organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-[1-(Thio­phen-2-yl)ethyl­­idene]isonicotinohydrazide

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, bDepartment of Physics, Faculty of Science, An Najah National University, Nablus, West Bank, Palestinian Territories, and cDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: mas@physics.uni-mysore.ac.in

(Received 10 September 2012; accepted 16 September 2012; online 22 September 2012)

In the title compound, C12H11N3OS, the dihedral angle between the pyridine and thio­phene rings is 46.70 (9)° and the C—N—N—C torsion angle is 178.61 (15)°. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops.

Related literature

For a related structure, see: Lu et al. (1996[Lu, Z.-L., Duan, C.-Y., Tian, Y.-P., You, X.-Z., Fun, H.-K. & Sivakumar, K. (1996). Acta Cryst. C52, 1507-1509.]). For graph-set nomenclature of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11N3OS

  • Mr = 245.30

  • Triclinic, [P \overline 1]

  • a = 3.9466 (1) Å

  • b = 10.5956 (4) Å

  • c = 14.3647 (6) Å

  • α = 74.656 (2)°

  • β = 82.595 (2)°

  • γ = 79.426 (2)°

  • V = 567.39 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.853, Tmax = 0.935

  • 10651 measured reflections

  • 2456 independent reflections

  • 2162 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.104

  • S = 1.05

  • 2456 reflections

  • 159 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.89 (1) 2.08 (1) 2.9561 (17) 170 (2)
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The geometry of C6 atom is distorted trigonal planar geometry as indicated by bond angles O1—C6—N2 = 120.77 (15) Å, (O1—C6—C7) = 119.27 (14) Å, (N2—C6—C7) = 119.96 (13) Å. The bond length of C6 and C7 = 1.496 (2) Å, which is comparable with an equivalent bond length of 1.506 (3) Å for a compound reported earlier (Lu et al., 1996). The crystal structure exhibits intermolecular hydrogen bonds of the type N—H···O with symmetry codes -x, 1 - y, 2 - z.

Related literature top

For a related structure, see: Lu et al. (1996). For graph-set nomenclature of hydrogen bonds, see: Bernstein et al. (1995).

Experimental top

1.37 g (10 mmol) of isoniazide was dissolved by the addition of 15 ml of ethanol in a round bottomed flask. To this 1.1 ml (10 mmol) of 2-Acetyl-thiophene dissolved in 15 ml of ethanol was added. This solution was refluxed for 5 h with stirring and then the solution was concentrated using rotor vaporizer and dried in vacuo and the product obtained was collected. The purity of the compound was confirmed by the TLC. Colourless blocks were recrystallised from methanol solution.

Structure description top

The geometry of C6 atom is distorted trigonal planar geometry as indicated by bond angles O1—C6—N2 = 120.77 (15) Å, (O1—C6—C7) = 119.27 (14) Å, (N2—C6—C7) = 119.96 (13) Å. The bond length of C6 and C7 = 1.496 (2) Å, which is comparable with an equivalent bond length of 1.506 (3) Å for a compound reported earlier (Lu et al., 1996). The crystal structure exhibits intermolecular hydrogen bonds of the type N—H···O with symmetry codes -x, 1 - y, 2 - z.

For a related structure, see: Lu et al. (1996). For graph-set nomenclature of hydrogen bonds, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. The unit-cell packing diagram.
(E)-N'-[1-(Thiophen-2-yl)ethylidene]isonicotinohydrazide top
Crystal data top
C12H11N3OSZ = 2
Mr = 245.30F(000) = 256
Triclinic, P1Dx = 1.436 Mg m3
a = 3.9466 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5956 (4) ÅCell parameters from 5900 reflections
c = 14.3647 (6) Åθ = 2.2–31.0°
α = 74.656 (2)°µ = 0.27 mm1
β = 82.595 (2)°T = 293 K
γ = 79.426 (2)°Block, colourless
V = 567.39 (4) Å30.30 × 0.28 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2456 independent reflections
Radiation source: fine-focus sealed tube2162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and φ scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 54
Tmin = 0.853, Tmax = 0.935k = 1313
10651 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.2115P]
where P = (Fo2 + 2Fc2)/3
2456 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.26 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C12H11N3OSγ = 79.426 (2)°
Mr = 245.30V = 567.39 (4) Å3
Triclinic, P1Z = 2
a = 3.9466 (1) ÅMo Kα radiation
b = 10.5956 (4) ŵ = 0.27 mm1
c = 14.3647 (6) ÅT = 293 K
α = 74.656 (2)°0.30 × 0.28 × 0.25 mm
β = 82.595 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2456 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2162 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.935Rint = 0.022
10651 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.26 e Å3
2456 reflectionsΔρmin = 0.20 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9693 (5)0.70554 (18)0.50027 (13)0.0472 (4)
H11.08670.68620.44410.057*
C20.8919 (5)0.82803 (19)0.51454 (13)0.0499 (4)
H20.94990.90310.46910.060*
C30.7129 (5)0.83102 (17)0.60598 (12)0.0446 (4)
H30.63970.90800.62730.053*
C40.6596 (4)0.70697 (14)0.65967 (11)0.0323 (3)
C50.4812 (4)0.66887 (14)0.75589 (10)0.0310 (3)
C60.2859 (4)0.37449 (15)0.91748 (11)0.0351 (3)
C70.4383 (4)0.27417 (13)0.86131 (10)0.0310 (3)
C80.3769 (4)0.28667 (15)0.76656 (11)0.0387 (4)
H80.25330.36410.73130.046*
C90.5030 (5)0.18159 (17)0.72543 (12)0.0443 (4)
H90.45660.19040.66200.053*
C100.7437 (5)0.05892 (16)0.86100 (14)0.0483 (4)
H100.87280.01890.89390.058*
C110.6241 (4)0.15680 (15)0.90973 (12)0.0400 (4)
H110.66790.14390.97390.048*
C120.3178 (5)0.77498 (15)0.80545 (12)0.0415 (4)
H12A0.07090.77990.81130.062*
H12B0.37870.85850.76820.062*
H12C0.39850.75490.86880.062*
N10.4799 (3)0.54402 (12)0.78951 (9)0.0342 (3)
N20.3047 (4)0.50324 (12)0.87852 (9)0.0380 (3)
N30.6861 (4)0.06878 (14)0.77044 (11)0.0473 (4)
O10.1424 (4)0.33773 (12)0.99877 (9)0.0522 (3)
S10.82822 (12)0.58973 (4)0.59655 (3)0.04475 (15)
H2A0.188 (5)0.5583 (17)0.9127 (13)0.055 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0532 (10)0.0516 (10)0.0356 (8)0.0122 (8)0.0064 (7)0.0107 (7)
C20.0639 (12)0.0450 (10)0.0392 (9)0.0203 (8)0.0043 (8)0.0038 (7)
C30.0596 (11)0.0350 (8)0.0399 (9)0.0144 (7)0.0031 (7)0.0094 (7)
C40.0362 (8)0.0286 (7)0.0326 (7)0.0052 (6)0.0022 (6)0.0087 (6)
C50.0339 (7)0.0276 (7)0.0319 (7)0.0042 (5)0.0020 (6)0.0091 (6)
C60.0424 (8)0.0286 (7)0.0313 (7)0.0031 (6)0.0050 (6)0.0074 (6)
C70.0346 (7)0.0259 (7)0.0311 (7)0.0068 (5)0.0054 (6)0.0071 (5)
C80.0479 (9)0.0322 (8)0.0343 (8)0.0059 (6)0.0018 (7)0.0064 (6)
C90.0576 (10)0.0439 (9)0.0358 (8)0.0150 (8)0.0013 (7)0.0154 (7)
C100.0560 (11)0.0309 (8)0.0542 (10)0.0054 (7)0.0039 (8)0.0122 (7)
C110.0502 (9)0.0327 (8)0.0344 (8)0.0008 (7)0.0036 (7)0.0075 (6)
C120.0523 (10)0.0300 (7)0.0415 (8)0.0063 (7)0.0073 (7)0.0132 (6)
N10.0429 (7)0.0275 (6)0.0304 (6)0.0052 (5)0.0051 (5)0.0082 (5)
N20.0510 (8)0.0263 (6)0.0332 (7)0.0032 (5)0.0099 (6)0.0099 (5)
N30.0562 (9)0.0377 (7)0.0514 (9)0.0066 (6)0.0049 (7)0.0217 (6)
O10.0758 (9)0.0345 (6)0.0369 (6)0.0040 (6)0.0215 (6)0.0084 (5)
S10.0584 (3)0.0344 (2)0.0389 (2)0.00466 (18)0.00777 (18)0.01196 (17)
Geometric parameters (Å, º) top
C1—C21.341 (3)C7—C111.381 (2)
C1—S11.6977 (18)C8—C91.380 (2)
C1—H10.9300C8—H80.9300
C2—C31.414 (2)C9—N31.328 (2)
C2—H20.9300C9—H90.9300
C3—C41.375 (2)C10—N31.323 (2)
C3—H30.9300C10—C111.381 (2)
C4—C51.458 (2)C10—H100.9300
C4—S11.7162 (15)C11—H110.9300
C5—N11.2834 (19)C12—H12A0.9600
C5—C121.492 (2)C12—H12B0.9600
C6—O11.2270 (18)C12—H12C0.9600
C6—N21.3425 (19)N1—N21.3745 (17)
C6—C71.4956 (19)N2—H2A0.888 (9)
C7—C81.381 (2)
C2—C1—S1112.29 (14)C7—C8—H8120.8
C2—C1—H1123.9N3—C9—C8124.36 (16)
S1—C1—H1123.9N3—C9—H9117.8
C1—C2—C3112.91 (16)C8—C9—H9117.8
C1—C2—H2123.5N3—C10—C11124.17 (16)
C3—C2—H2123.5N3—C10—H10117.9
C4—C3—C2112.15 (15)C11—C10—H10117.9
C4—C3—H3123.9C7—C11—C10118.75 (15)
C2—C3—H3123.9C7—C11—H11120.6
C3—C4—C5128.92 (14)C10—C11—H11120.6
C3—C4—S1110.69 (12)C5—C12—H12A109.5
C5—C4—S1120.38 (11)C5—C12—H12B109.5
N1—C5—C4115.18 (13)H12A—C12—H12B109.5
N1—C5—C12126.20 (14)C5—C12—H12C109.5
C4—C5—C12118.62 (13)H12A—C12—H12C109.5
O1—C6—N2120.77 (14)H12B—C12—H12C109.5
O1—C6—C7119.27 (13)C5—N1—N2117.49 (12)
N2—C6—C7119.96 (13)C6—N2—N1120.90 (12)
C8—C7—C11117.96 (13)C6—N2—H2A115.3 (14)
C8—C7—C6123.76 (13)N1—N2—H2A123.7 (14)
C11—C7—C6117.98 (13)C10—N3—C9116.26 (14)
C9—C8—C7118.49 (15)C1—S1—C491.96 (8)
C9—C8—H8120.8
S1—C1—C2—C30.1 (2)C7—C8—C9—N31.2 (3)
C1—C2—C3—C40.2 (3)C8—C7—C11—C101.0 (2)
C2—C3—C4—C5178.72 (16)C6—C7—C11—C10175.01 (15)
C2—C3—C4—S10.3 (2)N3—C10—C11—C71.4 (3)
C3—C4—C5—N1178.08 (16)C4—C5—N1—N2177.77 (13)
S1—C4—C5—N13.7 (2)C12—C5—N1—N21.8 (2)
C3—C4—C5—C122.3 (3)O1—C6—N2—N1176.75 (16)
S1—C4—C5—C12175.92 (12)C7—C6—N2—N13.7 (2)
O1—C6—C7—C8130.37 (18)C5—N1—N2—C6178.61 (15)
N2—C6—C7—C849.1 (2)C11—C10—N3—C90.5 (3)
O1—C6—C7—C1143.3 (2)C8—C9—N3—C100.8 (3)
N2—C6—C7—C11137.23 (16)C2—C1—S1—C40.23 (16)
C11—C7—C8—C90.2 (2)C3—C4—S1—C10.32 (14)
C6—C7—C8—C9173.46 (15)C5—C4—S1—C1178.87 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.89 (1)2.08 (1)2.9561 (17)170 (2)
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC12H11N3OS
Mr245.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)3.9466 (1), 10.5956 (4), 14.3647 (6)
α, β, γ (°)74.656 (2), 82.595 (2), 79.426 (2)
V3)567.39 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.28 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.853, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
10651, 2456, 2162
Rint0.022
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.104, 1.05
No. of reflections2456
No. of parameters159
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.20

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.888 (9)2.078 (10)2.9561 (17)170 (2)
Symmetry code: (i) x, y+1, z+2.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLu, Z.-L., Duan, C.-Y., Tian, Y.-P., You, X.-Z., Fun, H.-K. & Sivakumar, K. (1996). Acta Cryst. C52, 1507–1509.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds