with the difference that 4-Hydroxy benzne ring is replaced by 3,4,5-trihydroxy phenyl ring (C1–C6). The azomethine (C=N,1.277 (2) Å) double bond adopt an E configuration (Fig. 1. The benzene rings (C1–C6 and C9–C14) are each almost planner with dihedral angle 18.28 (9)° between them and maximum deviation of -0.015 (2) Å for C11 atom from the root mean square plane of methoxy substituted benzene ring (C9–C14). The bond lengths and angle were found to be similar as in structurally realted compound (Bao et al., 2008). O1—H1A···O4, O1—N1···O4, O2—H2A···O4, O3—H3A···O4, and C15—H15A···O5 hydrogen bonds link the molecules and form a two-dimensional-network, which is further extended to three-dimensional-network due to the intermolecular linkages (N2—H2B···O6, O6—H6A···O2,C7—H7A···O6 and C14—H14A···O6) made by mathanol solvates (symmetry codes as in Table 2 and Fig. 2).

For the biological activity of benzohydrazides see: Khan et al. (2012). For a related structure, see: Bao & Wei (2008).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound I. Only hydrogen atoms involved in hydrogen bonding are shown.
(E)-4-Methoxy-N'-(3,4,5-trihydroxybenzylidene)benzohydrazide methanol monosolvate top
Crystal data top
C15H14N2O5·CH4OF(000) = 704
Mr = 334.32Dx = 1.436 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.1846 (7) ÅCell parameters from 506 reflections
b = 11.1909 (7) Åθ = 2.9–18.7°
c = 13.1806 (8) ŵ = 0.11 mm1
β = 110.368 (1)°T = 298 K
V = 1546.61 (17) Å3Plate, colourless
Z = 40.20 × 0.14 × 0.08 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2787 independent reflections
Radiation source: fine-focus sealed tube2230 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scanθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1313
Tmin = 0.978, Tmax = 0.991k = 1313
8994 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.3148P]
where P = (Fo2 + 2Fc2)/3
2787 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H14N2O5·CH4OV = 1546.61 (17) Å3
Mr = 334.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1846 (7) ŵ = 0.11 mm1
b = 11.1909 (7) ÅT = 298 K
c = 13.1806 (8) Å0.20 × 0.14 × 0.08 mm
β = 110.368 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2787 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2230 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.991Rint = 0.026
8994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.22 e Å3
2787 reflectionsΔρmin = 0.23 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01454 (13)0.88419 (13)0.45071 (12)0.0441 (4)
O20.21003 (12)0.80276 (13)0.45786 (12)0.0444 (4)
O30.23582 (12)0.64930 (13)0.31207 (12)0.0433 (4)
O40.27016 (11)0.46606 (12)0.13725 (10)0.0392 (4)
O50.84976 (13)0.48797 (14)0.44630 (12)0.0565 (5)
N10.23081 (13)0.59842 (13)0.03975 (12)0.0316 (4)
N20.35158 (14)0.57371 (14)0.03333 (13)0.0324 (4)
C10.00733 (16)0.64529 (15)0.21803 (15)0.0310 (4)
H1C0.01510.59260.16610.037*
C20.11475 (15)0.68460 (15)0.30027 (15)0.0302 (4)
C30.10337 (15)0.76480 (15)0.37722 (15)0.0303 (4)
C40.01662 (17)0.80498 (15)0.37121 (15)0.0309 (4)
C50.12434 (16)0.76476 (16)0.29044 (15)0.0334 (4)
H5A0.20450.79070.28750.040*
C60.11294 (15)0.68481 (15)0.21292 (14)0.0297 (4)
C70.22964 (16)0.64711 (16)0.12773 (15)0.0319 (4)
H7A0.30700.65910.13790.038*
C80.36450 (15)0.51158 (14)0.12353 (14)0.0285 (4)
C90.49511 (16)0.50096 (15)0.20356 (14)0.0298 (4)
C100.52163 (17)0.41047 (16)0.28054 (16)0.0351 (4)
H10A0.45840.35530.27790.042*
C110.63947 (17)0.40068 (17)0.36061 (16)0.0383 (5)
H11A0.65580.33820.41010.046*
C120.73406 (17)0.48409 (17)0.36761 (16)0.0395 (5)
C130.71055 (18)0.57266 (18)0.28968 (17)0.0449 (5)
H13A0.77450.62670.29190.054*
C140.59328 (17)0.58108 (16)0.20925 (16)0.0385 (5)
H14A0.57880.64110.15760.046*
C150.8744 (2)0.4109 (2)0.53777 (18)0.0556 (6)
H15A0.95660.42910.59010.083*
H15B0.87310.32920.51500.083*
H15C0.81000.42250.56960.083*
O60.47061 (15)0.26843 (15)0.01508 (15)0.0603 (5)
C160.4983 (3)0.1595 (2)0.0630 (2)0.0762 (8)
H16A0.58790.14390.08220.114*
H16B0.45070.09910.01360.114*
H16C0.47590.15830.12700.114*
H2B0.4110 (19)0.6045 (17)0.0225 (16)0.034 (5)*
H2A0.190 (2)0.846 (2)0.496 (2)0.058 (8)*
H1A0.083 (2)0.897 (2)0.448 (2)0.057 (8)*
H3A0.238 (2)0.609 (2)0.257 (2)0.059 (7)*
H6A0.384 (3)0.274 (3)0.010 (2)0.093 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0267 (7)0.0576 (9)0.0482 (10)0.0040 (6)0.0133 (7)0.0264 (7)
O20.0245 (7)0.0606 (9)0.0436 (9)0.0040 (6)0.0062 (6)0.0261 (7)
O30.0233 (7)0.0627 (9)0.0404 (9)0.0039 (6)0.0067 (6)0.0198 (7)
O40.0273 (7)0.0557 (8)0.0321 (8)0.0078 (6)0.0073 (6)0.0068 (6)
O50.0318 (7)0.0713 (10)0.0498 (10)0.0093 (7)0.0066 (7)0.0251 (8)
N10.0213 (7)0.0384 (8)0.0298 (9)0.0029 (6)0.0024 (7)0.0042 (7)
N20.0179 (7)0.0440 (9)0.0319 (9)0.0009 (6)0.0045 (7)0.0084 (7)
C10.0292 (9)0.0379 (9)0.0239 (10)0.0006 (7)0.0066 (8)0.0051 (7)
C20.0221 (8)0.0372 (9)0.0305 (11)0.0005 (7)0.0082 (8)0.0019 (8)
C30.0226 (8)0.0376 (9)0.0283 (10)0.0052 (7)0.0059 (8)0.0058 (8)
C40.0301 (9)0.0340 (9)0.0307 (10)0.0025 (7)0.0131 (8)0.0072 (8)
C50.0213 (8)0.0413 (10)0.0367 (11)0.0002 (7)0.0090 (8)0.0054 (8)
C60.0245 (9)0.0354 (9)0.0266 (10)0.0026 (7)0.0054 (8)0.0005 (7)
C70.0231 (9)0.0403 (9)0.0310 (11)0.0000 (7)0.0077 (8)0.0021 (8)
C80.0257 (9)0.0309 (8)0.0281 (10)0.0005 (7)0.0084 (8)0.0019 (7)
C90.0269 (9)0.0331 (9)0.0269 (10)0.0007 (7)0.0064 (8)0.0004 (7)
C100.0290 (9)0.0371 (9)0.0372 (12)0.0044 (7)0.0091 (9)0.0045 (8)
C110.0340 (10)0.0402 (10)0.0365 (12)0.0021 (8)0.0069 (9)0.0127 (8)
C120.0264 (9)0.0493 (11)0.0361 (12)0.0001 (8)0.0024 (9)0.0078 (9)
C130.0303 (10)0.0509 (11)0.0460 (13)0.0109 (8)0.0037 (9)0.0118 (10)
C140.0338 (10)0.0419 (10)0.0340 (12)0.0040 (8)0.0046 (9)0.0112 (8)
C150.0387 (12)0.0720 (15)0.0424 (14)0.0027 (10)0.0030 (10)0.0214 (11)
O60.0305 (8)0.0738 (11)0.0694 (12)0.0075 (7)0.0084 (8)0.0217 (9)
C160.0721 (18)0.0712 (17)0.091 (2)0.0080 (14)0.0349 (17)0.0196 (16)
Geometric parameters (Å, º) top
O1—C41.366 (2)C6—C71.457 (2)
O1—H1A0.77 (3)C7—H7A0.9300
O2—C31.360 (2)C8—C91.479 (2)
O2—H2A0.78 (3)C9—C101.391 (2)
O3—C21.366 (2)C9—C141.399 (2)
O3—H3A0.86 (3)C10—C111.376 (3)
O4—C81.240 (2)C10—H10A0.9300
O5—C121.348 (2)C11—C121.390 (3)
O5—C151.429 (2)C11—H11A0.9300
N1—C71.277 (2)C12—C131.385 (3)
N1—N21.3867 (19)C13—C141.373 (3)
N2—C81.341 (2)C13—H13A0.9300
N2—H2B0.80 (2)C14—H14A0.9300
C1—C21.380 (2)C15—H15A0.9600
C1—C61.395 (2)C15—H15B0.9600
C1—H1C0.9300C15—H15C0.9600
C2—C31.393 (2)O6—C161.358 (3)
C3—C41.391 (2)O6—H6A0.91 (3)
C4—C51.376 (2)C16—H16A0.9600
C5—C61.397 (3)C16—H16B0.9600
C5—H5A0.9300C16—H16C0.9600
C4—O1—H1A109.2 (18)C10—C9—C14117.61 (16)
C3—O2—H2A108.8 (18)C10—C9—C8119.06 (15)
C2—O3—H3A111.6 (16)C14—C9—C8123.27 (16)
C12—O5—C15118.75 (15)C11—C10—C9121.43 (16)
C7—N1—N2114.55 (14)C11—C10—H10A119.3
C8—N2—N1119.84 (15)C9—C10—H10A119.3
C8—N2—H2B122.6 (14)C10—C11—C12120.08 (17)
N1—N2—H2B117.2 (14)C10—C11—H11A120.0
C2—C1—C6119.86 (16)C12—C11—H11A120.0
C2—C1—H1C120.1O5—C12—C13115.53 (16)
C6—C1—H1C120.1O5—C12—C11125.27 (17)
O3—C2—C1123.67 (16)C13—C12—C11119.19 (17)
O3—C2—C3116.20 (15)C14—C13—C12120.36 (17)
C1—C2—C3120.13 (15)C14—C13—H13A119.8
O2—C3—C4120.65 (16)C12—C13—H13A119.8
O2—C3—C2119.50 (15)C13—C14—C9121.22 (17)
C4—C3—C2119.84 (16)C13—C14—H14A119.4
O1—C4—C5125.59 (16)C9—C14—H14A119.4
O1—C4—C3114.04 (16)O5—C15—H15A109.5
C5—C4—C3120.37 (16)O5—C15—H15B109.5
C4—C5—C6119.81 (16)H15A—C15—H15B109.5
C4—C5—H5A120.1O5—C15—H15C109.5
C6—C5—H5A120.1H15A—C15—H15C109.5
C1—C6—C5119.98 (16)H15B—C15—H15C109.5
C1—C6—C7122.38 (16)C16—O6—H6A106.1 (19)
C5—C6—C7117.64 (15)O6—C16—H16A109.5
N1—C7—C6123.15 (16)O6—C16—H16B109.5
N1—C7—H7A118.4H16A—C16—H16B109.5
C6—C7—H7A118.4O6—C16—H16C109.5
O4—C8—N2120.50 (16)H16A—C16—H16C109.5
O4—C8—C9122.83 (16)H16B—C16—H16C109.5
N2—C8—C9116.67 (15)
C7—N1—N2—C8173.13 (16)C5—C6—C7—N1162.91 (17)
C6—C1—C2—O3179.17 (17)N1—N2—C8—O47.0 (3)
C6—C1—C2—C30.9 (3)N1—N2—C8—C9173.02 (15)
O3—C2—C3—O20.1 (3)O4—C8—C9—C1019.5 (3)
C1—C2—C3—O2179.97 (16)N2—C8—C9—C10160.50 (16)
O3—C2—C3—C4179.83 (17)O4—C8—C9—C14157.59 (18)
C1—C2—C3—C40.2 (3)N2—C8—C9—C1422.5 (3)
O2—C3—C4—O10.9 (3)C14—C9—C10—C110.9 (3)
C2—C3—C4—O1179.34 (16)C8—C9—C10—C11176.26 (17)
O2—C3—C4—C5178.95 (17)C9—C10—C11—C121.7 (3)
C2—C3—C4—C50.8 (3)C15—O5—C12—C13171.0 (2)
O1—C4—C5—C6179.03 (17)C15—O5—C12—C118.2 (3)
C3—C4—C5—C61.2 (3)C10—C11—C12—O5175.53 (19)
C2—C1—C6—C50.5 (3)C10—C11—C12—C133.6 (3)
C2—C1—C6—C7179.59 (16)O5—C12—C13—C14176.38 (19)
C4—C5—C6—C10.5 (3)C11—C12—C13—C142.8 (3)
C4—C5—C6—C7178.63 (16)C12—C13—C14—C90.2 (3)
N2—N1—C7—C6177.28 (15)C10—C9—C14—C131.7 (3)
C1—C6—C7—N116.2 (3)C8—C9—C14—C13175.34 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.77 (3)2.52 (2)3.165 (2)142 (2)
O1—H1A···N1i0.77 (2)2.36 (3)3.040 (2)147 (2)
O2—H2A···O10.79 (2)2.20 (2)2.643 (2)117 (2)
O2—H2A···O4ii0.79 (2)2.22 (2)2.877 (2)142 (2)
O3—H3A···O4iii0.86 (2)1.93 (2)2.782 (2)170 (2)
O6—H6A···O2iv0.91 (3)1.87 (3)2.771 (2)171 (2)
N2—H2B···O6v0.80 (2)2.12 (2)2.893 (2)162 (2)
C7—H7A···O6v0.932.583.297 (3)134
C14—H14A···O6v0.932.373.259 (3)159
C15—H15A···O5vi0.962.553.224 (3)127
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x, y+1, z; (iv) x, y1/2, z1/2; (v) x+1, y+1, z; (vi) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H14N2O5·CH4O
Mr334.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.1846 (7), 11.1909 (7), 13.1806 (8)
β (°) 110.368 (1)
V3)1546.61 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.14 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.978, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
8994, 2787, 2230
Rint0.026
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.114, 1.03
No. of reflections2787
No. of parameters239
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.23

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.77 (3)2.52 (2)3.165 (2)142 (2)
O1—H1A···N1i0.77 (2)2.36 (3)3.040 (2)147 (2)
O2—H2A···O10.79 (2)2.20 (2)2.643 (2)117 (2)
O2—H2A···O4ii0.79 (2)2.22 (2)2.877 (2)142 (2)
O3—H3A···O4iii0.86 (2)1.93 (2)2.782 (2)170 (2)
O6—H6A···O2iv0.91 (3)1.87 (3)2.771 (2)171 (2)
N2—H2B···O6v0.80 (2)2.12 (2)2.893 (2)162 (2)
C7—H7A···O6v0.932.583.297 (3)134
C14—H14A···O6v0.932.373.259 (3)159
C15—H15A···O5vi0.962.553.224 (3)127
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x, y+1, z; (iv) x, y1/2, z1/2; (v) x+1, y+1, z; (vi) x+2, y+1, z+1.
 

References

First citationBao, X. & Wei, Y.-J. (2008). Acta Cryst. E64, o1682.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhan, M. K., Taha, M., Naz, F., Ali, S., Perveen, S. & Choudhary, M. I. (2012). Med. Chem. 8, 705–710.  Web of Science CAS PubMed Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds