metal-organic compounds
Tetrakis(μ2-cyanido-κ2C:N)dicyanidotetrakis[tris(2-aminoethyl)amine-κ3N,N′,N′′,N′′′]tetracopper(II)iron(II) bis[pentacyanidonitrosoferrate(II)] hexahydrate
aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska St, Kyiv 01601, Ukraine, bDepartment of Inorganic Chemistry II, Ruhr-University Bochum, Universitatstrasse 150, 44801 Bochum, Germany, cDivision of Functional Materials Chemistry, SSI "Institute for Single Crystals", National Academy of Science of Ukraine, 60 Lenina Ave., Kharkiv 61001, Ukraine, and dDepartment of Inorganic Chemistry, V. N. Karazin National University, 4 Svobody Sq, Kharkiv 61077, Ukraine
*Correspondence e-mail: roman@xray.isc.kharkov.com
The 4Fe(CN)6(C6H18N4)4][Fe(CN)5(NO)]2·6H2O, comprises a complex [{Cu(tren)CN}4Fe(CN)2]4+ [tren is tris(2-aminoethyl)amine] cation, which exhibits -1 symmetry with the terminal cyanide ligands oriented trans to each other, and two [Fe(CN)5(NO)]2− nitroprussiate counter-anions. In the crystal, N—H⋯N hydrogen-bonding interactions are observed between H atoms on the primary amine groups of the tren ligand and the terminal cyanide groups of the nitroprussiate counter-ions. The N atom in the terminal CN ligand of the cation is equally disordered over two positions. The structure also contains disordered lattice water molecules. Their contribution was eliminated from the using the procedure described by van der Sluis & Spek (1990).
of the title complex, [CuRelated literature
For background to direct synthesis, see: Nesterov et al. (2004, 2006); Nesterova et al. (2004); Pryma et al. (2003)Vinogradova et al. (2002); Makhankova et al. (2002); Babich et al. (1996). For the structures of related complexes, see: El Fallah et al. (1996); Lu et al. (1997); Zou et al. (1997); Parker et al. (2001) The contribution from disordered water molecules was eliminated using the OLEX2 interface; for background, see: van der Sluis & Spek (1990).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536812038251/hg5241sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812038251/hg5241Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812038251/hg5241Isup3.cdx
The title compound was prepared by direct synthesis mixing of the zerovalent copper powder (0,079 g, 1,25 mmol), NH4NCS (0,096 g, 1,26 mmol), Na2[Fe(CN)5(NO)].2H2O (0,188 g, 0,63 mmol), tris(2-aminoethyl)-amine (0,19 ml, 1,27 mmol), methanol (30 ml) were heated to 323–333 K and stirred magnetically for 130 min. Resulted mixture was filtered off and transparent brown solution was allowed to stand at room temperature. Dark brown square plate crystals suitable for X-ray analysis precipitated within two months by adding of 5 ml of diethyl ether.They were collected by filter-suction, washed with dry PríOH and finally dried in vacuo at room temperature (yield: 0.14 g, 30%)
All H atoms were refined using rigid model with Uiso = 1.2Ueq of the
The N atom in one of the CN ligands is disordered over two positions with equal occupancy. Despite of the fact that some other atoms show high Ueq or prolate Uaniso, Fobs map indicates single electron density peak for each atom. Thus, no disorder was introduced in the model. Structure contains disorderes water molecules. Solvent contribution was eliminated using procedure described by van der Sluis and Spek (1990). Integrated number of solvent electrons per cell is 39.9, which corresponds to 4 water molecules.As it was shown in our previuous publication direct synthesis is an efficient method to obtained novel homo- and heterometallic complexes (Nesterov et al., 2004, 2006; Nesterova et al., 2004; Pryma et al., 2003; Vinogradova et al., 2002; Makhankova et al., 2002); Babich et al., 1996). In this paper we present a novel Cu/Fe heterometallic ionic complex which has been synthesized using zerovalent copper, Sodium nitroprusside and tris(2-aminoethyl)-amine as starting materials.
The
contains two iron ions. One of them which is connected to copper ions by bridging cyanide groups is localized at the special equivalent position (O,O,O) (Fig. 1). The Cu—Fe separations range between 4.9044 (5) and 4.9403 (5) Å. Each Cu located in the center of a distorted trigonal bipyramid formed by four nitrogen atoms of the tren ligand and one nitrogen atom of cyanide groups. The Cu—N distances range between 2.048 (2) and 2.103 (3) Å for Cu—Ntren) and between 1.932 (3) and 1.947 (3) Å, for Cu—NCN). The Fe1—C distances range from 1.886 (3) to 1.912 (4) Å, whereas, as expected, the Fe—C—N bond angles only vary in the small range between 176.1 (4)° and 176.5 (4)° (not taking into account disordered CN ligand). The Cu—N—C bond angles, on the other hand, deviate significantly from linearity and lie between 163.4 (4) and 165.0 (4)°. All bond distances and angles are comparable to the corresponding distances in closely related compounds (El Fallah et al. (1996); Lu et al. (1997); Zou et al. (1997); Parker et al. (2001)).For background to direct synthesis, see: Nesterov et al. (2004, 2006); Nesterova et al. (2004); Pryma et al. (2003); Vinogradova et al. (2002); Makhankova et al. (2002); Babich et al. (1996). For the structures of related complexes, see: El Fallah et al. (1996); Lu et al. (1997); Zou et al. (1997); Parker et al. (2001) The contribution from disordered water molecules was eliminated using the OLEX2 program; for background, see: van der Sluis & Spek (1990).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. Structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms. Unlabelled atoms are generated by the application of the inversion centre. |
[Cu4Fe(CN)6(C6H18N4)4][Fe(CN)5(NO)]2·6H2O | Z = 1 |
Mr = 1591.16 | F(000) = 820 |
Triclinic, P1 | Dx = 1.432 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.7107 Å |
a = 7.9270 (2) Å | Cell parameters from 6786 reflections |
b = 14.9656 (4) Å | θ = 2.9–30.3° |
c = 17.5565 (4) Å | µ = 1.77 mm−1 |
α = 114.879 (3)° | T = 100 K |
β = 94.021 (2)° | Block, brown |
γ = 98.909 (2)° | 0.24 × 0.17 × 0.06 mm |
V = 1845.30 (8) Å3 |
Agilent Xcalibur Sapphire3 diffractometer | 9691 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 6403 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 16.1827 pixels mm-1 | θmax = 30.3°, θmin = 2.9° |
ω scans | h = −11→10 |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2011), based on expressions derived by Clark & Reid (1995)] | k = −20→21 |
Tmin = 0.752, Tmax = 0.909 | l = −22→24 |
32856 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.138 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.069P)2 + 0.5531P] where P = (Fo2 + 2Fc2)/3 |
9691 reflections | (Δ/σ)max < 0.001 |
385 parameters | Δρmax = 1.49 e Å−3 |
0 restraints | Δρmin = −0.68 e Å−3 |
[Cu4Fe(CN)6(C6H18N4)4][Fe(CN)5(NO)]2·6H2O | γ = 98.909 (2)° |
Mr = 1591.16 | V = 1845.30 (8) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.9270 (2) Å | Mo Kα radiation |
b = 14.9656 (4) Å | µ = 1.77 mm−1 |
c = 17.5565 (4) Å | T = 100 K |
α = 114.879 (3)° | 0.24 × 0.17 × 0.06 mm |
β = 94.021 (2)° |
Agilent Xcalibur Sapphire3 diffractometer | 9691 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2011), based on expressions derived by Clark & Reid (1995)] | 6403 reflections with I > 2σ(I) |
Tmin = 0.752, Tmax = 0.909 | Rint = 0.040 |
32856 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.138 | H-atom parameters constrained |
S = 1.05 | Δρmax = 1.49 e Å−3 |
9691 reflections | Δρmin = −0.68 e Å−3 |
385 parameters |
Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.83068 (6) | 0.02273 (3) | 0.26993 (3) | 0.04262 (13) | |
Cu2 | 0.68711 (5) | 0.27612 (3) | 0.05083 (3) | 0.03257 (12) | |
Fe1 | 1.0000 | 0.0000 | 0.0000 | 0.02668 (15) | |
Fe2 | 0.78985 (6) | 0.31396 (4) | 0.70855 (3) | 0.03349 (13) | |
O1 | 0.5468 (4) | 0.3216 (3) | 0.5890 (2) | 0.0744 (10) | |
N1 | 0.8551 (6) | −0.0065 (3) | 0.1535 (2) | 0.0769 (14) | |
N2 | 0.8147 (5) | 0.1677 (2) | 0.0138 (3) | 0.0627 (11) | |
N3 | 0.5695 (3) | 0.3970 (2) | 0.09740 (16) | 0.0278 (6) | |
N4 | 0.8633 (3) | 0.36876 (18) | 0.02108 (17) | 0.0292 (6) | |
H4A | 0.9672 | 0.3874 | 0.0560 | 0.035* | |
H4B | 0.8814 | 0.3352 | −0.0342 | 0.035* | |
N5 | 0.6714 (4) | 0.2757 (2) | 0.1666 (2) | 0.0502 (9) | |
H5A | 0.5783 | 0.2280 | 0.1624 | 0.060* | |
H5B | 0.7700 | 0.2610 | 0.1854 | 0.060* | |
N6 | 0.4605 (4) | 0.2076 (2) | −0.0386 (2) | 0.0442 (7) | |
H6A | 0.4803 | 0.2070 | −0.0899 | 0.053* | |
H6B | 0.4238 | 0.1425 | −0.0468 | 0.053* | |
N7A | 0.6581 (10) | −0.1254 (6) | −0.1190 (5) | 0.0476 (17) | 0.50 |
N7B | 0.7260 (11) | −0.1575 (5) | −0.1417 (5) | 0.0470 (18) | 0.50 |
N8 | 0.8102 (4) | 0.0598 (3) | 0.39475 (18) | 0.0438 (7) | |
N9 | 0.6489 (8) | 0.1111 (5) | 0.2816 (3) | 0.121 (2) | |
H9A | 0.6983 | 0.1717 | 0.2831 | 0.145* | |
H9B | 0.5622 | 0.0788 | 0.2358 | 0.145* | |
N10 | 0.7714 (5) | −0.1240 (3) | 0.2548 (2) | 0.0542 (9) | |
H10A | 0.6636 | −0.1547 | 0.2232 | 0.065* | |
H10B | 0.8504 | −0.1594 | 0.2262 | 0.065* | |
N11 | 1.0936 (5) | 0.0862 (3) | 0.3185 (3) | 0.0710 (12) | |
H11A | 1.1563 | 0.0364 | 0.3070 | 0.085* | |
H11B | 1.1362 | 0.1267 | 0.2939 | 0.085* | |
N12 | 0.6481 (4) | 0.3192 (3) | 0.63731 (19) | 0.0453 (8) | |
N13 | 1.1119 (4) | 0.3383 (3) | 0.6248 (2) | 0.0517 (8) | |
N14 | 0.7410 (4) | 0.0827 (2) | 0.6234 (2) | 0.0461 (8) | |
N15 | 0.8897 (4) | 0.5446 (2) | 0.8145 (2) | 0.0436 (7) | |
N16 | 1.0233 (4) | 0.2910 (2) | 0.8445 (2) | 0.0420 (7) | |
N17 | 0.5320 (4) | 0.3039 (2) | 0.8294 (2) | 0.0447 (7) | |
C1 | 0.9050 (6) | −0.0063 (2) | 0.0941 (2) | 0.0467 (10) | |
C2 | 0.8901 (5) | 0.1067 (3) | 0.0100 (3) | 0.0428 (9) | |
C3 | 0.6980 (4) | 0.4860 (2) | 0.1070 (2) | 0.0313 (7) | |
H3A | 0.7805 | 0.5103 | 0.1599 | 0.038* | |
H3B | 0.6382 | 0.5409 | 0.1111 | 0.038* | |
C4 | 0.7947 (5) | 0.4587 (2) | 0.0318 (2) | 0.0336 (7) | |
H4C | 0.7161 | 0.4445 | −0.0201 | 0.040* | |
H4D | 0.8906 | 0.5151 | 0.0418 | 0.040* | |
C5 | 0.5198 (4) | 0.4091 (3) | 0.1805 (2) | 0.0407 (8) | |
H5C | 0.4037 | 0.3675 | 0.1717 | 0.049* | |
H5D | 0.5152 | 0.4803 | 0.2157 | 0.049* | |
C6 | 0.6513 (5) | 0.3769 (3) | 0.2260 (2) | 0.0462 (9) | |
H6C | 0.7634 | 0.4250 | 0.2432 | 0.055* | |
H6D | 0.6106 | 0.3754 | 0.2775 | 0.055* | |
C7 | 0.4153 (4) | 0.3767 (3) | 0.0350 (2) | 0.0363 (8) | |
H7A | 0.4504 | 0.3957 | −0.0100 | 0.044* | |
H7B | 0.3324 | 0.4181 | 0.0638 | 0.044* | |
C8 | 0.3297 (4) | 0.2676 (3) | −0.0041 (3) | 0.0443 (9) | |
H8A | 0.2798 | 0.2502 | 0.0392 | 0.053* | |
H8B | 0.2351 | 0.2534 | −0.0501 | 0.053* | |
C9 | 0.8049 (6) | −0.0906 (3) | −0.0803 (3) | 0.0577 (12) | |
C10 | 0.7119 (7) | 0.1374 (4) | 0.4256 (3) | 0.0658 (13) | |
H10C | 0.7899 | 0.2039 | 0.4460 | 0.079* | |
H10D | 0.6586 | 0.1349 | 0.4741 | 0.079* | |
C11 | 0.5764 (7) | 0.1258 (5) | 0.3590 (3) | 0.0857 (18) | |
H11C | 0.4838 | 0.0672 | 0.3476 | 0.103* | |
H11D | 0.5252 | 0.1865 | 0.3781 | 0.103* | |
C12 | 0.7226 (6) | −0.0336 (4) | 0.3977 (3) | 0.0624 (12) | |
H12A | 0.7497 | −0.0275 | 0.4558 | 0.075* | |
H12B | 0.5961 | −0.0410 | 0.3853 | 0.075* | |
C13 | 0.7735 (6) | −0.1235 (3) | 0.3375 (3) | 0.0625 (12) | |
H13A | 0.8911 | −0.1259 | 0.3587 | 0.075* | |
H13B | 0.6932 | −0.1840 | 0.3326 | 0.075* | |
C14 | 0.9881 (6) | 0.0889 (4) | 0.4435 (3) | 0.0636 (12) | |
H14A | 0.9855 | 0.1309 | 0.5044 | 0.076* | |
H14B | 1.0294 | 0.0277 | 0.4382 | 0.076* | |
C15 | 1.1079 (5) | 0.1458 (3) | 0.4106 (3) | 0.0616 (12) | |
H15A | 1.0771 | 0.2117 | 0.4232 | 0.074* | |
H15B | 1.2280 | 0.1578 | 0.4381 | 0.074* | |
C16 | 0.9920 (5) | 0.3267 (3) | 0.6547 (2) | 0.0391 (8) | |
C17 | 0.7572 (4) | 0.1689 (3) | 0.6537 (2) | 0.0369 (8) | |
C18 | 0.8531 (4) | 0.4586 (3) | 0.7763 (2) | 0.0346 (7) | |
C19 | 0.9416 (4) | 0.3023 (2) | 0.7939 (2) | 0.0334 (7) | |
C20 | 0.6234 (4) | 0.3074 (3) | 0.7823 (2) | 0.0360 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0546 (3) | 0.0377 (2) | 0.0257 (2) | −0.0003 (2) | 0.0198 (2) | 0.00578 (18) |
Cu2 | 0.0308 (2) | 0.0266 (2) | 0.0505 (3) | 0.01061 (16) | 0.01054 (18) | 0.02431 (19) |
Fe1 | 0.0455 (4) | 0.0175 (3) | 0.0216 (3) | 0.0119 (3) | 0.0134 (3) | 0.0098 (2) |
Fe2 | 0.0374 (3) | 0.0377 (3) | 0.0257 (2) | 0.0095 (2) | 0.0108 (2) | 0.0126 (2) |
O1 | 0.077 (2) | 0.101 (3) | 0.0446 (18) | 0.040 (2) | −0.0021 (16) | 0.0255 (18) |
N1 | 0.138 (4) | 0.0361 (19) | 0.038 (2) | −0.016 (2) | 0.046 (2) | 0.0044 (15) |
N2 | 0.054 (2) | 0.0361 (18) | 0.115 (3) | 0.0209 (16) | 0.031 (2) | 0.043 (2) |
N3 | 0.0284 (13) | 0.0366 (14) | 0.0286 (14) | 0.0148 (12) | 0.0118 (11) | 0.0201 (12) |
N4 | 0.0321 (14) | 0.0209 (12) | 0.0325 (15) | 0.0077 (11) | 0.0129 (11) | 0.0077 (11) |
N5 | 0.056 (2) | 0.0480 (19) | 0.053 (2) | −0.0032 (16) | −0.0136 (16) | 0.0363 (17) |
N6 | 0.0465 (18) | 0.0392 (17) | 0.0478 (19) | 0.0017 (14) | −0.0003 (15) | 0.0234 (15) |
N7A | 0.039 (4) | 0.059 (5) | 0.050 (5) | −0.002 (4) | 0.002 (3) | 0.033 (4) |
N7B | 0.052 (5) | 0.035 (4) | 0.056 (5) | 0.013 (3) | 0.017 (4) | 0.020 (4) |
N8 | 0.0349 (16) | 0.055 (2) | 0.0249 (15) | 0.0007 (14) | 0.0062 (12) | 0.0048 (14) |
N9 | 0.153 (5) | 0.186 (6) | 0.060 (3) | 0.094 (5) | 0.022 (3) | 0.067 (4) |
N10 | 0.057 (2) | 0.048 (2) | 0.047 (2) | 0.0005 (17) | 0.0227 (16) | 0.0110 (16) |
N11 | 0.049 (2) | 0.049 (2) | 0.083 (3) | −0.0051 (17) | 0.033 (2) | −0.001 (2) |
N12 | 0.0513 (19) | 0.056 (2) | 0.0298 (16) | 0.0171 (16) | 0.0132 (14) | 0.0165 (15) |
N13 | 0.058 (2) | 0.053 (2) | 0.051 (2) | 0.0148 (17) | 0.0304 (17) | 0.0238 (17) |
N14 | 0.0515 (19) | 0.0432 (19) | 0.0385 (18) | 0.0073 (15) | 0.0203 (15) | 0.0118 (15) |
N15 | 0.0380 (16) | 0.0425 (19) | 0.052 (2) | 0.0176 (15) | 0.0094 (14) | 0.0186 (16) |
N16 | 0.0494 (18) | 0.0384 (17) | 0.0406 (18) | 0.0113 (14) | 0.0091 (15) | 0.0185 (14) |
N17 | 0.0402 (17) | 0.054 (2) | 0.0362 (17) | 0.0093 (15) | 0.0130 (14) | 0.0157 (15) |
C1 | 0.083 (3) | 0.0172 (15) | 0.034 (2) | 0.0009 (17) | 0.0239 (19) | 0.0066 (14) |
C2 | 0.049 (2) | 0.0280 (17) | 0.063 (3) | 0.0126 (16) | 0.0213 (19) | 0.0265 (17) |
C3 | 0.0400 (18) | 0.0282 (16) | 0.0324 (17) | 0.0162 (14) | 0.0139 (14) | 0.0153 (14) |
C4 | 0.0435 (19) | 0.0240 (15) | 0.0379 (19) | 0.0098 (14) | 0.0154 (15) | 0.0156 (14) |
C5 | 0.0324 (18) | 0.067 (3) | 0.0325 (19) | 0.0157 (17) | 0.0134 (14) | 0.0277 (18) |
C6 | 0.046 (2) | 0.066 (3) | 0.035 (2) | 0.0060 (19) | −0.0012 (16) | 0.032 (2) |
C7 | 0.0353 (18) | 0.053 (2) | 0.0374 (19) | 0.0223 (16) | 0.0111 (15) | 0.0303 (17) |
C8 | 0.0282 (17) | 0.069 (3) | 0.049 (2) | 0.0049 (17) | −0.0004 (16) | 0.041 (2) |
C9 | 0.087 (3) | 0.042 (2) | 0.044 (2) | −0.013 (2) | −0.008 (2) | 0.031 (2) |
C10 | 0.082 (3) | 0.087 (3) | 0.040 (2) | 0.051 (3) | 0.032 (2) | 0.023 (2) |
C11 | 0.064 (3) | 0.098 (4) | 0.070 (4) | 0.043 (3) | 0.008 (3) | 0.004 (3) |
C12 | 0.067 (3) | 0.095 (4) | 0.042 (2) | 0.025 (3) | 0.021 (2) | 0.040 (3) |
C13 | 0.069 (3) | 0.056 (3) | 0.048 (3) | −0.019 (2) | −0.014 (2) | 0.024 (2) |
C14 | 0.055 (3) | 0.060 (3) | 0.054 (3) | 0.011 (2) | −0.006 (2) | 0.008 (2) |
C15 | 0.040 (2) | 0.043 (2) | 0.073 (3) | 0.0039 (19) | 0.004 (2) | 0.001 (2) |
C16 | 0.047 (2) | 0.0395 (19) | 0.0341 (19) | 0.0125 (16) | 0.0141 (16) | 0.0162 (16) |
C17 | 0.0381 (19) | 0.042 (2) | 0.0278 (18) | 0.0068 (16) | 0.0137 (14) | 0.0121 (15) |
C18 | 0.0318 (17) | 0.046 (2) | 0.0347 (19) | 0.0168 (16) | 0.0146 (14) | 0.0212 (17) |
C19 | 0.0350 (17) | 0.0285 (16) | 0.0340 (18) | 0.0033 (14) | 0.0126 (14) | 0.0112 (14) |
C20 | 0.0342 (18) | 0.0410 (19) | 0.0288 (17) | 0.0077 (15) | 0.0059 (14) | 0.0112 (15) |
Cu1—N1 | 1.932 (3) | N9—H9B | 0.9194 |
Cu1—N8 | 2.047 (3) | N9—C11 | 1.456 (7) |
Cu1—N9 | 2.066 (5) | N10—H10A | 0.9201 |
Cu1—N10 | 2.071 (3) | N10—H10B | 0.9207 |
Cu1—N11 | 2.105 (4) | N10—C13 | 1.448 (5) |
Cu2—N2 | 1.947 (3) | N11—H11A | 0.9196 |
Cu2—N3 | 2.048 (2) | N11—H11B | 0.9194 |
Cu2—N4 | 2.064 (3) | N11—C15 | 1.468 (6) |
Cu2—N5 | 2.047 (3) | N13—C16 | 1.142 (4) |
Cu2—N6 | 2.103 (3) | N14—C17 | 1.152 (5) |
Fe1—C1 | 1.895 (4) | N15—C18 | 1.149 (4) |
Fe1—C1i | 1.895 (4) | N16—C19 | 1.149 (4) |
Fe1—C2i | 1.886 (3) | N17—C20 | 1.148 (4) |
Fe1—C2 | 1.886 (3) | C3—H3A | 0.9900 |
Fe1—C9 | 1.912 (4) | C3—H3B | 0.9900 |
Fe1—C9i | 1.912 (4) | C3—C4 | 1.511 (4) |
Fe2—N12 | 1.657 (3) | C4—H4C | 0.9900 |
Fe2—C16 | 1.941 (4) | C4—H4D | 0.9900 |
Fe2—C17 | 1.934 (4) | C5—H5C | 0.9900 |
Fe2—C18 | 1.941 (4) | C5—H5D | 0.9900 |
Fe2—C19 | 1.938 (4) | C5—C6 | 1.523 (5) |
Fe2—C20 | 1.933 (4) | C6—H6C | 0.9900 |
O1—N12 | 1.141 (4) | C6—H6D | 0.9900 |
N1—C1 | 1.143 (5) | C7—H7A | 0.9900 |
N2—C2 | 1.148 (4) | C7—H7B | 0.9900 |
N3—C3 | 1.486 (4) | C7—C8 | 1.498 (5) |
N3—C5 | 1.482 (4) | C8—H8A | 0.9900 |
N3—C7 | 1.484 (4) | C8—H8B | 0.9900 |
N4—H4A | 0.9201 | C10—H10C | 0.9900 |
N4—H4B | 0.9194 | C10—H10D | 0.9900 |
N4—C4 | 1.473 (4) | C10—C11 | 1.464 (7) |
N5—H5A | 0.9190 | C11—H11C | 0.9900 |
N5—H5B | 0.9201 | C11—H11D | 0.9900 |
N5—C6 | 1.475 (5) | C12—H12A | 0.9900 |
N6—H6A | 0.9211 | C12—H12B | 0.9900 |
N6—H6B | 0.9194 | C12—C13 | 1.456 (7) |
N6—C8 | 1.472 (5) | C13—H13A | 0.9900 |
N7A—C9 | 1.221 (8) | C13—H13B | 0.9900 |
N7B—C9 | 1.165 (9) | C14—H14A | 0.9900 |
N8—C10 | 1.436 (5) | C14—H14B | 0.9900 |
N8—C12 | 1.484 (6) | C14—C15 | 1.484 (7) |
N8—C14 | 1.496 (5) | C15—H15A | 0.9900 |
N9—H9A | 0.9191 | C15—H15B | 0.9900 |
N1—Cu1—N8 | 177.60 (14) | C13—N10—Cu1 | 109.2 (3) |
N1—Cu1—N9 | 96.5 (2) | C13—N10—H10A | 109.8 |
N1—Cu1—N10 | 97.96 (14) | C13—N10—H10B | 110.2 |
N1—Cu1—N11 | 95.37 (18) | Cu1—N11—H11A | 110.3 |
N8—Cu1—N9 | 82.80 (16) | Cu1—N11—H11B | 110.1 |
N8—Cu1—N10 | 84.33 (13) | H11A—N11—H11B | 108.5 |
N8—Cu1—N11 | 83.12 (14) | C15—N11—Cu1 | 107.9 (3) |
N9—Cu1—N10 | 123.4 (2) | C15—N11—H11A | 110.0 |
N9—Cu1—N11 | 121.7 (2) | C15—N11—H11B | 110.0 |
N10—Cu1—N11 | 110.89 (16) | O1—N12—Fe2 | 178.1 (3) |
N2—Cu2—N3 | 175.37 (15) | N1—C1—Fe1 | 176.5 (4) |
N2—Cu2—N4 | 93.44 (12) | N2—C2—Fe1 | 176.1 (4) |
N2—Cu2—N5 | 93.31 (16) | N3—C3—H3A | 109.6 |
N2—Cu2—N6 | 100.50 (15) | N3—C3—H3B | 109.6 |
N3—Cu2—N4 | 84.67 (10) | N3—C3—C4 | 110.2 (3) |
N3—Cu2—N6 | 84.13 (11) | H3A—C3—H3B | 108.1 |
N4—Cu2—N6 | 113.41 (11) | C4—C3—H3A | 109.6 |
N5—Cu2—N3 | 84.58 (12) | C4—C3—H3B | 109.6 |
N5—Cu2—N4 | 128.10 (12) | N4—C4—C3 | 108.1 (2) |
N5—Cu2—N6 | 115.70 (13) | N4—C4—H4C | 110.1 |
C1i—Fe1—C1 | 179.999 (1) | N4—C4—H4D | 110.1 |
C1i—Fe1—C9i | 93.61 (18) | C3—C4—H4C | 110.1 |
C1—Fe1—C9i | 86.39 (18) | C3—C4—H4D | 110.1 |
C1i—Fe1—C9 | 86.39 (18) | H4C—C4—H4D | 108.4 |
C1—Fe1—C9 | 93.61 (18) | N3—C5—H5C | 109.7 |
C2—Fe1—C1i | 89.62 (16) | N3—C5—H5D | 109.7 |
C2i—Fe1—C1 | 89.62 (16) | N3—C5—C6 | 109.6 (3) |
C2i—Fe1—C1i | 90.38 (16) | H5C—C5—H5D | 108.2 |
C2—Fe1—C1 | 90.38 (16) | C6—C5—H5C | 109.7 |
C2i—Fe1—C2 | 180.0 | C6—C5—H5D | 109.7 |
C2—Fe1—C9 | 88.17 (19) | N5—C6—C5 | 107.7 (3) |
C2i—Fe1—C9i | 88.17 (19) | N5—C6—H6C | 110.2 |
C2—Fe1—C9i | 91.83 (19) | N5—C6—H6D | 110.2 |
C2i—Fe1—C9 | 91.83 (19) | C5—C6—H6C | 110.2 |
C9i—Fe1—C9 | 180.0 | C5—C6—H6D | 110.2 |
N12—Fe2—C16 | 97.01 (15) | H6C—C6—H6D | 108.5 |
N12—Fe2—C17 | 94.65 (16) | N3—C7—H7A | 109.5 |
N12—Fe2—C18 | 94.85 (15) | N3—C7—H7B | 109.5 |
N12—Fe2—C19 | 175.76 (15) | N3—C7—C8 | 110.7 (3) |
N12—Fe2—C20 | 94.57 (15) | H7A—C7—H7B | 108.1 |
C17—Fe2—C16 | 91.02 (14) | C8—C7—H7A | 109.5 |
C17—Fe2—C18 | 170.45 (15) | C8—C7—H7B | 109.5 |
C17—Fe2—C19 | 83.43 (14) | N6—C8—C7 | 108.2 (3) |
C18—Fe2—C16 | 86.88 (14) | N6—C8—H8A | 110.0 |
C19—Fe2—C16 | 86.82 (14) | N6—C8—H8B | 110.0 |
C19—Fe2—C18 | 87.15 (14) | C7—C8—H8A | 110.0 |
C20—Fe2—C16 | 168.06 (15) | C7—C8—H8B | 110.0 |
C20—Fe2—C17 | 90.94 (14) | H8A—C8—H8B | 108.4 |
C20—Fe2—C18 | 89.25 (14) | N7A—C9—Fe1 | 161.2 (6) |
C20—Fe2—C19 | 81.71 (14) | N7B—C9—Fe1 | 159.4 (6) |
C1—N1—Cu1 | 163.4 (4) | N8—C10—H10C | 109.4 |
C2—N2—Cu2 | 165.0 (4) | N8—C10—H10D | 109.4 |
C3—N3—Cu2 | 106.62 (17) | N8—C10—C11 | 111.2 (4) |
C5—N3—Cu2 | 108.6 (2) | H10C—C10—H10D | 108.0 |
C5—N3—C3 | 111.1 (3) | C11—C10—H10C | 109.4 |
C5—N3—C7 | 111.1 (2) | C11—C10—H10D | 109.4 |
C7—N3—Cu2 | 107.8 (2) | N9—C11—C10 | 109.9 (4) |
C7—N3—C3 | 111.4 (2) | N9—C11—H11C | 109.7 |
Cu2—N4—H4A | 110.1 | N9—C11—H11D | 109.7 |
Cu2—N4—H4B | 109.8 | C10—C11—H11C | 109.7 |
H4A—N4—H4B | 108.3 | C10—C11—H11D | 109.7 |
C4—N4—Cu2 | 108.82 (19) | H11C—C11—H11D | 108.2 |
C4—N4—H4A | 109.9 | N8—C12—H12A | 109.0 |
C4—N4—H4B | 109.8 | N8—C12—H12B | 109.0 |
Cu2—N5—H5A | 110.1 | H12A—C12—H12B | 107.8 |
Cu2—N5—H5B | 110.2 | C13—C12—N8 | 113.0 (4) |
H5A—N5—H5B | 108.6 | C13—C12—H12A | 109.0 |
C6—N5—Cu2 | 107.3 (2) | C13—C12—H12B | 109.0 |
C6—N5—H5A | 110.4 | N10—C13—C12 | 110.8 (4) |
C6—N5—H5B | 110.2 | N10—C13—H13A | 109.5 |
Cu2—N6—H6A | 110.3 | N10—C13—H13B | 109.5 |
Cu2—N6—H6B | 110.4 | C12—C13—H13A | 109.5 |
H6A—N6—H6B | 108.6 | C12—C13—H13B | 109.5 |
C8—N6—Cu2 | 106.8 (2) | H13A—C13—H13B | 108.1 |
C8—N6—H6A | 110.3 | N8—C14—H14A | 109.6 |
C8—N6—H6B | 110.4 | N8—C14—H14B | 109.6 |
C10—N8—Cu1 | 109.5 (3) | H14A—C14—H14B | 108.1 |
C10—N8—C12 | 111.4 (3) | C15—C14—N8 | 110.1 (4) |
C10—N8—C14 | 113.5 (3) | C15—C14—H14A | 109.6 |
C12—N8—Cu1 | 106.4 (2) | C15—C14—H14B | 109.6 |
C12—N8—C14 | 107.3 (3) | N11—C15—C14 | 108.2 (4) |
C14—N8—Cu1 | 108.5 (3) | N11—C15—H15A | 110.1 |
Cu1—N9—H9A | 110.5 | N11—C15—H15B | 110.1 |
Cu1—N9—H9B | 109.6 | C14—C15—H15A | 110.1 |
H9A—N9—H9B | 108.4 | C14—C15—H15B | 110.1 |
C11—N9—Cu1 | 108.1 (3) | H15A—C15—H15B | 108.4 |
C11—N9—H9A | 111.0 | N13—C16—Fe2 | 177.2 (3) |
C11—N9—H9B | 109.1 | N14—C17—Fe2 | 177.7 (3) |
Cu1—N10—H10A | 109.5 | N15—C18—Fe2 | 178.3 (3) |
Cu1—N10—H10B | 109.9 | N16—C19—Fe2 | 175.7 (3) |
H10A—N10—H10B | 108.3 | N17—C20—Fe2 | 176.2 (3) |
Cu1—N8—C10—C11 | 34.4 (5) | N8—Cu1—N10—C13 | −8.5 (3) |
Cu1—N8—C12—C13 | 36.7 (4) | N8—Cu1—N11—C15 | −16.3 (3) |
Cu1—N8—C14—C15 | 37.6 (4) | N8—C10—C11—N9 | −48.8 (7) |
Cu1—N9—C11—C10 | 37.7 (6) | N8—C12—C13—N10 | −46.3 (5) |
Cu1—N10—C13—C12 | 30.9 (4) | N8—C14—C15—N11 | −52.9 (5) |
Cu1—N11—C15—C14 | 40.9 (4) | N9—Cu1—N1—C1 | 101.8 (15) |
Cu2—N3—C3—C4 | 41.0 (3) | N9—Cu1—N8—C10 | −10.3 (4) |
Cu2—N3—C5—C6 | 32.9 (4) | N9—Cu1—N8—C12 | 110.2 (3) |
Cu2—N3—C7—C8 | 37.1 (3) | N9—Cu1—N8—C14 | −134.6 (3) |
Cu2—N4—C4—C3 | 36.1 (3) | N9—Cu1—N10—C13 | −86.0 (3) |
Cu2—N5—C6—C5 | 43.9 (3) | N9—Cu1—N11—C15 | 60.8 (4) |
Cu2—N6—C8—C7 | 41.1 (3) | N10—Cu1—N1—C1 | −133.0 (15) |
N1—Cu1—N9—C11 | 167.2 (5) | N10—Cu1—N8—C10 | −135.1 (3) |
N1—Cu1—N10—C13 | 170.8 (3) | N10—Cu1—N8—C12 | −14.6 (3) |
N1—Cu1—N11—C15 | 161.8 (3) | N10—Cu1—N8—C14 | 100.6 (3) |
N2—Cu2—N4—C4 | 173.0 (2) | N10—Cu1—N9—C11 | 63.2 (5) |
N2—Cu2—N5—C6 | 154.9 (3) | N10—Cu1—N11—C15 | −97.6 (3) |
N2—Cu2—N6—C8 | 163.0 (2) | N11—Cu1—N1—C1 | −21.0 (15) |
N3—Cu2—N4—C4 | −11.3 (2) | N11—Cu1—N8—C10 | 113.0 (3) |
N3—Cu2—N5—C6 | −20.9 (2) | N11—Cu1—N8—C12 | −126.5 (3) |
N3—Cu2—N6—C8 | −17.0 (2) | N11—Cu1—N8—C14 | −11.3 (3) |
N3—C3—C4—N4 | −52.2 (3) | N11—Cu1—N9—C11 | −92.4 (5) |
N3—C5—C6—N5 | −51.7 (4) | N11—Cu1—N10—C13 | 71.9 (3) |
N3—C7—C8—N6 | −53.4 (4) | C1i—Fe1—C9—N7A | −113.6 (14) |
N4—Cu2—N2—C2 | 121.7 (13) | C1—Fe1—C9—N7A | 66.4 (14) |
N4—Cu2—N3—C3 | −16.2 (2) | C1—Fe1—C9—N7B | −134.4 (13) |
N4—Cu2—N3—C5 | −136.0 (2) | C1i—Fe1—C9—N7B | 45.6 (13) |
N4—Cu2—N3—C7 | 103.6 (2) | C2—Fe1—C9—N7A | −23.9 (14) |
N4—Cu2—N5—C6 | 57.9 (3) | C2i—Fe1—C9—N7A | 156.1 (14) |
N4—Cu2—N6—C8 | −98.5 (2) | C2i—Fe1—C9—N7B | −44.6 (13) |
N5—Cu2—N2—C2 | −6.9 (13) | C2—Fe1—C9—N7B | 135.4 (13) |
N5—Cu2—N3—C3 | 113.0 (2) | C3—N3—C5—C6 | −84.1 (3) |
N5—Cu2—N3—C5 | −6.8 (2) | C3—N3—C7—C8 | 153.8 (3) |
N5—Cu2—N3—C7 | −127.3 (2) | C5—N3—C3—C4 | 159.2 (3) |
N5—Cu2—N4—C4 | −90.1 (2) | C5—N3—C7—C8 | −81.8 (3) |
N5—Cu2—N6—C8 | 64.1 (2) | C7—N3—C3—C4 | −76.4 (3) |
N6—Cu2—N2—C2 | −123.8 (13) | C7—N3—C5—C6 | 151.3 (3) |
N6—Cu2—N3—C3 | −130.4 (2) | C10—N8—C12—C13 | 156.0 (4) |
N6—Cu2—N3—C5 | 109.8 (2) | C10—N8—C14—C15 | −84.3 (4) |
N6—Cu2—N3—C7 | −10.7 (2) | C12—N8—C10—C11 | −83.0 (5) |
N6—Cu2—N4—C4 | 70.0 (2) | C12—N8—C14—C15 | 152.2 (4) |
N6—Cu2—N5—C6 | −101.8 (2) | C14—N8—C10—C11 | 155.7 (5) |
N8—Cu1—N9—C11 | −15.1 (4) | C14—N8—C12—C13 | −79.2 (4) |
Symmetry code: (i) −x+2, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···N15ii | 0.92 | 2.20 | 3.020 (4) | 149 |
N4—H4B···N16iii | 0.92 | 2.37 | 3.248 (4) | 159 |
N5—H5A···N7Aiv | 0.92 | 2.09 | 2.979 (9) | 162 |
N5—H5A···N7Biv | 0.92 | 2.41 | 3.267 (9) | 154 |
N6—H6A···N17iii | 0.92 | 2.43 | 3.242 (5) | 147 |
N10—H10A···N17v | 0.92 | 2.29 | 3.060 (5) | 141 |
N10—H10B···N16vi | 0.92 | 2.27 | 3.151 (5) | 160 |
Symmetry codes: (ii) −x+2, −y+1, −z+1; (iii) x, y, z−1; (iv) −x+1, −y, −z; (v) −x+1, −y, −z+1; (vi) −x+2, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu4Fe(CN)6(C6H18N4)4][Fe(CN)5(NO)]2·6H2O |
Mr | 1591.16 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 7.9270 (2), 14.9656 (4), 17.5565 (4) |
α, β, γ (°) | 114.879 (3), 94.021 (2), 98.909 (2) |
V (Å3) | 1845.30 (8) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.77 |
Crystal size (mm) | 0.24 × 0.17 × 0.06 |
Data collection | |
Diffractometer | Agilent Xcalibur Sapphire3 |
Absorption correction | Analytical [CrysAlis PRO (Agilent, 2011), based on expressions derived by Clark & Reid (1995)] |
Tmin, Tmax | 0.752, 0.909 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 32856, 9691, 6403 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.711 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.138, 1.05 |
No. of reflections | 9691 |
No. of parameters | 385 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.49, −0.68 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···N15i | 0.92 | 2.20 | 3.020 (4) | 149 |
N4—H4B···N16ii | 0.92 | 2.37 | 3.248 (4) | 159 |
N5—H5A···N7Aiii | 0.92 | 2.09 | 2.979 (9) | 162 |
N5—H5A···N7Biii | 0.92 | 2.41 | 3.267 (9) | 154 |
N6—H6A···N17ii | 0.92 | 2.43 | 3.242 (5) | 147 |
N10—H10A···N17iv | 0.92 | 2.29 | 3.060 (5) | 141 |
N10—H10B···N16v | 0.92 | 2.27 | 3.151 (5) | 160 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, y, z−1; (iii) −x+1, −y, −z; (iv) −x+1, −y, −z+1; (v) −x+2, −y, −z+1. |
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Babich, O. A., Kokozay, V. N. & Pavlenko, V. A. (1996). Polyhedron, 15, 2727–2731. CSD CrossRef CAS Web of Science Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
El Fallah, M. S., Rentschler, E., Caneschi, A., Sessoli, R. & Gatteschi, D. (1996). Angew. Chem. Int. Ed. 35, 1947–1949. CrossRef CAS Google Scholar
Lu, Z.-L., Duan, C.-Y., Tian, Y.-P., Wu, Z.-W., You, J.-J., Zhou, Z.-Y. & Mak, T. C. W. (1997). Polyhedron, 16, 909–914. CSD CrossRef CAS Web of Science Google Scholar
Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4253-4259. Web of Science CSD CrossRef Google Scholar
Nesterov, D. S., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V., Jezierska, J., Ozarowski, A., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2006). Chem. Commun. pp. 4605–4607. Web of Science CSD CrossRef Google Scholar
Nesterov, D. S., Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Kovbasyuk, L. A., Skelton, B. W. & Jezierska, J. (2004). Inorg. Chem. 43, 7868–7876. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450–454. Google Scholar
Parker, R. J., Spiccia, L., Batten, S. R., Cashion, J. D. & Fallon, G. D. (2001). Inorg. Chem. 40, 4696–1704. Web of Science CSD CrossRef PubMed CAS Google Scholar
Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426–1432. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201. CrossRef Web of Science IUCr Journals Google Scholar
Vinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4248-4252. Web of Science CSD CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zou, J., Xu, Z., Huang, X., Zhang, W.-L., Shen, X.-P. & Yu, Y.-P. (1997). J. Coord. Chem. 42, 55–61. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As it was shown in our previuous publication direct synthesis is an efficient method to obtained novel homo- and heterometallic complexes (Nesterov et al., 2004, 2006; Nesterova et al., 2004; Pryma et al., 2003; Vinogradova et al., 2002; Makhankova et al., 2002); Babich et al., 1996). In this paper we present a novel Cu/Fe heterometallic ionic complex which has been synthesized using zerovalent copper, Sodium nitroprusside and tris(2-aminoethyl)-amine as starting materials.
The asymmetric unit contains two iron ions. One of them which is connected to copper ions by bridging cyanide groups is localized at the special equivalent position (O,O,O) (Fig. 1). The Cu—Fe separations range between 4.9044 (5) and 4.9403 (5) Å. Each Cu located in the center of a distorted trigonal bipyramid formed by four nitrogen atoms of the tren ligand and one nitrogen atom of cyanide groups. The Cu—N distances range between 2.048 (2) and 2.103 (3) Å for Cu—Ntren) and between 1.932 (3) and 1.947 (3) Å, for Cu—NCN). The Fe1—C distances range from 1.886 (3) to 1.912 (4) Å, whereas, as expected, the Fe—C—N bond angles only vary in the small range between 176.1 (4)° and 176.5 (4)° (not taking into account disordered CN ligand). The Cu—N—C bond angles, on the other hand, deviate significantly from linearity and lie between 163.4 (4) and 165.0 (4)°. All bond distances and angles are comparable to the corresponding distances in closely related compounds (El Fallah et al. (1996); Lu et al. (1997); Zou et al. (1997); Parker et al. (2001)).