organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Di­methyl­amino-N′-(2-hy­dr­oxy-4-meth­­oxy­benzyl­­idene)benzohydrazide methanol monosolvate

aCollege of Marine Sciences, Zhejiang Ocean University, Zhoushan 316000, People's Republic of China
*Correspondence e-mail: jingyasun2009@163.com

(Received 19 September 2012; accepted 19 September 2012; online 26 September 2012)

The asymmetric unit of the title compound, C17H19N3O3·CH4O, comprises two Schiff base mol­ecules and two methanol solvent mol­ecules. The Schiff base mol­ecules are approximately planar, with r.m.s. deviations from the planes defined by the non-H atoms of 0.107 and 0.154 Å, and with dihedral angles between the benzene rings of 4.49 (15) and 8.39 (15)°, respectively. This near-planarity is assisted by the formation of intra­molecular O—H⋯N hydrogen bonds in each mol­ecule. In the crystal, the components are linked by N—H⋯O and O—H⋯O hydrogen bonds to form chains along [010].

Related literature

For the properties of Schiff base compounds, see: Miura et al. (2009[Miura, Y., Aritake, Y. & Akitsu, T. (2009). Acta Cryst. E65, o2381.]); Zhao et al. (2010[Zhao, L., Cao, D. & Cui, J. (2010). Acta Cryst. E66, o2204.]); Karadağ et al. (2011[Karadağ, A. T., Atalay, Ş. & Genç, H. (2011). Acta Cryst. E67, o95.]); Bingöl Alpaslan et al. (2010[Bingöl Alpaslan, Y., Alpaslan, G., Ağar, A. & Işık, Ş. (2010). Acta Cryst. E66, o510.]). For the structure of a related Schiff base compound, see: Xu & Sun (2012[Xu, H. & Sun, J. (2012). Acta Cryst. E68, o1042.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19N3O3·CH4O

  • Mr = 345.39

  • Monoclinic, P 21 /c

  • a = 7.7426 (17) Å

  • b = 23.473 (2) Å

  • c = 20.1975 (16) Å

  • β = 100.495 (2)°

  • V = 3609.3 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.985, Tmax = 0.987

  • 17259 measured reflections

  • 6668 independent reflections

  • 2824 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.155

  • S = 0.99

  • 6668 reflections

  • 471 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.86 2.588 (3) 147
O4—H4⋯N4 0.82 1.93 2.649 (3) 146
O7—H7⋯O5 0.82 1.87 2.671 (3) 166
O8—H8⋯O2i 0.85 (1) 1.86 (1) 2.713 (3) 179 (4)
N5—H5⋯O8ii 0.91 (1) 2.02 (1) 2.892 (4) 161 (3)
N2—H2⋯O7iii 0.90 (1) 2.01 (2) 2.876 (3) 159 (3)
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The condensation reaction between aldehydes with organic primary amines readily forms Schiff bases containing the typical –C=N– groups (Miura et al., 2009; Zhao et al., 2010; Karadağ et al., 2011; Bingöl Alpaslan et al., 2010). As a continuation of our work on Schiff bases (Xu & Sun, 2012), in this paper, the title new compound (Fig. 1), prepared by the reaction of 4-methoxysalicylaldehyde with 4-dimethylaminobenzohydrazide in methanol, is reported.

The asymmetric unit of the compound comprises two Schiff base molecules, A and B, and two methanol molecules. The Schiff base molecules are approximately planar, with r.m.s. deviations from the planes defined by the non-hydrogen atoms of 0.107 and 0.154 Å, and with dihedral angles between the benzene rings of 4.49 (15) and 8.39 (15)° for molecules A and B, respectively. This planarity is assisted by the formation of intramolecular O—H···N hydrogen bonds (Table 1). In the crystal, (Fig. 2), Schiff base molecules are linked by methanol molecules through N—H···O and O—H···O hydrogen bonds (Table 1) to form chains.

Related literature top

For the properties of Schiff base compounds, see: Miura et al. (2009); Zhao et al. (2010); Karadağ et al. (2011); Bingöl Alpaslan et al. (2010). For the structure of a related Schiff base compound, see: Xu & Sun (2012).

Experimental top

4-Methoxysalicylaldehyde (1.0 mmol, 0.152 g) and 4-dimethylaminobenzohydrazide (1.0 mmol, 0.179 g) were refluxed for 30 min in 30 ml methanol, and cooled to room temperature to give colorless solid, which was isoloated by filtration. Colourless blocks were formed by recrystallization of the solid product in methanol.

Refinement top

H2, H5, and H8 were located from a difference Fourier map and refined isotropically, with N—H and O—H distances restained to 0.90 (1) and 0.85 (1) Å, respectively. The remaining hydrogen atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93–0.96 Å, and O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O and methyl C).

Structure description top

The condensation reaction between aldehydes with organic primary amines readily forms Schiff bases containing the typical –C=N– groups (Miura et al., 2009; Zhao et al., 2010; Karadağ et al., 2011; Bingöl Alpaslan et al., 2010). As a continuation of our work on Schiff bases (Xu & Sun, 2012), in this paper, the title new compound (Fig. 1), prepared by the reaction of 4-methoxysalicylaldehyde with 4-dimethylaminobenzohydrazide in methanol, is reported.

The asymmetric unit of the compound comprises two Schiff base molecules, A and B, and two methanol molecules. The Schiff base molecules are approximately planar, with r.m.s. deviations from the planes defined by the non-hydrogen atoms of 0.107 and 0.154 Å, and with dihedral angles between the benzene rings of 4.49 (15) and 8.39 (15)° for molecules A and B, respectively. This planarity is assisted by the formation of intramolecular O—H···N hydrogen bonds (Table 1). In the crystal, (Fig. 2), Schiff base molecules are linked by methanol molecules through N—H···O and O—H···O hydrogen bonds (Table 1) to form chains.

For the properties of Schiff base compounds, see: Miura et al. (2009); Zhao et al. (2010); Karadağ et al. (2011); Bingöl Alpaslan et al. (2010). For the structure of a related Schiff base compound, see: Xu & Sun (2012).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compounds with 30% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The molecular packing of the title compound. Hydrogen bonds are shown as dashed lines.
4-Dimethylamino-N'-(2-hydroxy-4-methoxybenzylidene)benzohydrazide methanol monosolvate top
Crystal data top
C17H19N3O3·CH4OF(000) = 1472
Mr = 345.39Dx = 1.271 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.7426 (17) ÅCell parameters from 2668 reflections
b = 23.473 (2) Åθ = 2.2–24.5°
c = 20.1975 (16) ŵ = 0.09 mm1
β = 100.495 (2)°T = 298 K
V = 3609.3 (9) Å3Block, colorless
Z = 80.17 × 0.15 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
6668 independent reflections
Radiation source: fine-focus sealed tube2824 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 89
Tmin = 0.985, Tmax = 0.987k = 2728
17259 measured reflectionsl = 2418
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0599P)2]
where P = (Fo2 + 2Fc2)/3
6668 reflections(Δ/σ)max < 0.001
471 parametersΔρmax = 0.15 e Å3
3 restraintsΔρmin = 0.16 e Å3
Crystal data top
C17H19N3O3·CH4OV = 3609.3 (9) Å3
Mr = 345.39Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.7426 (17) ŵ = 0.09 mm1
b = 23.473 (2) ÅT = 298 K
c = 20.1975 (16) Å0.17 × 0.15 × 0.15 mm
β = 100.495 (2)°
Data collection top
Bruker SMART CCD
diffractometer
6668 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2824 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.987Rint = 0.051
17259 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0523 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.15 e Å3
6668 reflectionsΔρmin = 0.16 e Å3
471 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3235 (3)0.69983 (10)0.90099 (12)0.0533 (7)
N20.2735 (3)0.69032 (10)0.83293 (13)0.0554 (7)
N30.0477 (3)0.68909 (11)0.51462 (14)0.0602 (7)
N40.3574 (3)0.54206 (11)0.19498 (13)0.0604 (7)
N50.3984 (4)0.55391 (11)0.26325 (14)0.0612 (7)
N60.7055 (4)0.57953 (12)0.58081 (15)0.0696 (8)
O10.3173 (3)0.75604 (9)1.01077 (10)0.0795 (7)
H10.29150.74860.97050.119*
O20.0887 (3)0.76477 (9)0.82402 (10)0.0768 (7)
O30.6142 (3)0.67343 (9)1.21576 (11)0.0720 (7)
O40.3881 (3)0.49011 (10)0.08124 (10)0.0745 (7)
H40.41120.49650.12180.112*
O50.6060 (3)0.48503 (10)0.27995 (11)0.0850 (8)
O60.0622 (3)0.56832 (9)0.12049 (11)0.0744 (7)
O70.4931 (3)0.39331 (12)0.20641 (14)0.1030 (9)
H70.51050.42250.22900.154*
O81.1189 (4)0.62247 (10)0.29899 (13)0.0873 (8)
C10.5549 (6)0.71737 (17)1.25440 (18)0.1079 (14)
H1A0.59020.75371.23950.162*
H1B0.60520.71221.30110.162*
H1C0.42910.71601.24880.162*
C20.5658 (4)0.67530 (13)1.14705 (16)0.0512 (8)
C30.4607 (4)0.71645 (13)1.11238 (16)0.0544 (8)
H30.41810.74601.13550.065*
C40.4182 (4)0.71381 (12)1.04274 (16)0.0512 (8)
C50.4783 (4)0.66948 (12)1.00711 (15)0.0454 (7)
C60.5853 (4)0.62875 (12)1.04426 (16)0.0543 (8)
H60.62750.59881.02170.065*
C70.6304 (4)0.63133 (13)1.11282 (17)0.0580 (9)
H7A0.70380.60391.13630.070*
C80.4254 (4)0.66316 (12)0.93510 (15)0.0506 (8)
H8A0.46560.63230.91340.061*
C90.1532 (4)0.72512 (13)0.79644 (16)0.0527 (8)
C100.1034 (4)0.71363 (12)0.72368 (15)0.0473 (7)
C110.0104 (4)0.75043 (13)0.68370 (16)0.0564 (8)
H110.05560.78130.70380.068*
C120.0592 (4)0.74306 (13)0.61545 (16)0.0568 (8)
H120.13510.76920.59070.068*
C130.0023 (4)0.69717 (12)0.58217 (16)0.0477 (8)
C140.1173 (4)0.65991 (13)0.62233 (16)0.0557 (8)
H140.16230.62890.60240.067*
C150.1656 (4)0.66801 (13)0.69059 (16)0.0569 (8)
H150.24230.64220.71550.068*
C160.1515 (5)0.73097 (15)0.47253 (16)0.0873 (12)
H16A0.26150.73610.48730.131*
H16B0.17270.71810.42660.131*
H16C0.08920.76650.47570.131*
C170.0302 (4)0.64438 (14)0.48000 (16)0.0737 (10)
H17A0.15550.64900.48800.111*
H17B0.01470.64670.43250.111*
H17C0.00130.60790.49650.111*
C180.1354 (5)0.52835 (15)0.16021 (16)0.0790 (11)
H18A0.26090.53220.15180.118*
H18B0.09030.53530.20700.118*
H18C0.10450.49050.14870.118*
C190.1098 (4)0.56550 (13)0.05226 (16)0.0534 (8)
C200.2268 (4)0.52696 (12)0.01860 (15)0.0510 (8)
H200.27750.49970.04240.061*
C210.2693 (4)0.52866 (12)0.05111 (15)0.0489 (8)
C220.1962 (4)0.56981 (13)0.08811 (16)0.0508 (8)
C230.0771 (4)0.60764 (14)0.05194 (18)0.0653 (9)
H230.02630.63520.07530.078*
C240.0313 (4)0.60594 (14)0.01701 (18)0.0686 (10)
H240.05080.63140.03970.082*
C250.2455 (4)0.57557 (14)0.15955 (17)0.0580 (9)
H250.19500.60450.18110.070*
C260.5289 (4)0.52472 (15)0.30257 (17)0.0611 (9)
C270.5723 (4)0.54179 (13)0.37413 (15)0.0506 (8)
C280.6851 (4)0.50770 (13)0.41801 (18)0.0608 (9)
H280.73250.47560.40110.073*
C290.7299 (4)0.51937 (14)0.48550 (18)0.0628 (9)
H290.80640.49520.51310.075*
C300.6623 (4)0.56715 (13)0.51346 (17)0.0538 (8)
C310.5490 (4)0.60199 (13)0.46922 (16)0.0587 (9)
H310.50190.63430.48590.070*
C320.5057 (4)0.58973 (13)0.40179 (16)0.0582 (8)
H320.43010.61400.37380.070*
C330.8215 (5)0.54243 (16)0.62615 (17)0.0867 (12)
H33A0.77380.50460.62360.130*
H33B0.83250.55640.67140.130*
H33C0.93510.54180.61350.130*
C340.6210 (5)0.62570 (16)0.61016 (16)0.0859 (12)
H34A0.62600.65970.58420.129*
H34B0.68040.63200.65560.129*
H34C0.50060.61600.61010.129*
C350.3141 (6)0.38195 (18)0.19206 (19)0.1043 (13)
H35A0.27250.37440.23320.156*
H35B0.29290.34930.16310.156*
H35C0.25300.41430.17000.156*
C360.9621 (5)0.59350 (15)0.29735 (18)0.0885 (12)
H36A0.94870.58430.34240.133*
H36B0.96300.55910.27180.133*
H36C0.86600.61710.27670.133*
H50.332 (3)0.5805 (10)0.2794 (14)0.080*
H20.322 (4)0.6604 (9)0.8149 (14)0.080*
H81.111 (4)0.6578 (5)0.3071 (16)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0622 (17)0.0529 (17)0.0454 (17)0.0059 (14)0.0117 (14)0.0018 (13)
N20.0665 (18)0.0524 (17)0.0481 (18)0.0108 (14)0.0130 (14)0.0002 (14)
N30.0622 (18)0.0633 (18)0.0543 (19)0.0036 (15)0.0084 (15)0.0047 (15)
N40.0623 (18)0.0714 (19)0.0503 (18)0.0068 (15)0.0176 (15)0.0111 (15)
N50.065 (2)0.070 (2)0.0523 (19)0.0044 (16)0.0185 (15)0.0103 (15)
N60.073 (2)0.075 (2)0.058 (2)0.0117 (17)0.0062 (16)0.0013 (17)
O10.0999 (18)0.0718 (16)0.0644 (16)0.0451 (14)0.0085 (15)0.0004 (13)
O20.1041 (19)0.0646 (15)0.0652 (16)0.0290 (14)0.0249 (13)0.0010 (12)
O30.0746 (16)0.0834 (17)0.0538 (16)0.0110 (13)0.0011 (12)0.0018 (13)
O40.0840 (17)0.0817 (16)0.0571 (14)0.0341 (14)0.0109 (13)0.0050 (13)
O50.0789 (17)0.0893 (18)0.0877 (18)0.0206 (15)0.0171 (14)0.0301 (14)
O60.0779 (16)0.0812 (17)0.0595 (17)0.0227 (13)0.0001 (13)0.0020 (13)
O70.0803 (19)0.111 (2)0.106 (2)0.0428 (17)0.0134 (15)0.0483 (17)
O80.0804 (18)0.0752 (17)0.111 (2)0.0111 (17)0.0290 (15)0.0145 (17)
C10.141 (4)0.122 (3)0.061 (3)0.038 (3)0.018 (2)0.025 (2)
C20.0460 (19)0.056 (2)0.051 (2)0.0013 (16)0.0081 (16)0.0001 (17)
C30.054 (2)0.052 (2)0.058 (2)0.0100 (16)0.0113 (17)0.0076 (17)
C40.0509 (19)0.0454 (19)0.057 (2)0.0111 (16)0.0084 (16)0.0018 (16)
C50.0436 (18)0.0411 (18)0.052 (2)0.0047 (14)0.0102 (15)0.0003 (15)
C60.054 (2)0.0452 (19)0.064 (2)0.0073 (16)0.0128 (17)0.0025 (17)
C70.055 (2)0.051 (2)0.065 (2)0.0115 (16)0.0036 (18)0.0029 (17)
C80.054 (2)0.0438 (19)0.057 (2)0.0027 (16)0.0184 (17)0.0041 (16)
C90.059 (2)0.048 (2)0.054 (2)0.0070 (17)0.0181 (18)0.0089 (17)
C100.0499 (19)0.0454 (19)0.049 (2)0.0026 (15)0.0161 (15)0.0003 (16)
C110.057 (2)0.053 (2)0.061 (2)0.0087 (16)0.0156 (17)0.0002 (17)
C120.056 (2)0.054 (2)0.059 (2)0.0055 (16)0.0054 (17)0.0075 (17)
C130.0464 (19)0.0447 (19)0.053 (2)0.0072 (15)0.0131 (16)0.0031 (16)
C140.058 (2)0.051 (2)0.058 (2)0.0076 (17)0.0125 (17)0.0030 (17)
C150.057 (2)0.057 (2)0.056 (2)0.0081 (17)0.0094 (17)0.0034 (17)
C160.108 (3)0.088 (3)0.060 (3)0.008 (2)0.003 (2)0.007 (2)
C170.079 (3)0.077 (2)0.067 (2)0.010 (2)0.019 (2)0.018 (2)
C180.086 (3)0.092 (3)0.060 (2)0.011 (2)0.013 (2)0.015 (2)
C190.053 (2)0.054 (2)0.052 (2)0.0014 (17)0.0064 (17)0.0031 (17)
C200.0523 (19)0.0474 (19)0.055 (2)0.0057 (16)0.0135 (16)0.0053 (16)
C210.0458 (19)0.052 (2)0.050 (2)0.0017 (16)0.0113 (16)0.0011 (16)
C220.0448 (19)0.055 (2)0.055 (2)0.0002 (16)0.0167 (16)0.0076 (17)
C230.067 (2)0.063 (2)0.068 (3)0.0169 (19)0.0171 (19)0.0124 (19)
C240.065 (2)0.067 (2)0.072 (3)0.0197 (19)0.0073 (19)0.004 (2)
C250.055 (2)0.062 (2)0.061 (2)0.0026 (18)0.0235 (18)0.0105 (18)
C260.055 (2)0.064 (2)0.068 (2)0.0046 (19)0.0207 (19)0.010 (2)
C270.0464 (19)0.053 (2)0.055 (2)0.0017 (16)0.0147 (16)0.0066 (17)
C280.059 (2)0.045 (2)0.079 (3)0.0008 (17)0.0142 (19)0.0073 (19)
C290.055 (2)0.058 (2)0.073 (3)0.0027 (17)0.0046 (19)0.0102 (19)
C300.0457 (19)0.057 (2)0.059 (2)0.0125 (17)0.0114 (17)0.0021 (19)
C310.060 (2)0.055 (2)0.062 (2)0.0021 (17)0.0131 (18)0.0107 (18)
C320.059 (2)0.057 (2)0.057 (2)0.0045 (17)0.0085 (17)0.0022 (17)
C330.083 (3)0.102 (3)0.069 (3)0.013 (2)0.001 (2)0.021 (2)
C340.091 (3)0.108 (3)0.061 (2)0.011 (3)0.018 (2)0.015 (2)
C350.104 (3)0.127 (4)0.080 (3)0.014 (3)0.014 (2)0.001 (3)
C360.090 (3)0.080 (3)0.089 (3)0.003 (2)0.000 (2)0.017 (2)
Geometric parameters (Å, º) top
N1—C81.280 (3)C12—H120.9300
N1—N21.377 (3)C13—C141.397 (4)
N2—C91.352 (4)C14—C151.374 (4)
N2—H20.903 (10)C14—H140.9300
N3—C131.362 (3)C15—H150.9300
N3—C161.444 (4)C16—H16A0.9600
N3—C171.452 (4)C16—H16B0.9600
N4—C251.287 (4)C16—H16C0.9600
N4—N51.386 (3)C17—H17A0.9600
N5—C261.352 (4)C17—H17B0.9600
N5—H50.905 (10)C17—H17C0.9600
N6—C301.371 (4)C18—H18A0.9600
N6—C341.448 (4)C18—H18B0.9600
N6—C331.451 (4)C18—H18C0.9600
O1—C41.351 (3)C19—C201.370 (4)
O1—H10.8200C19—C241.391 (4)
O2—C91.236 (3)C20—C211.387 (4)
O3—C21.371 (3)C20—H200.9300
O3—C11.419 (4)C21—C221.402 (4)
O4—C211.353 (3)C22—C231.388 (4)
O4—H40.8200C22—C251.430 (4)
O5—C261.238 (3)C23—C241.373 (4)
O6—C191.362 (3)C23—H230.9300
O6—C181.418 (3)C24—H240.9300
O7—C351.389 (4)C25—H250.9300
O7—H70.8200C26—C271.478 (4)
O8—C361.387 (4)C27—C281.381 (4)
O8—H80.848 (10)C27—C321.396 (4)
C1—H1A0.9600C28—C291.372 (4)
C1—H1B0.9600C28—H280.9300
C1—H1C0.9600C29—C301.399 (4)
C2—C31.370 (4)C29—H290.9300
C2—C71.385 (4)C30—C311.397 (4)
C3—C41.386 (4)C31—C321.373 (4)
C3—H30.9300C31—H310.9300
C4—C51.393 (4)C32—H320.9300
C5—C61.392 (4)C33—H33A0.9600
C5—C81.445 (4)C33—H33B0.9600
C6—C71.366 (4)C33—H33C0.9600
C6—H60.9300C34—H34A0.9600
C7—H7A0.9300C34—H34B0.9600
C8—H8A0.9300C34—H34C0.9600
C9—C101.475 (4)C35—H35A0.9600
C10—C111.384 (4)C35—H35B0.9600
C10—C151.394 (4)C35—H35C0.9600
C11—C121.372 (4)C36—H36A0.9600
C11—H110.9300C36—H36B0.9600
C12—C131.398 (4)C36—H36C0.9600
C8—N1—N2117.5 (3)H17A—C17—H17B109.5
C9—N2—N1119.1 (3)N3—C17—H17C109.5
C9—N2—H2123 (2)H17A—C17—H17C109.5
N1—N2—H2118 (2)H17B—C17—H17C109.5
C13—N3—C16121.4 (3)O6—C18—H18A109.5
C13—N3—C17121.1 (3)O6—C18—H18B109.5
C16—N3—C17116.4 (3)H18A—C18—H18B109.5
C25—N4—N5116.1 (3)O6—C18—H18C109.5
C26—N5—N4119.6 (3)H18A—C18—H18C109.5
C26—N5—H5123 (2)H18B—C18—H18C109.5
N4—N5—H5117 (2)O6—C19—C20124.5 (3)
C30—N6—C34121.2 (3)O6—C19—C24114.9 (3)
C30—N6—C33120.7 (3)C20—C19—C24120.5 (3)
C34—N6—C33117.7 (3)C19—C20—C21119.9 (3)
C4—O1—H1109.5C19—C20—H20120.1
C2—O3—C1118.5 (3)C21—C20—H20120.1
C21—O4—H4109.5O4—C21—C20117.0 (3)
C19—O6—C18118.6 (2)O4—C21—C22121.9 (3)
C35—O7—H7109.5C20—C21—C22121.1 (3)
C36—O8—H8113 (2)C23—C22—C21117.0 (3)
O3—C1—H1A109.5C23—C22—C25120.0 (3)
O3—C1—H1B109.5C21—C22—C25122.9 (3)
H1A—C1—H1B109.5C24—C23—C22122.6 (3)
O3—C1—H1C109.5C24—C23—H23118.7
H1A—C1—H1C109.5C22—C23—H23118.7
H1B—C1—H1C109.5C23—C24—C19118.8 (3)
C3—C2—O3124.6 (3)C23—C24—H24120.6
C3—C2—C7120.3 (3)C19—C24—H24120.6
O3—C2—C7115.1 (3)N4—C25—C22122.1 (3)
C2—C3—C4119.7 (3)N4—C25—H25118.9
C2—C3—H3120.1C22—C25—H25118.9
C4—C3—H3120.1O5—C26—N5121.6 (3)
O1—C4—C3117.5 (3)O5—C26—C27121.7 (3)
O1—C4—C5121.3 (3)N5—C26—C27116.7 (3)
C3—C4—C5121.2 (3)C28—C27—C32116.5 (3)
C6—C5—C4117.2 (3)C28—C27—C26118.4 (3)
C6—C5—C8120.3 (3)C32—C27—C26125.1 (3)
C4—C5—C8122.4 (3)C29—C28—C27122.5 (3)
C7—C6—C5122.2 (3)C29—C28—H28118.7
C7—C6—H6118.9C27—C28—H28118.7
C5—C6—H6118.9C28—C29—C30121.0 (3)
C6—C7—C2119.3 (3)C28—C29—H29119.5
C6—C7—H7A120.3C30—C29—H29119.5
C2—C7—H7A120.3N6—C30—C31121.4 (3)
N1—C8—C5120.4 (3)N6—C30—C29121.9 (3)
N1—C8—H8A119.8C31—C30—C29116.7 (3)
C5—C8—H8A119.8C32—C31—C30121.6 (3)
O2—C9—N2120.3 (3)C32—C31—H31119.2
O2—C9—C10122.2 (3)C30—C31—H31119.2
N2—C9—C10117.5 (3)C31—C32—C27121.6 (3)
C11—C10—C15116.0 (3)C31—C32—H32119.2
C11—C10—C9119.4 (3)C27—C32—H32119.2
C15—C10—C9124.6 (3)N6—C33—H33A109.5
C12—C11—C10122.5 (3)N6—C33—H33B109.5
C12—C11—H11118.8H33A—C33—H33B109.5
C10—C11—H11118.8N6—C33—H33C109.5
C11—C12—C13121.6 (3)H33A—C33—H33C109.5
C11—C12—H12119.2H33B—C33—H33C109.5
C13—C12—H12119.2N6—C34—H34A109.5
N3—C13—C14121.9 (3)N6—C34—H34B109.5
N3—C13—C12121.9 (3)H34A—C34—H34B109.5
C14—C13—C12116.1 (3)N6—C34—H34C109.5
C15—C14—C13121.6 (3)H34A—C34—H34C109.5
C15—C14—H14119.2H34B—C34—H34C109.5
C13—C14—H14119.2O7—C35—H35A109.5
C14—C15—C10122.2 (3)O7—C35—H35B109.5
C14—C15—H15118.9H35A—C35—H35B109.5
C10—C15—H15118.9O7—C35—H35C109.5
N3—C16—H16A109.5H35A—C35—H35C109.5
N3—C16—H16B109.5H35B—C35—H35C109.5
H16A—C16—H16B109.5O8—C36—H36A109.5
N3—C16—H16C109.5O8—C36—H36B109.5
H16A—C16—H16C109.5H36A—C36—H36B109.5
H16B—C16—H16C109.5O8—C36—H36C109.5
N3—C17—H17A109.5H36A—C36—H36C109.5
N3—C17—H17B109.5H36B—C36—H36C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.588 (3)147
O4—H4···N40.821.932.649 (3)146
O7—H7···O50.821.872.671 (3)166
O8—H8···O2i0.85 (1)1.86 (1)2.713 (3)179 (4)
N5—H5···O8ii0.91 (1)2.02 (1)2.892 (4)161 (3)
N2—H2···O7iii0.90 (1)2.01 (2)2.876 (3)159 (3)
Symmetry codes: (i) x+1, y+3/2, z1/2; (ii) x1, y, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H19N3O3·CH4O
Mr345.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.7426 (17), 23.473 (2), 20.1975 (16)
β (°) 100.495 (2)
V3)3609.3 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.17 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.985, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
17259, 6668, 2824
Rint0.051
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.155, 0.99
No. of reflections6668
No. of parameters471
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.588 (3)147
O4—H4···N40.821.932.649 (3)146
O7—H7···O50.821.872.671 (3)166
O8—H8···O2i0.848 (10)1.864 (11)2.713 (3)179 (4)
N5—H5···O8ii0.905 (10)2.023 (14)2.892 (4)161 (3)
N2—H2···O7iii0.903 (10)2.014 (15)2.876 (3)159 (3)
Symmetry codes: (i) x+1, y+3/2, z1/2; (ii) x1, y, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Open Foundation from Ocean Fishery Science and Technology in the Most Important Subjects of Zhejiang (project No. 20110217).

References

First citationBingöl Alpaslan, Y., Alpaslan, G., Ağar, A. & Işık, Ş. (2010). Acta Cryst. E66, o510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKaradağ, A. T., Atalay, Ş. & Genç, H. (2011). Acta Cryst. E67, o95.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMiura, Y., Aritake, Y. & Akitsu, T. (2009). Acta Cryst. E65, o2381.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H. & Sun, J. (2012). Acta Cryst. E68, o1042.  CSD CrossRef IUCr Journals Google Scholar
First citationZhao, L., Cao, D. & Cui, J. (2010). Acta Cryst. E66, o2204.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds