metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(μ2-cyanido-κ2C:N)dicyanido­tetra­kis­[tris­­(2-amino­eth­yl)amine-κ3N,N′,N′′,N′′′]tetra­copper(II)iron(II) bis­[pentacyanido­nitrosoferrate(II)] hexahydrate

aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska St, Kyiv 01601, Ukraine, bDepartment of Inorganic Chemistry II, Ruhr-University Bochum, Universitatstrasse 150, 44801 Bochum, Germany, cDivision of Functional Materials Chemistry, SSI "Institute for Single Crystals", National Academy of Science of Ukraine, 60 Lenina Ave., Kharkiv 61001, Ukraine, and dDepartment of Inorganic Chemistry, V. N. Karazin National University, 4 Svobody Sq, Kharkiv 61077, Ukraine
*Correspondence e-mail: roman@xray.isc.kharkov.com

(Received 7 August 2012; accepted 6 September 2012; online 15 September 2012)

The asymmetric unit of the title complex, [Cu4Fe(CN)6(C6H18N4)4][Fe(CN)5(NO)]2·6H2O, comprises a complex [{Cu(tren)CN}4Fe(CN)2]4+ [tren is tris­(2-amino­eth­yl)amine] cation, which exhibits -1 symmetry with the terminal cyanide ligands oriented trans to each other, and two [Fe(CN)5(NO)]2− nitroprussiate counter-anions. In the crystal, N—H⋯N hydrogen-bonding inter­actions are observed between H atoms on the primary amine groups of the tren ligand and the terminal cyanide groups of the nitro­prussiate counter-ions. The N atom in the terminal CN ligand of the cation is equally disordered over two positions. The structure also contains disordered lattice water mol­ecules. Their contribution was elimin­ated from the refinement using the procedure described by van der Sluis & Spek (1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]).

Related literature

For background to direct synthesis, see: Nesterov et al. (2004[Nesterov, D. S., Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Kovbasyuk, L. A., Skelton, B. W. & Jezierska, J. (2004). Inorg. Chem. 43, 7868-7876.], 2006[Nesterov, D. S., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V., Jezierska, J., Ozarowski, A., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2006). Chem. Commun. pp. 4605-4607.]); Nesterova et al. (2004[Nesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450-454.]); Pryma et al. (2003[Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426-1432.])Vinogradova et al. (2002[Vinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4248-4252.]); Makhankova et al. (2002[Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4253-4259.]); Babich et al. (1996[Babich, O. A., Kokozay, V. N. & Pavlenko, V. A. (1996). Polyhedron, 15, 2727-2731.]). For the structures of related complexes, see: El Fallah et al. (1996[El Fallah, M. S., Rentschler, E., Caneschi, A., Sessoli, R. & Gatteschi, D. (1996). Angew. Chem. Int. Ed. 35, 1947-1949.]); Lu et al. (1997[Lu, Z.-L., Duan, C.-Y., Tian, Y.-P., Wu, Z.-W., You, J.-J., Zhou, Z.-Y. & Mak, T. C. W. (1997). Polyhedron, 16, 909-914.]); Zou et al. (1997[Zou, J., Xu, Z., Huang, X., Zhang, W.-L., Shen, X.-P. & Yu, Y.-P. (1997). J. Coord. Chem. 42, 55-61.]); Parker et al. (2001[Parker, R. J., Spiccia, L., Batten, S. R., Cashion, J. D. & Fallon, G. D. (2001). Inorg. Chem. 40, 4696-1704.]) The contribution from disordered water mol­ecules was eliminated using the OLEX2 interface; for background, see: van der Sluis & Spek (1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4Fe(CN)6(C6H18N4)4][Fe(CN)5(NO)]2·6H2O

  • Mr = 1591.16

  • Triclinic, [P \overline 1]

  • a = 7.9270 (2) Å

  • b = 14.9656 (4) Å

  • c = 17.5565 (4) Å

  • α = 114.879 (3)°

  • β = 94.021 (2)°

  • γ = 98.909 (2)°

  • V = 1845.30 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 7.76 mm−1

  • T = 100 K

  • 0.24 × 0.17 × 0.06 mm

Data collection
  • Agilent Xcalibur Sapphire3 diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.752, Tmax = 0.909

  • 32856 measured reflections

  • 9691 independent reflections

  • 6403 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.138

  • S = 1.05

  • 9691 reflections

  • 385 parameters

  • H-atom parameters constrained

  • Δρmax = 1.49 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N15i 0.92 2.20 3.020 (4) 149
N4—H4B⋯N16ii 0.92 2.37 3.248 (4) 159
N5—H5A⋯N7Aiii 0.92 2.09 2.979 (9) 162
N5—H5A⋯N7Biii 0.92 2.41 3.267 (9) 154
N6—H6A⋯N17ii 0.92 2.43 3.242 (5) 147
N10—H10A⋯N17iv 0.92 2.29 3.060 (5) 141
N10—H10B⋯N16v 0.92 2.27 3.151 (5) 160
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y, z-1; (iii) -x+1, -y, -z; (iv) -x+1, -y, -z+1; (v) -x+2, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As it was shown in our previuous publication direct synthesis is an efficient method to obtained novel homo- and heterometallic complexes (Nesterov et al., 2004, 2006; Nesterova et al., 2004; Pryma et al., 2003; Vinogradova et al., 2002; Makhankova et al., 2002); Babich et al., 1996). In this paper we present a novel Cu/Fe heterometallic ionic complex which has been synthesized using zerovalent copper, Sodium nitroprusside and tris(2-aminoethyl)-amine as starting materials.

The asymmetric unit contains two iron ions. One of them which is connected to copper ions by bridging cyanide groups is localized at the special equivalent position (O,O,O) (Fig. 1). The Cu—Fe separations range between 4.9044 (5) and 4.9403 (5) Å. Each Cu located in the center of a distorted trigonal bipyramid formed by four nitrogen atoms of the tren ligand and one nitrogen atom of cyanide groups. The Cu—N distances range between 2.048 (2) and 2.103 (3) Å for Cu—Ntren) and between 1.932 (3) and 1.947 (3) Å, for Cu—NCN). The Fe1—C distances range from 1.886 (3) to 1.912 (4) Å, whereas, as expected, the Fe—C—N bond angles only vary in the small range between 176.1 (4)° and 176.5 (4)° (not taking into account disordered CN ligand). The Cu—N—C bond angles, on the other hand, deviate significantly from linearity and lie between 163.4 (4) and 165.0 (4)°. All bond distances and angles are comparable to the corresponding distances in closely related compounds (El Fallah et al. (1996); Lu et al. (1997); Zou et al. (1997); Parker et al. (2001)).

Related literature top

For background to direct synthesis, see: Nesterov et al. (2004, 2006); Nesterova et al. (2004); Pryma et al. (2003); Vinogradova et al. (2002); Makhankova et al. (2002); Babich et al. (1996). For the structures of related complexes, see: El Fallah et al. (1996); Lu et al. (1997); Zou et al. (1997); Parker et al. (2001) The contribution from disordered water molecules was eliminated using the OLEX2 program; for background, see: van der Sluis & Spek (1990).

Experimental top

The title compound was prepared by direct synthesis mixing of the zerovalent copper powder (0,079 g, 1,25 mmol), NH4NCS (0,096 g, 1,26 mmol), Na2[Fe(CN)5(NO)].2H2O (0,188 g, 0,63 mmol), tris(2-aminoethyl)-amine (0,19 ml, 1,27 mmol), methanol (30 ml) were heated to 323–333 K and stirred magnetically for 130 min. Resulted mixture was filtered off and transparent brown solution was allowed to stand at room temperature. Dark brown square plate crystals suitable for X-ray analysis precipitated within two months by adding of 5 ml of diethyl ether.They were collected by filter-suction, washed with dry PríOH and finally dried in vacuo at room temperature (yield: 0.14 g, 30%)

Refinement top

All H atoms were refined using rigid model with Uiso = 1.2Ueq of the carrier atom. The N atom in one of the CN ligands is disordered over two positions with equal occupancy. Despite of the fact that some other atoms show high Ueq or prolate Uaniso, Fobs map indicates single electron density peak for each atom. Thus, no disorder was introduced in the model. Structure contains disorderes water molecules. Solvent contribution was eliminated using procedure described by van der Sluis and Spek (1990). Integrated number of solvent electrons per cell is 39.9, which corresponds to 4 water molecules.

Structure description top

As it was shown in our previuous publication direct synthesis is an efficient method to obtained novel homo- and heterometallic complexes (Nesterov et al., 2004, 2006; Nesterova et al., 2004; Pryma et al., 2003; Vinogradova et al., 2002; Makhankova et al., 2002); Babich et al., 1996). In this paper we present a novel Cu/Fe heterometallic ionic complex which has been synthesized using zerovalent copper, Sodium nitroprusside and tris(2-aminoethyl)-amine as starting materials.

The asymmetric unit contains two iron ions. One of them which is connected to copper ions by bridging cyanide groups is localized at the special equivalent position (O,O,O) (Fig. 1). The Cu—Fe separations range between 4.9044 (5) and 4.9403 (5) Å. Each Cu located in the center of a distorted trigonal bipyramid formed by four nitrogen atoms of the tren ligand and one nitrogen atom of cyanide groups. The Cu—N distances range between 2.048 (2) and 2.103 (3) Å for Cu—Ntren) and between 1.932 (3) and 1.947 (3) Å, for Cu—NCN). The Fe1—C distances range from 1.886 (3) to 1.912 (4) Å, whereas, as expected, the Fe—C—N bond angles only vary in the small range between 176.1 (4)° and 176.5 (4)° (not taking into account disordered CN ligand). The Cu—N—C bond angles, on the other hand, deviate significantly from linearity and lie between 163.4 (4) and 165.0 (4)°. All bond distances and angles are comparable to the corresponding distances in closely related compounds (El Fallah et al. (1996); Lu et al. (1997); Zou et al. (1997); Parker et al. (2001)).

For background to direct synthesis, see: Nesterov et al. (2004, 2006); Nesterova et al. (2004); Pryma et al. (2003); Vinogradova et al. (2002); Makhankova et al. (2002); Babich et al. (1996). For the structures of related complexes, see: El Fallah et al. (1996); Lu et al. (1997); Zou et al. (1997); Parker et al. (2001) The contribution from disordered water molecules was eliminated using the OLEX2 program; for background, see: van der Sluis & Spek (1990).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms. Unlabelled atoms are generated by the application of the inversion centre.
Tetrakis(µ2-cyanido-κ2C:N)dicyanidotetrakis[tris(2- aminoethyl)amine- κ3N,N',N'',N''']tetracopper(II)iron(II) bis[pentacyanidonitrosoferrate(II)] hexahydrate top
Crystal data top
[Cu4Fe(CN)6(C6H18N4)4][Fe(CN)5(NO)]2·6H2OZ = 1
Mr = 1591.16F(000) = 820
Triclinic, P1Dx = 1.432 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 7.9270 (2) ÅCell parameters from 6786 reflections
b = 14.9656 (4) Åθ = 2.9–30.3°
c = 17.5565 (4) ŵ = 1.77 mm1
α = 114.879 (3)°T = 100 K
β = 94.021 (2)°Block, brown
γ = 98.909 (2)°0.24 × 0.17 × 0.06 mm
V = 1845.30 (8) Å3
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
9691 independent reflections
Radiation source: Enhance (Mo) X-ray Source6403 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 16.1827 pixels mm-1θmax = 30.3°, θmin = 2.9°
ω scansh = 1110
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2011), based on expressions derived by Clark & Reid (1995)]
k = 2021
Tmin = 0.752, Tmax = 0.909l = 2224
32856 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.069P)2 + 0.5531P]
where P = (Fo2 + 2Fc2)/3
9691 reflections(Δ/σ)max < 0.001
385 parametersΔρmax = 1.49 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Cu4Fe(CN)6(C6H18N4)4][Fe(CN)5(NO)]2·6H2Oγ = 98.909 (2)°
Mr = 1591.16V = 1845.30 (8) Å3
Triclinic, P1Z = 1
a = 7.9270 (2) ÅMo Kα radiation
b = 14.9656 (4) ŵ = 1.77 mm1
c = 17.5565 (4) ÅT = 100 K
α = 114.879 (3)°0.24 × 0.17 × 0.06 mm
β = 94.021 (2)°
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
9691 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2011), based on expressions derived by Clark & Reid (1995)]
6403 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 0.909Rint = 0.040
32856 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.05Δρmax = 1.49 e Å3
9691 reflectionsΔρmin = 0.68 e Å3
385 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.83068 (6)0.02273 (3)0.26993 (3)0.04262 (13)
Cu20.68711 (5)0.27612 (3)0.05083 (3)0.03257 (12)
Fe11.00000.00000.00000.02668 (15)
Fe20.78985 (6)0.31396 (4)0.70855 (3)0.03349 (13)
O10.5468 (4)0.3216 (3)0.5890 (2)0.0744 (10)
N10.8551 (6)0.0065 (3)0.1535 (2)0.0769 (14)
N20.8147 (5)0.1677 (2)0.0138 (3)0.0627 (11)
N30.5695 (3)0.3970 (2)0.09740 (16)0.0278 (6)
N40.8633 (3)0.36876 (18)0.02108 (17)0.0292 (6)
H4A0.96720.38740.05600.035*
H4B0.88140.33520.03420.035*
N50.6714 (4)0.2757 (2)0.1666 (2)0.0502 (9)
H5A0.57830.22800.16240.060*
H5B0.77000.26100.18540.060*
N60.4605 (4)0.2076 (2)0.0386 (2)0.0442 (7)
H6A0.48030.20700.08990.053*
H6B0.42380.14250.04680.053*
N7A0.6581 (10)0.1254 (6)0.1190 (5)0.0476 (17)0.50
N7B0.7260 (11)0.1575 (5)0.1417 (5)0.0470 (18)0.50
N80.8102 (4)0.0598 (3)0.39475 (18)0.0438 (7)
N90.6489 (8)0.1111 (5)0.2816 (3)0.121 (2)
H9A0.69830.17170.28310.145*
H9B0.56220.07880.23580.145*
N100.7714 (5)0.1240 (3)0.2548 (2)0.0542 (9)
H10A0.66360.15470.22320.065*
H10B0.85040.15940.22620.065*
N111.0936 (5)0.0862 (3)0.3185 (3)0.0710 (12)
H11A1.15630.03640.30700.085*
H11B1.13620.12670.29390.085*
N120.6481 (4)0.3192 (3)0.63731 (19)0.0453 (8)
N131.1119 (4)0.3383 (3)0.6248 (2)0.0517 (8)
N140.7410 (4)0.0827 (2)0.6234 (2)0.0461 (8)
N150.8897 (4)0.5446 (2)0.8145 (2)0.0436 (7)
N161.0233 (4)0.2910 (2)0.8445 (2)0.0420 (7)
N170.5320 (4)0.3039 (2)0.8294 (2)0.0447 (7)
C10.9050 (6)0.0063 (2)0.0941 (2)0.0467 (10)
C20.8901 (5)0.1067 (3)0.0100 (3)0.0428 (9)
C30.6980 (4)0.4860 (2)0.1070 (2)0.0313 (7)
H3A0.78050.51030.15990.038*
H3B0.63820.54090.11110.038*
C40.7947 (5)0.4587 (2)0.0318 (2)0.0336 (7)
H4C0.71610.44450.02010.040*
H4D0.89060.51510.04180.040*
C50.5198 (4)0.4091 (3)0.1805 (2)0.0407 (8)
H5C0.40370.36750.17170.049*
H5D0.51520.48030.21570.049*
C60.6513 (5)0.3769 (3)0.2260 (2)0.0462 (9)
H6C0.76340.42500.24320.055*
H6D0.61060.37540.27750.055*
C70.4153 (4)0.3767 (3)0.0350 (2)0.0363 (8)
H7A0.45040.39570.01000.044*
H7B0.33240.41810.06380.044*
C80.3297 (4)0.2676 (3)0.0041 (3)0.0443 (9)
H8A0.27980.25020.03920.053*
H8B0.23510.25340.05010.053*
C90.8049 (6)0.0906 (3)0.0803 (3)0.0577 (12)
C100.7119 (7)0.1374 (4)0.4256 (3)0.0658 (13)
H10C0.78990.20390.44600.079*
H10D0.65860.13490.47410.079*
C110.5764 (7)0.1258 (5)0.3590 (3)0.0857 (18)
H11C0.48380.06720.34760.103*
H11D0.52520.18650.37810.103*
C120.7226 (6)0.0336 (4)0.3977 (3)0.0624 (12)
H12A0.74970.02750.45580.075*
H12B0.59610.04100.38530.075*
C130.7735 (6)0.1235 (3)0.3375 (3)0.0625 (12)
H13A0.89110.12590.35870.075*
H13B0.69320.18400.33260.075*
C140.9881 (6)0.0889 (4)0.4435 (3)0.0636 (12)
H14A0.98550.13090.50440.076*
H14B1.02940.02770.43820.076*
C151.1079 (5)0.1458 (3)0.4106 (3)0.0616 (12)
H15A1.07710.21170.42320.074*
H15B1.22800.15780.43810.074*
C160.9920 (5)0.3267 (3)0.6547 (2)0.0391 (8)
C170.7572 (4)0.1689 (3)0.6537 (2)0.0369 (8)
C180.8531 (4)0.4586 (3)0.7763 (2)0.0346 (7)
C190.9416 (4)0.3023 (2)0.7939 (2)0.0334 (7)
C200.6234 (4)0.3074 (3)0.7823 (2)0.0360 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0546 (3)0.0377 (2)0.0257 (2)0.0003 (2)0.0198 (2)0.00578 (18)
Cu20.0308 (2)0.0266 (2)0.0505 (3)0.01061 (16)0.01054 (18)0.02431 (19)
Fe10.0455 (4)0.0175 (3)0.0216 (3)0.0119 (3)0.0134 (3)0.0098 (2)
Fe20.0374 (3)0.0377 (3)0.0257 (2)0.0095 (2)0.0108 (2)0.0126 (2)
O10.077 (2)0.101 (3)0.0446 (18)0.040 (2)0.0021 (16)0.0255 (18)
N10.138 (4)0.0361 (19)0.038 (2)0.016 (2)0.046 (2)0.0044 (15)
N20.054 (2)0.0361 (18)0.115 (3)0.0209 (16)0.031 (2)0.043 (2)
N30.0284 (13)0.0366 (14)0.0286 (14)0.0148 (12)0.0118 (11)0.0201 (12)
N40.0321 (14)0.0209 (12)0.0325 (15)0.0077 (11)0.0129 (11)0.0077 (11)
N50.056 (2)0.0480 (19)0.053 (2)0.0032 (16)0.0136 (16)0.0363 (17)
N60.0465 (18)0.0392 (17)0.0478 (19)0.0017 (14)0.0003 (15)0.0234 (15)
N7A0.039 (4)0.059 (5)0.050 (5)0.002 (4)0.002 (3)0.033 (4)
N7B0.052 (5)0.035 (4)0.056 (5)0.013 (3)0.017 (4)0.020 (4)
N80.0349 (16)0.055 (2)0.0249 (15)0.0007 (14)0.0062 (12)0.0048 (14)
N90.153 (5)0.186 (6)0.060 (3)0.094 (5)0.022 (3)0.067 (4)
N100.057 (2)0.048 (2)0.047 (2)0.0005 (17)0.0227 (16)0.0110 (16)
N110.049 (2)0.049 (2)0.083 (3)0.0051 (17)0.033 (2)0.001 (2)
N120.0513 (19)0.056 (2)0.0298 (16)0.0171 (16)0.0132 (14)0.0165 (15)
N130.058 (2)0.053 (2)0.051 (2)0.0148 (17)0.0304 (17)0.0238 (17)
N140.0515 (19)0.0432 (19)0.0385 (18)0.0073 (15)0.0203 (15)0.0118 (15)
N150.0380 (16)0.0425 (19)0.052 (2)0.0176 (15)0.0094 (14)0.0186 (16)
N160.0494 (18)0.0384 (17)0.0406 (18)0.0113 (14)0.0091 (15)0.0185 (14)
N170.0402 (17)0.054 (2)0.0362 (17)0.0093 (15)0.0130 (14)0.0157 (15)
C10.083 (3)0.0172 (15)0.034 (2)0.0009 (17)0.0239 (19)0.0066 (14)
C20.049 (2)0.0280 (17)0.063 (3)0.0126 (16)0.0213 (19)0.0265 (17)
C30.0400 (18)0.0282 (16)0.0324 (17)0.0162 (14)0.0139 (14)0.0153 (14)
C40.0435 (19)0.0240 (15)0.0379 (19)0.0098 (14)0.0154 (15)0.0156 (14)
C50.0324 (18)0.067 (3)0.0325 (19)0.0157 (17)0.0134 (14)0.0277 (18)
C60.046 (2)0.066 (3)0.035 (2)0.0060 (19)0.0012 (16)0.032 (2)
C70.0353 (18)0.053 (2)0.0374 (19)0.0223 (16)0.0111 (15)0.0303 (17)
C80.0282 (17)0.069 (3)0.049 (2)0.0049 (17)0.0004 (16)0.041 (2)
C90.087 (3)0.042 (2)0.044 (2)0.013 (2)0.008 (2)0.031 (2)
C100.082 (3)0.087 (3)0.040 (2)0.051 (3)0.032 (2)0.023 (2)
C110.064 (3)0.098 (4)0.070 (4)0.043 (3)0.008 (3)0.004 (3)
C120.067 (3)0.095 (4)0.042 (2)0.025 (3)0.021 (2)0.040 (3)
C130.069 (3)0.056 (3)0.048 (3)0.019 (2)0.014 (2)0.024 (2)
C140.055 (3)0.060 (3)0.054 (3)0.011 (2)0.006 (2)0.008 (2)
C150.040 (2)0.043 (2)0.073 (3)0.0039 (19)0.004 (2)0.001 (2)
C160.047 (2)0.0395 (19)0.0341 (19)0.0125 (16)0.0141 (16)0.0162 (16)
C170.0381 (19)0.042 (2)0.0278 (18)0.0068 (16)0.0137 (14)0.0121 (15)
C180.0318 (17)0.046 (2)0.0347 (19)0.0168 (16)0.0146 (14)0.0212 (17)
C190.0350 (17)0.0285 (16)0.0340 (18)0.0033 (14)0.0126 (14)0.0112 (14)
C200.0342 (18)0.0410 (19)0.0288 (17)0.0077 (15)0.0059 (14)0.0112 (15)
Geometric parameters (Å, º) top
Cu1—N11.932 (3)N9—H9B0.9194
Cu1—N82.047 (3)N9—C111.456 (7)
Cu1—N92.066 (5)N10—H10A0.9201
Cu1—N102.071 (3)N10—H10B0.9207
Cu1—N112.105 (4)N10—C131.448 (5)
Cu2—N21.947 (3)N11—H11A0.9196
Cu2—N32.048 (2)N11—H11B0.9194
Cu2—N42.064 (3)N11—C151.468 (6)
Cu2—N52.047 (3)N13—C161.142 (4)
Cu2—N62.103 (3)N14—C171.152 (5)
Fe1—C11.895 (4)N15—C181.149 (4)
Fe1—C1i1.895 (4)N16—C191.149 (4)
Fe1—C2i1.886 (3)N17—C201.148 (4)
Fe1—C21.886 (3)C3—H3A0.9900
Fe1—C91.912 (4)C3—H3B0.9900
Fe1—C9i1.912 (4)C3—C41.511 (4)
Fe2—N121.657 (3)C4—H4C0.9900
Fe2—C161.941 (4)C4—H4D0.9900
Fe2—C171.934 (4)C5—H5C0.9900
Fe2—C181.941 (4)C5—H5D0.9900
Fe2—C191.938 (4)C5—C61.523 (5)
Fe2—C201.933 (4)C6—H6C0.9900
O1—N121.141 (4)C6—H6D0.9900
N1—C11.143 (5)C7—H7A0.9900
N2—C21.148 (4)C7—H7B0.9900
N3—C31.486 (4)C7—C81.498 (5)
N3—C51.482 (4)C8—H8A0.9900
N3—C71.484 (4)C8—H8B0.9900
N4—H4A0.9201C10—H10C0.9900
N4—H4B0.9194C10—H10D0.9900
N4—C41.473 (4)C10—C111.464 (7)
N5—H5A0.9190C11—H11C0.9900
N5—H5B0.9201C11—H11D0.9900
N5—C61.475 (5)C12—H12A0.9900
N6—H6A0.9211C12—H12B0.9900
N6—H6B0.9194C12—C131.456 (7)
N6—C81.472 (5)C13—H13A0.9900
N7A—C91.221 (8)C13—H13B0.9900
N7B—C91.165 (9)C14—H14A0.9900
N8—C101.436 (5)C14—H14B0.9900
N8—C121.484 (6)C14—C151.484 (7)
N8—C141.496 (5)C15—H15A0.9900
N9—H9A0.9191C15—H15B0.9900
N1—Cu1—N8177.60 (14)C13—N10—Cu1109.2 (3)
N1—Cu1—N996.5 (2)C13—N10—H10A109.8
N1—Cu1—N1097.96 (14)C13—N10—H10B110.2
N1—Cu1—N1195.37 (18)Cu1—N11—H11A110.3
N8—Cu1—N982.80 (16)Cu1—N11—H11B110.1
N8—Cu1—N1084.33 (13)H11A—N11—H11B108.5
N8—Cu1—N1183.12 (14)C15—N11—Cu1107.9 (3)
N9—Cu1—N10123.4 (2)C15—N11—H11A110.0
N9—Cu1—N11121.7 (2)C15—N11—H11B110.0
N10—Cu1—N11110.89 (16)O1—N12—Fe2178.1 (3)
N2—Cu2—N3175.37 (15)N1—C1—Fe1176.5 (4)
N2—Cu2—N493.44 (12)N2—C2—Fe1176.1 (4)
N2—Cu2—N593.31 (16)N3—C3—H3A109.6
N2—Cu2—N6100.50 (15)N3—C3—H3B109.6
N3—Cu2—N484.67 (10)N3—C3—C4110.2 (3)
N3—Cu2—N684.13 (11)H3A—C3—H3B108.1
N4—Cu2—N6113.41 (11)C4—C3—H3A109.6
N5—Cu2—N384.58 (12)C4—C3—H3B109.6
N5—Cu2—N4128.10 (12)N4—C4—C3108.1 (2)
N5—Cu2—N6115.70 (13)N4—C4—H4C110.1
C1i—Fe1—C1179.999 (1)N4—C4—H4D110.1
C1i—Fe1—C9i93.61 (18)C3—C4—H4C110.1
C1—Fe1—C9i86.39 (18)C3—C4—H4D110.1
C1i—Fe1—C986.39 (18)H4C—C4—H4D108.4
C1—Fe1—C993.61 (18)N3—C5—H5C109.7
C2—Fe1—C1i89.62 (16)N3—C5—H5D109.7
C2i—Fe1—C189.62 (16)N3—C5—C6109.6 (3)
C2i—Fe1—C1i90.38 (16)H5C—C5—H5D108.2
C2—Fe1—C190.38 (16)C6—C5—H5C109.7
C2i—Fe1—C2180.0C6—C5—H5D109.7
C2—Fe1—C988.17 (19)N5—C6—C5107.7 (3)
C2i—Fe1—C9i88.17 (19)N5—C6—H6C110.2
C2—Fe1—C9i91.83 (19)N5—C6—H6D110.2
C2i—Fe1—C991.83 (19)C5—C6—H6C110.2
C9i—Fe1—C9180.0C5—C6—H6D110.2
N12—Fe2—C1697.01 (15)H6C—C6—H6D108.5
N12—Fe2—C1794.65 (16)N3—C7—H7A109.5
N12—Fe2—C1894.85 (15)N3—C7—H7B109.5
N12—Fe2—C19175.76 (15)N3—C7—C8110.7 (3)
N12—Fe2—C2094.57 (15)H7A—C7—H7B108.1
C17—Fe2—C1691.02 (14)C8—C7—H7A109.5
C17—Fe2—C18170.45 (15)C8—C7—H7B109.5
C17—Fe2—C1983.43 (14)N6—C8—C7108.2 (3)
C18—Fe2—C1686.88 (14)N6—C8—H8A110.0
C19—Fe2—C1686.82 (14)N6—C8—H8B110.0
C19—Fe2—C1887.15 (14)C7—C8—H8A110.0
C20—Fe2—C16168.06 (15)C7—C8—H8B110.0
C20—Fe2—C1790.94 (14)H8A—C8—H8B108.4
C20—Fe2—C1889.25 (14)N7A—C9—Fe1161.2 (6)
C20—Fe2—C1981.71 (14)N7B—C9—Fe1159.4 (6)
C1—N1—Cu1163.4 (4)N8—C10—H10C109.4
C2—N2—Cu2165.0 (4)N8—C10—H10D109.4
C3—N3—Cu2106.62 (17)N8—C10—C11111.2 (4)
C5—N3—Cu2108.6 (2)H10C—C10—H10D108.0
C5—N3—C3111.1 (3)C11—C10—H10C109.4
C5—N3—C7111.1 (2)C11—C10—H10D109.4
C7—N3—Cu2107.8 (2)N9—C11—C10109.9 (4)
C7—N3—C3111.4 (2)N9—C11—H11C109.7
Cu2—N4—H4A110.1N9—C11—H11D109.7
Cu2—N4—H4B109.8C10—C11—H11C109.7
H4A—N4—H4B108.3C10—C11—H11D109.7
C4—N4—Cu2108.82 (19)H11C—C11—H11D108.2
C4—N4—H4A109.9N8—C12—H12A109.0
C4—N4—H4B109.8N8—C12—H12B109.0
Cu2—N5—H5A110.1H12A—C12—H12B107.8
Cu2—N5—H5B110.2C13—C12—N8113.0 (4)
H5A—N5—H5B108.6C13—C12—H12A109.0
C6—N5—Cu2107.3 (2)C13—C12—H12B109.0
C6—N5—H5A110.4N10—C13—C12110.8 (4)
C6—N5—H5B110.2N10—C13—H13A109.5
Cu2—N6—H6A110.3N10—C13—H13B109.5
Cu2—N6—H6B110.4C12—C13—H13A109.5
H6A—N6—H6B108.6C12—C13—H13B109.5
C8—N6—Cu2106.8 (2)H13A—C13—H13B108.1
C8—N6—H6A110.3N8—C14—H14A109.6
C8—N6—H6B110.4N8—C14—H14B109.6
C10—N8—Cu1109.5 (3)H14A—C14—H14B108.1
C10—N8—C12111.4 (3)C15—C14—N8110.1 (4)
C10—N8—C14113.5 (3)C15—C14—H14A109.6
C12—N8—Cu1106.4 (2)C15—C14—H14B109.6
C12—N8—C14107.3 (3)N11—C15—C14108.2 (4)
C14—N8—Cu1108.5 (3)N11—C15—H15A110.1
Cu1—N9—H9A110.5N11—C15—H15B110.1
Cu1—N9—H9B109.6C14—C15—H15A110.1
H9A—N9—H9B108.4C14—C15—H15B110.1
C11—N9—Cu1108.1 (3)H15A—C15—H15B108.4
C11—N9—H9A111.0N13—C16—Fe2177.2 (3)
C11—N9—H9B109.1N14—C17—Fe2177.7 (3)
Cu1—N10—H10A109.5N15—C18—Fe2178.3 (3)
Cu1—N10—H10B109.9N16—C19—Fe2175.7 (3)
H10A—N10—H10B108.3N17—C20—Fe2176.2 (3)
Cu1—N8—C10—C1134.4 (5)N8—Cu1—N10—C138.5 (3)
Cu1—N8—C12—C1336.7 (4)N8—Cu1—N11—C1516.3 (3)
Cu1—N8—C14—C1537.6 (4)N8—C10—C11—N948.8 (7)
Cu1—N9—C11—C1037.7 (6)N8—C12—C13—N1046.3 (5)
Cu1—N10—C13—C1230.9 (4)N8—C14—C15—N1152.9 (5)
Cu1—N11—C15—C1440.9 (4)N9—Cu1—N1—C1101.8 (15)
Cu2—N3—C3—C441.0 (3)N9—Cu1—N8—C1010.3 (4)
Cu2—N3—C5—C632.9 (4)N9—Cu1—N8—C12110.2 (3)
Cu2—N3—C7—C837.1 (3)N9—Cu1—N8—C14134.6 (3)
Cu2—N4—C4—C336.1 (3)N9—Cu1—N10—C1386.0 (3)
Cu2—N5—C6—C543.9 (3)N9—Cu1—N11—C1560.8 (4)
Cu2—N6—C8—C741.1 (3)N10—Cu1—N1—C1133.0 (15)
N1—Cu1—N9—C11167.2 (5)N10—Cu1—N8—C10135.1 (3)
N1—Cu1—N10—C13170.8 (3)N10—Cu1—N8—C1214.6 (3)
N1—Cu1—N11—C15161.8 (3)N10—Cu1—N8—C14100.6 (3)
N2—Cu2—N4—C4173.0 (2)N10—Cu1—N9—C1163.2 (5)
N2—Cu2—N5—C6154.9 (3)N10—Cu1—N11—C1597.6 (3)
N2—Cu2—N6—C8163.0 (2)N11—Cu1—N1—C121.0 (15)
N3—Cu2—N4—C411.3 (2)N11—Cu1—N8—C10113.0 (3)
N3—Cu2—N5—C620.9 (2)N11—Cu1—N8—C12126.5 (3)
N3—Cu2—N6—C817.0 (2)N11—Cu1—N8—C1411.3 (3)
N3—C3—C4—N452.2 (3)N11—Cu1—N9—C1192.4 (5)
N3—C5—C6—N551.7 (4)N11—Cu1—N10—C1371.9 (3)
N3—C7—C8—N653.4 (4)C1i—Fe1—C9—N7A113.6 (14)
N4—Cu2—N2—C2121.7 (13)C1—Fe1—C9—N7A66.4 (14)
N4—Cu2—N3—C316.2 (2)C1—Fe1—C9—N7B134.4 (13)
N4—Cu2—N3—C5136.0 (2)C1i—Fe1—C9—N7B45.6 (13)
N4—Cu2—N3—C7103.6 (2)C2—Fe1—C9—N7A23.9 (14)
N4—Cu2—N5—C657.9 (3)C2i—Fe1—C9—N7A156.1 (14)
N4—Cu2—N6—C898.5 (2)C2i—Fe1—C9—N7B44.6 (13)
N5—Cu2—N2—C26.9 (13)C2—Fe1—C9—N7B135.4 (13)
N5—Cu2—N3—C3113.0 (2)C3—N3—C5—C684.1 (3)
N5—Cu2—N3—C56.8 (2)C3—N3—C7—C8153.8 (3)
N5—Cu2—N3—C7127.3 (2)C5—N3—C3—C4159.2 (3)
N5—Cu2—N4—C490.1 (2)C5—N3—C7—C881.8 (3)
N5—Cu2—N6—C864.1 (2)C7—N3—C3—C476.4 (3)
N6—Cu2—N2—C2123.8 (13)C7—N3—C5—C6151.3 (3)
N6—Cu2—N3—C3130.4 (2)C10—N8—C12—C13156.0 (4)
N6—Cu2—N3—C5109.8 (2)C10—N8—C14—C1584.3 (4)
N6—Cu2—N3—C710.7 (2)C12—N8—C10—C1183.0 (5)
N6—Cu2—N4—C470.0 (2)C12—N8—C14—C15152.2 (4)
N6—Cu2—N5—C6101.8 (2)C14—N8—C10—C11155.7 (5)
N8—Cu1—N9—C1115.1 (4)C14—N8—C12—C1379.2 (4)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N15ii0.922.203.020 (4)149
N4—H4B···N16iii0.922.373.248 (4)159
N5—H5A···N7Aiv0.922.092.979 (9)162
N5—H5A···N7Biv0.922.413.267 (9)154
N6—H6A···N17iii0.922.433.242 (5)147
N10—H10A···N17v0.922.293.060 (5)141
N10—H10B···N16vi0.922.273.151 (5)160
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x, y, z1; (iv) x+1, y, z; (v) x+1, y, z+1; (vi) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu4Fe(CN)6(C6H18N4)4][Fe(CN)5(NO)]2·6H2O
Mr1591.16
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.9270 (2), 14.9656 (4), 17.5565 (4)
α, β, γ (°)114.879 (3), 94.021 (2), 98.909 (2)
V3)1845.30 (8)
Z1
Radiation typeMo Kα
µ (mm1)1.77
Crystal size (mm)0.24 × 0.17 × 0.06
Data collection
DiffractometerAgilent Xcalibur Sapphire3
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2011), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.752, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
32856, 9691, 6403
Rint0.040
(sin θ/λ)max1)0.711
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.138, 1.05
No. of reflections9691
No. of parameters385
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.49, 0.68

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N15i0.922.203.020 (4)149
N4—H4B···N16ii0.922.373.248 (4)159
N5—H5A···N7Aiii0.922.092.979 (9)162
N5—H5A···N7Biii0.922.413.267 (9)154
N6—H6A···N17ii0.922.433.242 (5)147
N10—H10A···N17iv0.922.293.060 (5)141
N10—H10B···N16v0.922.273.151 (5)160
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z1; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x+2, y, z+1.
 

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBabich, O. A., Kokozay, V. N. & Pavlenko, V. A. (1996). Polyhedron, 15, 2727–2731.  CSD CrossRef CAS Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl Fallah, M. S., Rentschler, E., Caneschi, A., Sessoli, R. & Gatteschi, D. (1996). Angew. Chem. Int. Ed. 35, 1947–1949.  CrossRef CAS Google Scholar
First citationLu, Z.-L., Duan, C.-Y., Tian, Y.-P., Wu, Z.-W., You, J.-J., Zhou, Z.-Y. & Mak, T. C. W. (1997). Polyhedron, 16, 909–914.  CSD CrossRef CAS Web of Science Google Scholar
First citationMakhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4253-4259.  Web of Science CSD CrossRef Google Scholar
First citationNesterov, D. S., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V., Jezierska, J., Ozarowski, A., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2006). Chem. Commun. pp. 4605–4607.  Web of Science CSD CrossRef Google Scholar
First citationNesterov, D. S., Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Kovbasyuk, L. A., Skelton, B. W. & Jezierska, J. (2004). Inorg. Chem. 43, 7868–7876.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450–454.  Google Scholar
First citationParker, R. J., Spiccia, L., Batten, S. R., Cashion, J. D. & Fallon, G. D. (2001). Inorg. Chem. 40, 4696–1704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPryma, O. V., Petrusenko, S. R., Kokozay, V. N., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426–1432.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar
First citationVinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4248-4252.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZou, J., Xu, Z., Huang, X., Zhang, W.-L., Shen, X.-P. & Yu, Y.-P. (1997). J. Coord. Chem. 42, 55–61.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds