organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-{[5-Bromo-2-(piperidin-1-yl)pyrimidin-4-yl]sulfan­yl}-4-meth­­oxy­phen­yl)-4-methyl­benzene­sulfonamide

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, bPG Department of Studies in Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysore 570 025, India, and cX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: mas@physics.uni-mysore.ac.in

(Received 28 August 2012; accepted 29 August 2012; online 1 September 2012)

In the title compound, C23H25BrN4O3S2, the benzene rings bridged by the sulfonamide group are tilted relative to each other by 69.7 (1)° and the dihedral angle between the sulfur-bridged pyrimidine and benzene rings is 70.4 (1)°. The mol­ecular conformation is stabilized by a weak intra­molecular ππ stacking inter­action between the pyrimidine and the 4-methyl benzene rings [centroid–centroid distance = 3.633 (2) Å]. The piperidine ring adopts a chair conformation. In the crystal, mol­ecules are linked into inversion dimers by pairs of N—H⋯O hydrogen bonds.

Related literature

For a related structure and background to sulfonamides, see: Kant et al. (2012[Kant, R., Gupta, V. K., Kapoor, K., Kumar, M., Mallesha, L. & Sridhar, M. A. (2012). Acta Cryst. E68, o2590-o2591.]).

[Scheme 1]

Experimental

Crystal data
  • C23H25BrN4O3S2

  • Mr = 549.50

  • Triclinic, [P \overline 1]

  • a = 9.8318 (3) Å

  • b = 10.3822 (3) Å

  • c = 13.4393 (4) Å

  • α = 96.654 (3)°

  • β = 103.085 (3)°

  • γ = 107.714 (3)°

  • V = 1247.36 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.85 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur CCD, Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.764, Tmax = 1.000

  • 41580 measured reflections

  • 4385 independent reflections

  • 3645 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.093

  • S = 1.03

  • 4385 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O2i 0.86 2.22 2.955 (4) 143
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of sulfonamides (Kant et al., 2012), we now report the structure of the title compound, (I), (Fig. 1).

The piperidine ring is exhibiting a chair conformation. The two benzene rings (C1—C6/C9—C14) are tilted relative to each other by 69.7 (1)° and the dihedral angle between the sulfur bridged pyrimidine and benzene rings is 70.4 (1)°. The molecular conformation is stabilized by a weak intramolecular stacking interaction between the pyrimidine and the 4 -methyl benzene rings [centroid–centroid distance = 3.633 (2) Å, interplanar spacing = 3.494 Å, and centroid shift = 1.00 Å]. In the crystal, molecules are linked into inversion dimers by pairs of N8—H8···O2 hydrogen bonds (Fig.2).

Related literature top

For a related structure and background to sulfonamides, see: Kant et al. (2012).

Experimental top

The reaction of N-[2-(5-bromo-2-piperidin-1-yl-pyrimidin-4-ylsulfanyl)-4-methoxy -phenyl]-4-methyl-benzenesulfonamide (5.01 g, 0.01 mol) and piperidine (0.86 g, 0.01 mol) were carried out in the presence of triethylamine and the reaction mixture was allowed to stir at room temperature for 6–7 h in dry dichloromethane. The progress of the reaction was monitored by TLC. Upon completion, the solvent was removed under reduced pressure and residue was extracted with ethyl acetate. The compound was purified by successive recrystallization from methanol (yield 83%, m. p. 483–485 K) to yield light brown blocks of (I).

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

As part of our ongoing studies of sulfonamides (Kant et al., 2012), we now report the structure of the title compound, (I), (Fig. 1).

The piperidine ring is exhibiting a chair conformation. The two benzene rings (C1—C6/C9—C14) are tilted relative to each other by 69.7 (1)° and the dihedral angle between the sulfur bridged pyrimidine and benzene rings is 70.4 (1)°. The molecular conformation is stabilized by a weak intramolecular stacking interaction between the pyrimidine and the 4 -methyl benzene rings [centroid–centroid distance = 3.633 (2) Å, interplanar spacing = 3.494 Å, and centroid shift = 1.00 Å]. In the crystal, molecules are linked into inversion dimers by pairs of N8—H8···O2 hydrogen bonds (Fig.2).

For a related structure and background to sulfonamides, see: Kant et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. A unit-cell packing view of the title compound down the a axis, showing intermolecular interactions. For clarity, hydrogen atoms which are not involved in hydrogen bonding have been omitted.
N-(2-{[5-Bromo-2-(piperidin-1-yl)pyrimidin-4-yl]sulfanyl}- 4-methoxyphenyl)-4-methylbenzenesulfonamide top
Crystal data top
C23H25BrN4O3S2Z = 2
Mr = 549.50F(000) = 564
Triclinic, P1Dx = 1.463 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8318 (3) ÅCell parameters from 16775 reflections
b = 10.3822 (3) Åθ = 3.4–29.1°
c = 13.4393 (4) ŵ = 1.85 mm1
α = 96.654 (3)°T = 293 K
β = 103.085 (3)°Block, light-brown
γ = 107.714 (3)°0.30 × 0.20 × 0.20 mm
V = 1247.36 (6) Å3
Data collection top
Oxford Diffraction Xcalibur CCD, Sapphire3
diffractometer
4385 independent reflections
Radiation source: fine-focus sealed tube3645 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 16.1049 pixels mm-1θmax = 25.0°, θmin = 3.4°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1212
Tmin = 0.764, Tmax = 1.000l = 1515
41580 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.9744P]
where P = (Fo2 + 2Fc2)/3
4385 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C23H25BrN4O3S2γ = 107.714 (3)°
Mr = 549.50V = 1247.36 (6) Å3
Triclinic, P1Z = 2
a = 9.8318 (3) ÅMo Kα radiation
b = 10.3822 (3) ŵ = 1.85 mm1
c = 13.4393 (4) ÅT = 293 K
α = 96.654 (3)°0.30 × 0.20 × 0.20 mm
β = 103.085 (3)°
Data collection top
Oxford Diffraction Xcalibur CCD, Sapphire3
diffractometer
4385 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3645 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 1.000Rint = 0.038
41580 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.03Δρmax = 0.66 e Å3
4385 reflectionsΔρmin = 0.52 e Å3
300 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.00669 (4)0.82027 (4)0.88239 (3)0.06852 (14)
S10.22673 (8)0.63699 (8)0.49289 (5)0.04950 (19)
S20.20227 (7)0.65245 (7)0.79943 (5)0.04366 (17)
O10.3610 (3)0.6577 (2)0.46369 (16)0.0639 (6)
O20.0875 (3)0.5665 (2)0.41649 (15)0.0656 (6)
C10.2248 (3)0.7998 (3)0.5459 (2)0.0449 (6)
C20.0995 (4)0.8109 (3)0.5695 (3)0.0582 (8)
H20.01640.73260.55930.070*
C30.0980 (4)0.9391 (4)0.6086 (3)0.0696 (9)
H30.01340.94630.62520.084*
C40.2194 (4)1.0571 (3)0.6237 (3)0.0642 (9)
C50.3433 (4)1.0432 (3)0.6002 (3)0.0672 (9)
H50.42611.12160.61000.081*
C60.3486 (3)0.9157 (3)0.5622 (2)0.0574 (8)
H60.43440.90820.54790.069*
C70.2160 (6)1.1970 (4)0.6657 (4)0.1016 (15)
H7A0.31021.25060.71420.152*
H7B0.13911.18580.70050.152*
H7C0.19651.24350.60920.152*
N80.2273 (3)0.5458 (2)0.58395 (17)0.0485 (6)
H80.14760.47930.58050.058*
C90.3552 (3)0.5726 (3)0.6691 (2)0.0428 (6)
C100.4798 (4)0.5487 (3)0.6516 (2)0.0599 (8)
H100.48000.51820.58380.072*
C110.6028 (4)0.5690 (4)0.7322 (3)0.0629 (8)
H110.68680.55580.71850.076*
C120.6023 (3)0.6090 (3)0.8336 (2)0.0527 (7)
C130.4792 (3)0.6322 (3)0.8528 (2)0.0451 (6)
H130.47830.65920.92100.054*
C140.3561 (3)0.6157 (2)0.7709 (2)0.0391 (6)
O150.7290 (2)0.6271 (3)0.9099 (2)0.0810 (8)
C160.7150 (4)0.5974 (4)1.0061 (3)0.0660 (9)
H16A0.68370.66491.04070.099*
H16B0.80900.59951.04800.099*
H16C0.64250.50740.99600.099*
C170.2812 (3)0.8343 (3)0.83612 (18)0.0391 (6)
N180.4152 (2)0.8963 (2)0.82825 (16)0.0399 (5)
C190.4729 (3)1.0343 (3)0.8579 (2)0.0444 (6)
N200.4065 (3)1.1143 (2)0.8998 (2)0.0560 (6)
C210.2713 (4)1.0476 (3)0.9059 (2)0.0584 (8)
H210.22121.09900.93370.070*
C220.2008 (3)0.9085 (3)0.8739 (2)0.0480 (7)
N230.6066 (3)1.0965 (2)0.8425 (2)0.0548 (6)
C240.6954 (4)1.0140 (3)0.8157 (3)0.0648 (9)
H24A0.63000.92090.78190.078*
H24B0.76261.00880.87890.078*
C250.7831 (4)1.0749 (4)0.7447 (3)0.0768 (10)
H25A0.71581.06580.67710.092*
H25B0.84881.02420.73500.092*
C260.8740 (4)1.2256 (4)0.7879 (3)0.0828 (11)
H26A0.94981.23430.85120.099*
H26B0.92331.26380.73770.099*
C270.7764 (4)1.3046 (4)0.8112 (3)0.0788 (11)
H27A0.83771.39920.84400.095*
H27B0.70971.30610.74630.095*
C280.6865 (4)1.2435 (3)0.8813 (3)0.0685 (9)
H28A0.75191.25780.95060.082*
H28B0.61601.29030.88650.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0502 (2)0.0873 (3)0.0799 (3)0.03164 (18)0.02998 (17)0.01633 (19)
S10.0587 (4)0.0511 (4)0.0322 (3)0.0106 (3)0.0140 (3)0.0029 (3)
S20.0408 (4)0.0443 (4)0.0436 (4)0.0102 (3)0.0162 (3)0.0030 (3)
O10.0750 (15)0.0739 (15)0.0493 (12)0.0249 (12)0.0317 (11)0.0101 (11)
O20.0735 (15)0.0658 (14)0.0344 (10)0.0018 (11)0.0058 (10)0.0003 (10)
C10.0497 (16)0.0481 (16)0.0329 (13)0.0118 (13)0.0089 (12)0.0108 (12)
C20.0544 (18)0.0514 (18)0.066 (2)0.0141 (14)0.0163 (15)0.0143 (15)
C30.070 (2)0.072 (2)0.079 (2)0.0362 (19)0.0254 (19)0.0203 (19)
C40.081 (2)0.0513 (19)0.058 (2)0.0264 (18)0.0082 (17)0.0154 (15)
C50.071 (2)0.0516 (19)0.061 (2)0.0040 (16)0.0074 (17)0.0133 (16)
C60.0541 (18)0.0562 (19)0.0553 (18)0.0088 (15)0.0157 (14)0.0115 (15)
C70.137 (4)0.063 (2)0.107 (3)0.050 (3)0.019 (3)0.012 (2)
N80.0601 (15)0.0382 (12)0.0391 (12)0.0074 (11)0.0136 (11)0.0029 (10)
C90.0565 (16)0.0323 (13)0.0421 (15)0.0160 (12)0.0181 (13)0.0060 (11)
C100.082 (2)0.065 (2)0.0509 (18)0.0386 (18)0.0351 (17)0.0115 (15)
C110.065 (2)0.076 (2)0.071 (2)0.0401 (18)0.0359 (18)0.0246 (18)
C120.0499 (17)0.0580 (18)0.0585 (18)0.0205 (14)0.0216 (14)0.0241 (15)
C130.0482 (15)0.0457 (15)0.0420 (15)0.0128 (12)0.0170 (12)0.0111 (12)
C140.0446 (14)0.0304 (13)0.0436 (14)0.0107 (11)0.0181 (12)0.0065 (11)
O150.0464 (13)0.125 (2)0.0810 (17)0.0292 (13)0.0216 (12)0.0489 (16)
C160.062 (2)0.065 (2)0.062 (2)0.0191 (17)0.0039 (16)0.0112 (17)
C170.0440 (15)0.0459 (15)0.0286 (12)0.0183 (12)0.0095 (11)0.0053 (11)
N180.0460 (12)0.0388 (12)0.0372 (11)0.0153 (10)0.0164 (10)0.0046 (9)
C190.0560 (17)0.0430 (15)0.0368 (14)0.0187 (13)0.0165 (12)0.0052 (12)
N200.0729 (17)0.0441 (14)0.0582 (15)0.0233 (13)0.0301 (13)0.0045 (11)
C210.074 (2)0.0546 (19)0.0634 (19)0.0356 (17)0.0342 (17)0.0089 (15)
C220.0498 (16)0.0595 (18)0.0442 (15)0.0268 (14)0.0198 (13)0.0107 (13)
N230.0581 (15)0.0410 (13)0.0651 (16)0.0119 (11)0.0273 (13)0.0036 (11)
C240.0604 (19)0.0529 (19)0.085 (2)0.0163 (15)0.0339 (18)0.0089 (17)
C250.069 (2)0.091 (3)0.084 (3)0.033 (2)0.037 (2)0.021 (2)
C260.065 (2)0.087 (3)0.101 (3)0.016 (2)0.036 (2)0.039 (2)
C270.080 (2)0.062 (2)0.094 (3)0.0160 (19)0.027 (2)0.029 (2)
C280.076 (2)0.0458 (18)0.073 (2)0.0069 (16)0.0225 (18)0.0026 (16)
Geometric parameters (Å, º) top
Br1—C221.885 (3)C13—C141.390 (4)
S1—O11.423 (2)C13—H130.9300
S1—O21.429 (2)O15—C161.390 (4)
S1—N81.632 (2)C16—H16A0.9600
S1—C11.764 (3)C16—H16B0.9600
S2—C171.769 (3)C16—H16C0.9600
S2—C141.778 (3)C17—N181.313 (3)
C1—C21.374 (4)C17—C221.393 (4)
C1—C61.380 (4)N18—C191.343 (3)
C2—C31.379 (5)C19—N201.350 (3)
C2—H20.9300C19—N231.351 (4)
C3—C41.382 (5)N20—C211.325 (4)
C3—H30.9300C21—C221.365 (4)
C4—C51.370 (5)C21—H210.9300
C4—C71.509 (5)N23—C281.456 (4)
C5—C61.383 (5)N23—C241.467 (4)
C5—H50.9300C24—C251.494 (5)
C6—H60.9300C24—H24A0.9700
C7—H7A0.9600C24—H24B0.9700
C7—H7B0.9600C25—C261.513 (5)
C7—H7C0.9600C25—H25A0.9700
N8—C91.425 (4)C25—H25B0.9700
N8—H80.8600C26—C271.499 (5)
C9—C101.385 (4)C26—H26A0.9700
C9—C141.386 (4)C26—H26B0.9700
C10—C111.371 (5)C27—C281.498 (5)
C10—H100.9300C27—H27A0.9700
C11—C121.380 (4)C27—H27B0.9700
C11—H110.9300C28—H28A0.9700
C12—O151.369 (4)C28—H28B0.9700
C12—C131.376 (4)
O1—S1—O2119.46 (13)O15—C16—H16A109.5
O1—S1—N8108.46 (14)O15—C16—H16B109.5
O2—S1—N8104.72 (13)H16A—C16—H16B109.5
O1—S1—C1107.97 (14)O15—C16—H16C109.5
O2—S1—C1107.66 (14)H16A—C16—H16C109.5
N8—S1—C1108.12 (12)H16B—C16—H16C109.5
C17—S2—C1499.34 (12)N18—C17—C22121.4 (3)
C2—C1—C6120.3 (3)N18—C17—S2119.23 (19)
C2—C1—S1119.8 (2)C22—C17—S2119.4 (2)
C6—C1—S1119.9 (2)C17—N18—C19117.9 (2)
C1—C2—C3119.4 (3)N18—C19—N20125.1 (3)
C1—C2—H2120.3N18—C19—N23116.7 (2)
C3—C2—H2120.3N20—C19—N23118.2 (3)
C2—C3—C4121.5 (3)C21—N20—C19115.0 (3)
C2—C3—H3119.3N20—C21—C22124.3 (3)
C4—C3—H3119.3N20—C21—H21117.8
C5—C4—C3118.0 (3)C22—C21—H21117.8
C5—C4—C7121.0 (4)C21—C22—C17116.3 (3)
C3—C4—C7121.0 (4)C21—C22—Br1122.2 (2)
C4—C5—C6121.7 (3)C17—C22—Br1121.5 (2)
C4—C5—H5119.1C19—N23—C28121.4 (2)
C6—C5—H5119.1C19—N23—C24120.1 (2)
C1—C6—C5119.1 (3)C28—N23—C24115.9 (3)
C1—C6—H6120.4N23—C24—C25111.5 (3)
C5—C6—H6120.4N23—C24—H24A109.3
C4—C7—H7A109.5C25—C24—H24A109.3
C4—C7—H7B109.5N23—C24—H24B109.3
H7A—C7—H7B109.5C25—C24—H24B109.3
C4—C7—H7C109.5H24A—C24—H24B108.0
H7A—C7—H7C109.5C24—C25—C26111.6 (3)
H7B—C7—H7C109.5C24—C25—H25A109.3
C9—N8—S1122.28 (19)C26—C25—H25A109.3
C9—N8—H8118.9C24—C25—H25B109.3
S1—N8—H8118.9C26—C25—H25B109.3
C10—C9—C14118.4 (3)H25A—C25—H25B108.0
C10—C9—N8120.0 (2)C27—C26—C25110.4 (3)
C14—C9—N8121.5 (2)C27—C26—H26A109.6
C11—C10—C9121.4 (3)C25—C26—H26A109.6
C11—C10—H10119.3C27—C26—H26B109.6
C9—C10—H10119.3C25—C26—H26B109.6
C10—C11—C12120.0 (3)H26A—C26—H26B108.1
C10—C11—H11120.0C28—C27—C26112.5 (3)
C12—C11—H11120.0C28—C27—H27A109.1
O15—C12—C13123.8 (3)C26—C27—H27A109.1
O15—C12—C11116.7 (3)C28—C27—H27B109.1
C13—C12—C11119.5 (3)C26—C27—H27B109.1
C12—C13—C14120.4 (3)H27A—C27—H27B107.8
C12—C13—H13119.8N23—C28—C27111.5 (3)
C14—C13—H13119.8N23—C28—H28A109.3
C9—C14—C13120.1 (2)C27—C28—H28A109.3
C9—C14—S2121.1 (2)N23—C28—H28B109.3
C13—C14—S2118.7 (2)C27—C28—H28B109.3
C12—O15—C16118.1 (2)H28A—C28—H28B108.0
O1—S1—C1—C2172.6 (2)C12—C13—C14—S2178.0 (2)
O2—S1—C1—C242.4 (3)C17—S2—C14—C9108.1 (2)
N8—S1—C1—C270.2 (3)C17—S2—C14—C1371.3 (2)
O1—S1—C1—C66.6 (3)C13—C12—O15—C1634.4 (5)
O2—S1—C1—C6136.8 (2)C11—C12—O15—C16147.6 (3)
N8—S1—C1—C6110.5 (2)C14—S2—C17—N184.4 (2)
C6—C1—C2—C30.7 (5)C14—S2—C17—C22174.8 (2)
S1—C1—C2—C3178.5 (2)C22—C17—N18—C190.0 (4)
C1—C2—C3—C40.6 (5)S2—C17—N18—C19179.23 (19)
C2—C3—C4—C51.0 (5)C17—N18—C19—N203.2 (4)
C2—C3—C4—C7179.5 (3)C17—N18—C19—N23175.7 (2)
C3—C4—C5—C60.1 (5)N18—C19—N20—C213.4 (4)
C7—C4—C5—C6179.6 (3)N23—C19—N20—C21175.5 (3)
C2—C1—C6—C51.6 (4)C19—N20—C21—C220.5 (5)
S1—C1—C6—C5177.6 (2)N20—C21—C22—C172.2 (5)
C4—C5—C6—C11.2 (5)N20—C21—C22—Br1178.8 (2)
O1—S1—N8—C943.7 (2)N18—C17—C22—C212.5 (4)
O2—S1—N8—C9172.3 (2)S2—C17—C22—C21176.7 (2)
C1—S1—N8—C973.1 (2)N18—C17—C22—Br1178.55 (19)
S1—N8—C9—C1067.8 (3)S2—C17—C22—Br12.3 (3)
S1—N8—C9—C14115.5 (3)N18—C19—N23—C28173.6 (3)
C14—C9—C10—C111.1 (4)N20—C19—N23—C287.4 (4)
N8—C9—C10—C11177.8 (3)N18—C19—N23—C2412.3 (4)
C9—C10—C11—C122.5 (5)N20—C19—N23—C24168.7 (3)
C10—C11—C12—O15179.9 (3)C19—N23—C24—C25146.5 (3)
C10—C11—C12—C131.9 (5)C28—N23—C24—C2551.2 (4)
O15—C12—C13—C14178.0 (3)N23—C24—C25—C2652.4 (4)
C11—C12—C13—C140.0 (4)C24—C25—C26—C2754.7 (4)
C10—C9—C14—C130.9 (4)C25—C26—C27—C2854.2 (5)
N8—C9—C14—C13175.8 (2)C19—N23—C28—C27147.7 (3)
C10—C9—C14—S2178.5 (2)C24—N23—C28—C2750.3 (4)
N8—C9—C14—S24.8 (3)C26—C27—C28—N2351.4 (5)
C12—C13—C14—C91.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O2i0.862.222.955 (4)143
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H25BrN4O3S2
Mr549.50
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.8318 (3), 10.3822 (3), 13.4393 (4)
α, β, γ (°)96.654 (3), 103.085 (3), 107.714 (3)
V3)1247.36 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.85
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur CCD, Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.764, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
41580, 4385, 3645
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.093, 1.03
No. of reflections4385
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.52

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O2i0.862.222.955 (4)143
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

MK acknowledges the help of Bahubali College of Engin­eering, Shravanabelagola for his research work and RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKant, R., Gupta, V. K., Kapoor, K., Kumar, M., Mallesha, L. & Sridhar, M. A. (2012). Acta Cryst. E68, o2590–o2591.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds