organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­methyl 1,4-di­methyl-13,14-dioxa­penta­cyclo­[8.2.1.14,7.02,9.03,8]tetra­deca-5,11-diene-5,6,11,12-tetra­carboxyl­ate

aDepartment of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6, and bDepartment of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
*Correspondence e-mail: alough@chem.utoronto.ca

(Received 3 September 2012; accepted 13 September 2012; online 22 September 2012)

In the title compound, C22H24O14, the relative stereochemistry at the cyclo­butane ring is cis-anti-cis and the methyl groups in the bicyclic rings are syn to each other. The two carboxyl­ate groups attached to the same —C=C— bond are disordered over two sets of sites in a 0.603 (2):0.397 (2) ratio. In the crystal, weak C—H⋯O hydrogen bonds connect mol­ecules into C(12) chains along [001] incorporating R222(10) rings.

Related literature

For related structures, see: Lough et al. (2012a[Lough, A. J., Jack, K. & Tam, W. (2012a). Acta Cryst. E68, o2962.],b[Lough, A. J., Jack, K. & Tam, W. (2012b). Acta Cryst. E68, o2963.]). For the synthetic background, see: Ballantine et al. (2009[Ballantine, M., Menard, M. L. & Tam, W. (2009). J. Org. Chem. 74, 7570-7573.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24O10

  • Mr = 448.41

  • Orthorhombic, P b c a

  • a = 11.5170 (14) Å

  • b = 13.9586 (15) Å

  • c = 26.413 (3) Å

  • V = 4246.1 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 147 K

  • 0.33 × 0.22 × 0.06 mm

Data collection
  • Bruker Kappa APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.993

  • 19411 measured reflections

  • 4850 independent reflections

  • 2974 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.096

  • S = 0.90

  • 4850 reflections

  • 322 parameters

  • 32 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O2i 1.00 2.45 3.332 (2) 146
C14—H14C⋯O7ii 0.98 2.48 3.063 (3) 118
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

We have recently investigated the Ru-catalyzed isomerization and dimerization reaction of oxanorbornadiene compounds (Ballantine et al., 2009). When dissolved in 1,2-dichloroethane in the presence of Cp*Ru(COD)Cl, 1-methyl-2,3-dimethyl-7-oxabicyclo[2,2,1]hepta-2,5-diene-2,3-dicarboxylate will dimerize into (I) (Fig. 1). The desired product was resolved using fractional crystallization in methanol. The stereochemistry and regioschemistry of the product was determined by this single-crystal X-ray analysis. The only dimer product obtained was found to have a cis-anti-cis stereochemistry at the cyclobutane ring of the dimer, and the two Me groups in the bicyclic rings were found to be syn to each other.

The molecular structure of (I) is shown in Fig. 2. Two of the carboxylate groups attached to the same –CC– bond were refined as disordered over two sets of sites with refined occupancies 0.603 (2) and 0.397 (2). In the crystal, weak C—H···O hydrogen bonds connect molecules into C(12) chains (Bernstein et al., 1995) along [001] (Fig. 3) incorporating R22(10) rings.

Related structures (Lough et al., 2012a,b) are reported in the two following papers.

Related literature top

For related structures, see: Lough et al. (2012a,b). For the synthetic background, see: Ballantine et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

1-Methyl-2,3-dimethyl-7-oxabicyclo[2,2,1]hepta-2,5-diene-2,3-dicarboxylate (45 mg, 0.20 mmol) was weighed into an oven-dried vial, purged with nitrogen and transferred into a Dry Box. In the Dry Box, Cp*Ru(COD)Cl (10 mol%) was added to another oven dried vial and dissolved in 1,2-dichloroethane (0.3 ml). The Ru-catalyst was then transferred into the vial containing the 7-oxanorbornadiene. The vial was sealed with a screw cap and removed from the Dry Box. The reaction was heated at 333 K with stirring for 18 h. The crude product was purified by column chromatography (EtOAc:hexanes=2:3) followed by recrystallization in hexanes to give the dimer (I). Slow evapotation of a solution of (I) in hexanes gave colourless plates.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H distances of 0.98 and 1.00 Å. They were included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). Constraints were applied to both the geometry and displacement parameters of the atoms in the disorder components using the FLAT, SADI and EADP instructions in SHELXL (Sheldrick, 2008).

Structure description top

We have recently investigated the Ru-catalyzed isomerization and dimerization reaction of oxanorbornadiene compounds (Ballantine et al., 2009). When dissolved in 1,2-dichloroethane in the presence of Cp*Ru(COD)Cl, 1-methyl-2,3-dimethyl-7-oxabicyclo[2,2,1]hepta-2,5-diene-2,3-dicarboxylate will dimerize into (I) (Fig. 1). The desired product was resolved using fractional crystallization in methanol. The stereochemistry and regioschemistry of the product was determined by this single-crystal X-ray analysis. The only dimer product obtained was found to have a cis-anti-cis stereochemistry at the cyclobutane ring of the dimer, and the two Me groups in the bicyclic rings were found to be syn to each other.

The molecular structure of (I) is shown in Fig. 2. Two of the carboxylate groups attached to the same –CC– bond were refined as disordered over two sets of sites with refined occupancies 0.603 (2) and 0.397 (2). In the crystal, weak C—H···O hydrogen bonds connect molecules into C(12) chains (Bernstein et al., 1995) along [001] (Fig. 3) incorporating R22(10) rings.

Related structures (Lough et al., 2012a,b) are reported in the two following papers.

For related structures, see: Lough et al. (2012a,b). For the synthetic background, see: Ballantine et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction scheme
[Figure 2] Fig. 2. The molecular structure of (I) showing 30% probability ellipsoids. The bonds of the minor component of disorder are shown with dashed lines.
[Figure 3] Fig. 3. Part of the crystal structure showing weak hydrogen bonds as dashed lines. The disorder is not shown.
Tetramethyl 1,4-dimethyl-13,14-dioxapentacyclo[8.2.1.14,7.02,9.03,8]tetradeca- 5,11-diene-5,6,11,12-tetracarboxylate top
Crystal data top
C22H24O10F(000) = 1888
Mr = 448.41Dx = 1.403 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5611 reflections
a = 11.5170 (14) Åθ = 2.4–27.4°
b = 13.9586 (15) ŵ = 0.11 mm1
c = 26.413 (3) ÅT = 147 K
V = 4246.1 (8) Å3Plate, colourless
Z = 80.33 × 0.22 × 0.06 mm
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
4850 independent reflections
Radiation source: fine-focus sealed tube2974 reflections with I > 2σ(I)
Bruker Triumph monochromatorRint = 0.055
φ and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1414
Tmin = 0.964, Tmax = 0.993k = 1018
19411 measured reflectionsl = 3418
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0451P)2]
where P = (Fo2 + 2Fc2)/3
4850 reflections(Δ/σ)max = 0.001
322 parametersΔρmax = 0.26 e Å3
32 restraintsΔρmin = 0.20 e Å3
Crystal data top
C22H24O10V = 4246.1 (8) Å3
Mr = 448.41Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.5170 (14) ŵ = 0.11 mm1
b = 13.9586 (15) ÅT = 147 K
c = 26.413 (3) Å0.33 × 0.22 × 0.06 mm
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
4850 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2974 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.993Rint = 0.055
19411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04232 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 0.90Δρmax = 0.26 e Å3
4850 reflectionsΔρmin = 0.20 e Å3
322 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.81775 (11)0.24086 (8)0.04639 (4)0.0228 (3)
O20.87040 (10)0.50450 (8)0.06438 (4)0.0202 (3)
O30.77858 (13)0.36303 (10)0.19294 (4)0.0398 (4)
O40.85192 (11)0.49305 (9)0.15417 (4)0.0263 (3)
O51.15910 (11)0.28111 (9)0.10455 (4)0.0268 (3)
O61.06300 (11)0.35923 (9)0.16646 (4)0.0269 (3)
O70.6189 (2)0.3994 (2)0.18885 (7)0.0503 (7)0.603 (2)
O80.5320 (9)0.4330 (6)0.1139 (5)0.0327 (14)0.603 (2)
O90.8653 (3)0.3827 (2)0.22013 (8)0.0435 (8)0.603 (2)
O100.9341 (6)0.2732 (5)0.1670 (5)0.0290 (14)0.603 (2)
C170.6234 (3)0.4210 (2)0.14455 (12)0.0264 (8)0.603 (2)
C190.8778 (3)0.3546 (3)0.17727 (10)0.0249 (6)0.603 (2)
C180.4202 (12)0.4196 (9)0.1391 (6)0.0454 (6)0.603 (2)
H18A0.35780.42170.11390.068*0.603 (2)
H18B0.40850.47060.16400.068*0.603 (2)
H18C0.41930.35730.15620.068*0.603 (2)
C200.9776 (10)0.2224 (9)0.2114 (6)0.0436 (9)0.603 (2)
H20A1.02040.16530.20060.065*0.603 (2)
H20B0.91230.20330.23290.065*0.603 (2)
H20C1.02950.26460.23060.065*0.603 (2)
O7A0.6002 (3)0.4831 (3)0.18225 (12)0.0503 (7)0.397 (2)
O8A0.5296 (14)0.4105 (11)0.1152 (8)0.0327 (14)0.397 (2)
O9A0.7972 (4)0.3518 (3)0.21445 (14)0.0435 (8)0.397 (2)
O10A0.9507 (10)0.2917 (9)0.1692 (8)0.0290 (14)0.397 (2)
C17A0.6182 (4)0.4469 (4)0.14155 (16)0.0264 (8)0.397 (2)
C19A0.8570 (5)0.3462 (4)0.17719 (13)0.0249 (6)0.397 (2)
C18A0.4166 (19)0.4198 (14)0.1398 (10)0.0454 (6)0.397 (2)
H18D0.35580.39590.11710.068*0.397 (2)
H18E0.40200.48730.14770.068*0.397 (2)
H18F0.41630.38230.17120.068*0.397 (2)
C20A0.9845 (17)0.2309 (13)0.2116 (8)0.0436 (9)0.397 (2)
H20D1.06280.20590.20580.065*0.397 (2)
H20E0.92970.17750.21460.065*0.397 (2)
H20F0.98360.26860.24290.065*0.397 (2)
C10.85556 (16)0.34792 (12)0.11010 (5)0.0196 (4)
C20.77038 (16)0.32925 (12)0.06633 (5)0.0200 (4)
C30.80888 (15)0.40228 (12)0.02535 (5)0.0170 (4)
H3A0.81020.47080.03640.020*
C40.75885 (15)0.38416 (12)0.02843 (5)0.0172 (4)
H4A0.69140.33920.03020.021*
C50.74926 (15)0.47494 (12)0.06159 (5)0.0190 (4)
C60.73289 (15)0.43738 (12)0.11604 (5)0.0200 (4)
C70.83590 (16)0.40288 (12)0.13030 (5)0.0201 (4)
C80.91584 (16)0.41679 (12)0.08511 (5)0.0190 (4)
H8A1.00070.41760.09310.023*
C90.87811 (15)0.34188 (12)0.04533 (5)0.0175 (4)
H9A0.87730.27370.05690.021*
C100.92895 (15)0.36020 (12)0.00825 (5)0.0173 (4)
H10A0.99620.40540.00980.021*
C110.93701 (15)0.27200 (12)0.04294 (5)0.0204 (4)
H11A0.99340.22180.03180.024*
C120.95736 (16)0.31197 (12)0.09594 (5)0.0198 (4)
C130.82498 (16)0.40042 (13)0.15740 (5)0.0221 (4)
C140.83509 (19)0.54896 (15)0.20023 (6)0.0398 (5)
H14A0.83500.61740.19190.060*
H14B0.76070.53170.21570.060*
H14C0.89830.53540.22400.060*
C151.07098 (16)0.31541 (12)0.12149 (5)0.0194 (4)
C161.16955 (17)0.36413 (15)0.19566 (6)0.0331 (5)
H16A1.15930.40870.22400.050*
H16B1.18850.30040.20880.050*
H16C1.23290.38670.17390.050*
C210.64336 (16)0.31957 (14)0.07817 (6)0.0292 (5)
H21A0.63250.27050.10430.044*
H21B0.61340.38100.09050.044*
H21C0.60130.30090.04750.044*
C220.67345 (17)0.55607 (13)0.04345 (6)0.0271 (4)
H22A0.67150.60660.06920.041*
H22B0.59460.53230.03750.041*
H22C0.70510.58210.01190.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0276 (8)0.0218 (7)0.0189 (5)0.0031 (6)0.0024 (5)0.0019 (5)
O20.0201 (7)0.0184 (6)0.0221 (5)0.0020 (5)0.0006 (5)0.0023 (5)
O30.0495 (10)0.0499 (9)0.0200 (6)0.0059 (8)0.0140 (6)0.0024 (6)
O40.0292 (8)0.0311 (8)0.0185 (5)0.0006 (6)0.0042 (5)0.0084 (5)
O50.0239 (8)0.0290 (7)0.0275 (6)0.0066 (6)0.0018 (5)0.0016 (5)
O60.0217 (7)0.0445 (8)0.0145 (5)0.0040 (6)0.0054 (5)0.0052 (5)
O70.0397 (13)0.0895 (19)0.0218 (9)0.0210 (16)0.0109 (8)0.0115 (13)
O80.0193 (9)0.037 (4)0.0422 (9)0.005 (2)0.0050 (8)0.001 (3)
O90.059 (2)0.0560 (19)0.0152 (8)0.0237 (16)0.0032 (13)0.0002 (10)
O100.027 (2)0.037 (3)0.0225 (12)0.007 (2)0.0007 (18)0.009 (2)
C170.0282 (13)0.029 (2)0.0216 (10)0.0092 (13)0.0044 (9)0.0074 (11)
C190.0325 (18)0.0246 (12)0.0175 (8)0.0020 (12)0.0043 (9)0.0009 (8)
C180.0207 (14)0.0459 (14)0.0696 (15)0.0047 (11)0.0146 (12)0.0102 (12)
C200.0403 (17)0.055 (2)0.0354 (10)0.0094 (18)0.0040 (12)0.0208 (13)
O7A0.0397 (13)0.0895 (19)0.0218 (9)0.0210 (16)0.0109 (8)0.0115 (13)
O8A0.0193 (9)0.037 (4)0.0422 (9)0.005 (2)0.0050 (8)0.001 (3)
O9A0.059 (2)0.0560 (19)0.0152 (8)0.0237 (16)0.0032 (13)0.0002 (10)
O10A0.027 (2)0.037 (3)0.0225 (12)0.007 (2)0.0007 (18)0.009 (2)
C17A0.0282 (13)0.029 (2)0.0216 (10)0.0092 (13)0.0044 (9)0.0074 (11)
C19A0.0325 (18)0.0246 (12)0.0175 (8)0.0020 (12)0.0043 (9)0.0009 (8)
C18A0.0207 (14)0.0459 (14)0.0696 (15)0.0047 (11)0.0146 (12)0.0102 (12)
C20A0.0403 (17)0.055 (2)0.0354 (10)0.0094 (18)0.0040 (12)0.0208 (13)
C10.0212 (10)0.0244 (10)0.0131 (7)0.0023 (8)0.0007 (7)0.0009 (7)
C20.0200 (10)0.0245 (10)0.0154 (7)0.0012 (8)0.0022 (7)0.0018 (7)
C30.0158 (9)0.0204 (9)0.0149 (7)0.0001 (7)0.0007 (6)0.0033 (7)
C40.0166 (9)0.0206 (9)0.0144 (7)0.0027 (8)0.0015 (6)0.0000 (6)
C50.0169 (9)0.0218 (9)0.0182 (7)0.0023 (8)0.0009 (7)0.0004 (7)
C60.0243 (10)0.0210 (9)0.0148 (7)0.0039 (8)0.0026 (7)0.0051 (7)
C70.0263 (11)0.0189 (9)0.0149 (7)0.0030 (8)0.0012 (7)0.0037 (7)
C80.0197 (10)0.0216 (10)0.0158 (7)0.0011 (8)0.0012 (7)0.0030 (7)
C90.0207 (10)0.0189 (9)0.0128 (7)0.0001 (7)0.0017 (6)0.0021 (6)
C100.0170 (9)0.0205 (9)0.0144 (7)0.0004 (8)0.0014 (6)0.0033 (7)
C110.0201 (10)0.0244 (10)0.0167 (7)0.0027 (8)0.0017 (7)0.0025 (7)
C120.0235 (10)0.0230 (10)0.0127 (7)0.0005 (8)0.0016 (7)0.0008 (7)
C130.0187 (10)0.0326 (11)0.0149 (7)0.0027 (8)0.0032 (7)0.0003 (7)
C140.0407 (14)0.0500 (14)0.0286 (9)0.0003 (11)0.0041 (9)0.0220 (9)
C150.0226 (11)0.0201 (9)0.0156 (7)0.0021 (8)0.0001 (7)0.0042 (7)
C160.0278 (12)0.0469 (13)0.0245 (8)0.0030 (10)0.0118 (8)0.0023 (8)
C210.0227 (11)0.0459 (13)0.0191 (8)0.0075 (10)0.0002 (7)0.0012 (8)
C220.0269 (11)0.0277 (11)0.0266 (8)0.0062 (9)0.0004 (8)0.0005 (8)
Geometric parameters (Å, º) top
O1—C111.443 (2)C20A—H20F0.9800
O1—C21.448 (2)C1—C121.329 (2)
O2—C81.4396 (19)C1—C131.490 (2)
O2—C51.457 (2)C1—C21.539 (2)
O3—C131.200 (2)C2—C211.502 (3)
O4—C131.332 (2)C2—C31.552 (2)
O4—C141.4584 (19)C3—C41.554 (2)
O5—C151.208 (2)C3—C101.569 (2)
O6—C151.3393 (19)C3—H3A1.0000
O6—C161.451 (2)C4—C51.544 (2)
O7—C171.210 (3)C4—C91.560 (2)
O8—C171.338 (3)C4—H4A1.0000
O8—C181.461 (3)C5—C221.508 (2)
O9—C191.207 (3)C5—C61.542 (2)
O10—C191.337 (3)C6—C71.335 (2)
O10—C201.458 (3)C7—C81.520 (2)
C17—C61.486 (3)C8—C91.545 (2)
C19—C71.492 (3)C8—H8A1.0000
C18—H18A0.9800C9—C101.553 (2)
C18—H18B0.9800C9—H9A1.0000
C18—H18C0.9800C10—C111.537 (2)
C20—H20A0.9800C10—H10A1.0000
C20—H20B0.9800C11—C121.525 (2)
C20—H20C0.9800C11—H11A1.0000
O7A—C17A1.206 (4)C12—C151.473 (2)
O8A—C17A1.337 (4)C14—H14A0.9800
O8A—C18A1.460 (4)C14—H14B0.9800
O9A—C19A1.203 (4)C14—H14C0.9800
O10A—C19A1.337 (4)C16—H16A0.9800
O10A—C20A1.459 (4)C16—H16B0.9800
C17A—C61.488 (4)C16—H16C0.9800
C19A—C71.490 (4)C21—H21A0.9800
C18A—H18D0.9800C21—H21B0.9800
C18A—H18E0.9800C21—H21C0.9800
C18A—H18F0.9800C22—H22A0.9800
C20A—H20D0.9800C22—H22B0.9800
C20A—H20E0.9800C22—H22C0.9800
C11—O1—C297.18 (12)C17A—C6—C5120.0 (2)
C8—O2—C597.27 (12)C6—C7—C19A124.8 (3)
C13—O4—C14115.79 (13)C6—C7—C19133.23 (19)
C15—O6—C16115.78 (14)C6—C7—C8105.71 (12)
C17—O8—C18113.7 (10)C19A—C7—C8128.5 (3)
C19—O10—C20114.7 (8)C19—C7—C8121.00 (19)
O7—C17—O8125.6 (7)O2—C8—C7100.78 (13)
O7—C17—C6124.4 (3)O2—C8—C9102.40 (12)
O8—C17—C6110.0 (7)C7—C8—C9106.10 (13)
O9—C19—O10121.6 (6)O2—C8—H8A115.3
O9—C19—C7126.5 (3)C7—C8—H8A115.3
O10—C19—C7111.9 (6)C9—C8—H8A115.3
C17A—O8A—C18A114.4 (17)C8—C9—C10113.73 (13)
C19A—O10A—C20A115.1 (14)C8—C9—C4100.73 (13)
O7A—C17A—O8A119.5 (12)C10—C9—C490.51 (11)
O7A—C17A—C6126.5 (5)C8—C9—H9A116.0
O8A—C17A—C6114.0 (11)C10—C9—H9A116.0
O9A—C19A—O10A128.9 (10)C4—C9—H9A116.0
O9A—C19A—C7123.5 (5)C11—C10—C9115.72 (13)
O10A—C19A—C7107.6 (10)C11—C10—C3100.46 (13)
O8A—C18A—H18D109.5C9—C10—C389.52 (12)
O8A—C18A—H18E109.5C11—C10—H10A115.7
H18D—C18A—H18E109.5C9—C10—H10A115.7
O8A—C18A—H18F109.5C3—C10—H10A115.7
H18D—C18A—H18F109.5O1—C11—C12101.45 (12)
H18E—C18A—H18F109.5O1—C11—C10102.78 (13)
O10A—C20A—H20D109.5C12—C11—C10105.27 (13)
O10A—C20A—H20E109.5O1—C11—H11A115.2
H20D—C20A—H20E109.5C12—C11—H11A115.2
O10A—C20A—H20F109.5C10—C11—H11A115.2
H20D—C20A—H20F109.5C1—C12—C15129.97 (14)
H20E—C20A—H20F109.5C1—C12—C11105.13 (14)
C12—C1—C13129.05 (15)C15—C12—C11124.67 (15)
C12—C1—C2106.68 (13)O3—C13—O4125.16 (15)
C13—C1—C2124.23 (15)O3—C13—C1123.18 (17)
O1—C2—C21111.47 (14)O4—C13—C1111.62 (14)
O1—C2—C1100.22 (13)O4—C14—H14A109.5
C21—C2—C1118.67 (13)O4—C14—H14B109.5
O1—C2—C3101.44 (12)H14A—C14—H14B109.5
C21—C2—C3118.86 (15)O4—C14—H14C109.5
C1—C2—C3103.33 (13)H14A—C14—H14C109.5
C2—C3—C4115.13 (14)H14B—C14—H14C109.5
C2—C3—C10101.93 (13)O5—C15—O6124.55 (16)
C4—C3—C1090.16 (11)O5—C15—C12124.31 (15)
C2—C3—H3A115.4O6—C15—C12111.12 (15)
C4—C3—H3A115.4O6—C16—H16A109.5
C10—C3—H3A115.4O6—C16—H16B109.5
C5—C4—C3114.29 (13)H16A—C16—H16B109.5
C5—C4—C9102.18 (13)O6—C16—H16C109.5
C3—C4—C989.81 (12)H16A—C16—H16C109.5
C5—C4—H4A115.7H16B—C16—H16C109.5
C3—C4—H4A115.7C2—C21—H21A109.5
C9—C4—H4A115.7C2—C21—H21B109.5
O2—C5—C22110.97 (14)H21A—C21—H21B109.5
O2—C5—C699.57 (12)C2—C21—H21C109.5
C22—C5—C6118.73 (14)H21A—C21—H21C109.5
O2—C5—C4101.11 (13)H21B—C21—H21C109.5
C22—C5—C4118.51 (13)C5—C22—H22A109.5
C6—C5—C4104.99 (13)C5—C22—H22B109.5
C7—C6—C17123.8 (2)H22A—C22—H22B109.5
C7—C6—C17A133.9 (2)C5—C22—H22C109.5
C7—C6—C5106.09 (14)H22A—C22—H22C109.5
C17—C6—C5128.9 (2)H22B—C22—H22C109.5
C18—O8—C17—O71.3 (6)C17A—C6—C7—C8179.3 (3)
C18—O8—C17—C6179.2 (4)C5—C6—C7—C80.99 (17)
C20—O10—C19—O90.2 (4)O9A—C19A—C7—C625.8 (5)
C20—O10—C19—C7179.9 (2)O10A—C19A—C7—C6154.4 (5)
C18A—O8A—C17A—O7A0.3 (6)O9A—C19A—C7—C19121 (2)
C18A—O8A—C17A—C6179.8 (4)O10A—C19A—C7—C1959 (2)
C20A—O10A—C19A—O9A0.1 (4)O9A—C19A—C7—C8167.3 (4)
C20A—O10A—C19A—C7179.9 (2)O10A—C19A—C7—C812.5 (4)
C11—O1—C2—C21176.12 (12)O9—C19—C7—C651.3 (4)
C11—O1—C2—C149.62 (12)O10—C19—C7—C6129.0 (4)
C11—O1—C2—C356.37 (13)O9—C19—C7—C19A89 (2)
C12—C1—C2—O131.08 (16)O10—C19—C7—C19A91.3 (19)
C13—C1—C2—O1151.18 (16)O9—C19—C7—C8132.0 (3)
C12—C1—C2—C21152.58 (16)O10—C19—C7—C847.6 (3)
C13—C1—C2—C2129.7 (2)C5—O2—C8—C751.98 (13)
C12—C1—C2—C373.39 (17)C5—O2—C8—C957.35 (13)
C13—C1—C2—C3104.35 (18)C6—C7—C8—O233.57 (16)
O1—C2—C3—C462.06 (17)C19A—C7—C8—O2157.5 (3)
C21—C2—C3—C460.5 (2)C19—C7—C8—O2148.9 (2)
C1—C2—C3—C4165.59 (14)C6—C7—C8—C972.84 (16)
O1—C2—C3—C1033.81 (14)C19A—C7—C8—C996.0 (3)
C21—C2—C3—C10156.36 (14)C19—C7—C8—C9104.6 (2)
C1—C2—C3—C1069.72 (15)O2—C8—C9—C1060.81 (17)
C2—C3—C4—C5153.67 (15)C7—C8—C9—C10166.05 (13)
C10—C3—C4—C5103.05 (15)O2—C8—C9—C434.53 (14)
C2—C3—C4—C9103.03 (15)C7—C8—C9—C470.71 (14)
C10—C3—C4—C90.25 (12)C5—C4—C9—C80.31 (14)
C8—O2—C5—C22176.56 (12)C3—C4—C9—C8114.53 (12)
C8—O2—C5—C650.64 (13)C5—C4—C9—C10114.60 (12)
C8—O2—C5—C456.84 (12)C3—C4—C9—C100.25 (12)
C3—C4—C5—O260.95 (16)C8—C9—C10—C11156.40 (14)
C9—C4—C5—O234.43 (13)C4—C9—C10—C11101.64 (15)
C3—C4—C5—C2260.5 (2)C8—C9—C10—C3102.21 (15)
C9—C4—C5—C22155.88 (15)C4—C9—C10—C30.25 (12)
C3—C4—C5—C6164.12 (14)C2—C3—C10—C110.57 (14)
C9—C4—C5—C668.74 (15)C4—C3—C10—C11116.34 (12)
O7—C17—C6—C721.3 (4)C2—C3—C10—C9115.52 (12)
O8—C17—C6—C7158.1 (4)C4—C3—C10—C90.25 (12)
O7—C17—C6—C17A116.9 (14)C2—O1—C11—C1250.97 (13)
O8—C17—C6—C17A63.7 (13)C2—O1—C11—C1057.78 (12)
O7—C17—C6—C5173.1 (2)C9—C10—C11—O159.43 (16)
O8—C17—C6—C57.5 (3)C3—C10—C11—O135.13 (14)
O7A—C17A—C6—C751.7 (6)C9—C10—C11—C12165.26 (14)
O8A—C17A—C6—C7128.1 (6)C3—C10—C11—C1270.70 (15)
O7A—C17A—C6—C17101.9 (14)C13—C1—C12—C152.2 (3)
O8A—C17A—C6—C1777.9 (14)C2—C1—C12—C15175.43 (17)
O7A—C17A—C6—C5126.4 (4)C13—C1—C12—C11176.74 (17)
O8A—C17A—C6—C553.8 (5)C2—C1—C12—C110.86 (18)
O2—C5—C6—C731.31 (16)O1—C11—C12—C132.81 (17)
C22—C5—C6—C7151.73 (16)C10—C11—C12—C174.00 (17)
C4—C5—C6—C773.01 (17)O1—C11—C12—C15152.24 (15)
O2—C5—C6—C17161.13 (19)C10—C11—C12—C15100.94 (18)
C22—C5—C6—C1740.7 (3)C14—O4—C13—O37.5 (3)
C4—C5—C6—C1794.5 (2)C14—O4—C13—C1174.64 (15)
O2—C5—C6—C17A147.2 (3)C12—C1—C13—O399.2 (2)
C22—C5—C6—C17A26.8 (3)C2—C1—C13—O383.6 (2)
C4—C5—C6—C17A108.4 (3)C12—C1—C13—O482.9 (2)
C17—C6—C7—C19A2.0 (3)C2—C1—C13—O494.3 (2)
C17A—C6—C7—C19A11.3 (5)C16—O6—C15—O50.1 (2)
C5—C6—C7—C19A170.4 (3)C16—O6—C15—C12178.24 (14)
C17—C6—C7—C199.7 (4)C1—C12—C15—O5178.80 (18)
C17A—C6—C7—C193.7 (5)C11—C12—C15—O55.2 (3)
C5—C6—C7—C19178.0 (3)C1—C12—C15—O62.9 (3)
C17—C6—C7—C8167.37 (18)C11—C12—C15—O6176.48 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O2i1.002.453.332 (2)146
C14—H14C···O7ii0.982.483.063 (3)118
Symmetry codes: (i) x+2, y+1, z; (ii) x+3/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC22H24O10
Mr448.41
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)147
a, b, c (Å)11.5170 (14), 13.9586 (15), 26.413 (3)
V3)4246.1 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.33 × 0.22 × 0.06
Data collection
DiffractometerBruker Kappa APEX DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.964, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
19411, 4850, 2974
Rint0.055
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.096, 0.90
No. of reflections4850
No. of parameters322
No. of restraints32
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O2i1.002.453.332 (2)146
C14—H14C···O7ii0.982.483.063 (3)118
Symmetry codes: (i) x+2, y+1, z; (ii) x+3/2, y+1, z1/2.
 

Acknowledgements

The University of Toronto thanks NSERC Canada for funding.

References

First citationBallantine, M., Menard, M. L. & Tam, W. (2009). J. Org. Chem. 74, 7570–7573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLough, A. J., Jack, K. & Tam, W. (2012a). Acta Cryst. E68, o2962.  CSD CrossRef IUCr Journals Google Scholar
First citationLough, A. J., Jack, K. & Tam, W. (2012b). Acta Cryst. E68, o2963.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds