organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 7-meth­­oxy­tetra­cyclo­[6.4.0.02,4.03,7]dodeca-1(12),5,8,10-tetra­ene-3,4-di­carboxyl­ate

aDepartment of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
*Correspondence e-mail: boere@uleth.ca

(Received 27 August 2012; accepted 29 August 2012; online 5 September 2012)

The title compound, C17H16O5, is a previously unreported substituted semibulvalene cage compound (that is, a tricyclic hydro­carbon formed from one cyclo­propane and two cyclo­pentene rings which also has one double bond fused to a benzene ring). It has one meth­oxy substituent attached to the bridgehead C atom that links only the two cyclo­pentene rings and two methyl carboxyl­ate groups located on the C atom shared by all three non-benzene rings and that shared only between the cyclo­propane and the cyclo­pentene rings. The stereochemistry of the two enanti­omers (racemate) that assemble in each unit cell is RRRS and SSSR. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming double-layered sheets lying perpendicular to the a axis.

Related literature

For general background, see: Bender & Brooks (1975[Bender, C. O. & Brooks, D. W. (1975). Can. J. Chem. 53, 1684-1689.]). For related structures, see: Muneer et al. (1997[Muneer, M., Rath, N. P. & George, M. V. (1997). Acta Cryst. C53, 1475-1478.]); Pokkuluri, Scheffer & Trotter (1994[Pokkuluri, P. R., Scheffer, J. R. & Trotter, J. (1994). Acta Cryst. C50, 581-583.]); Pokkuluri, Scheffer, Trotter & Yap (1994[Pokkuluri, P. R., Scheffer, J. R., Trotter, J. & Yap, M. (1994). Acta Cryst. C50, 578-581.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16O5

  • Mr = 300.30

  • Monoclinic, C 2/c

  • a = 23.892 (2) Å

  • b = 7.9999 (8) Å

  • c = 15.4182 (15) Å

  • β = 90.028 (1)°

  • V = 2946.9 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.37 × 0.33 × 0.28 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]) Tmin = 0.672, Tmax = 0.746

  • 19005 measured reflections

  • 3005 independent reflections

  • 2607 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.07

  • 3005 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.95 2.53 3.3895 (16) 151
C10—H10⋯O5ii 0.95 2.54 3.2425 (15) 131
C7—H7⋯C9iii 0.95 2.86 3.773 (2) 162
Symmetry codes: (i) x, y-1, z; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The structure of the title compound (I) is shown in Fig. 1. Although a number of bulvalene (two fused benzene rings) and semibulvalene (one fused benzene) structures have previously been reported, three have features that make comparison to (I) particularly meaningful. The bulvalene 8c,8d-dibenzoyl-4b-methoxy-4b,8b,8c,8d-tetrahydrodibenzo(a,f)cyclopropa(cd)pentalene, CSD (Allen, 2002) refcode: ROHFAV, has a methoxy group in the same bridgehead location as in the title compound (Muneer et al., 1997). Furthermore, the two sites on the cyclopropane ring are also substituted, albeit with phenyl ketone groups in place of the esters. The semibulvalene methyl 6c-benzoyl-2a,2b,6b,6c-tetrahydrobenzo(a)cyclopropa(cd)pentalene-6b-carboxylate has a methyl ester functional group in place of the methoxy at the bridgehead C in (I) and has one phenyl ketone group attached at the cyclopropane ring (CSD refcode: LEKLES; Pokkuluri, Scheffer, Trotter & Yap, 1994). The semibulvalene dimethyl 3,8-diphenyl-2a,2b,8b,8c-tetrahydrocyclopropa(1',2',3':3,3a,4) pentaleno(1,2 - b)naphthalene-2a,8c-dicarboxylate shares with (I) the substitution of two methyl ester groups in the same locations (CSD refcode: LEKLIW; Pokkuluri, Scheffer, & Trotter, 1994). This structure differs by not having a bridgehead methoxy group and that the fused aromatic ring is a diphenyl-substituted naphthalene ring in place of the unsubstituted benzene ring in (I). A comparison of the metric parameters common to these four structures shows great similarity with only a few values deviating by more than 1%.

The five short intermolecular contacts in the crystal lattice of (I) are displayed in Fig. 2 looking down the b axis with c horizontal. The contacts extend in such a way as to develop a "double layer" parallel to the bc planes. The contact distances are O2···H6', 2.530 (1); O5···H10' 2.5353 (8); C6···H10', 2.810 (1); H6···H10', 2.3578 (2) and H7···C9', 2.9307 (2) Å. The interactions involving O2 and O5 are sufficient to develop the sheet structure; the doubling of the sheets exclusively involves "T-shaped" interactions between H7 and C9.

Related literature top

For general background, see: Bender & Brooks (1975). For related structures, see: Muneer et al. (1997); Pokkuluri, Scheffer & Trotter (1994); Pokkuluri, Scheffer, Trotter & Yap (1994). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The title compound (I) is the major product from the acetone sensitized irradiation of dimethyl 1-methoxy-4-hydro-1,4-ethenonaphthalene-2,3-dicarboxylate (II). The melting range of (I) is 382–384 K. The barrelene (II) was of interest in connection with a study of polar substituents in pericyclic reactions (Bender et al., 1975) and was synthesized from the Diels-Alder reaction between 1-methoxynaphthalene and dimethyl acetylenedicarboxylate, as outlined in Figure 3.

Refinement top

All hydrogen atoms were located on a difference map. Hydrogen atoms attached to carbon are treated as riding, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl, C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C) for methine and C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic and alkene H atoms. The highest residual peak is only a fraction of the electron density of a single H atom, 0.31 e.Å-3, and is located between C1 and C5.

Structure description top

The structure of the title compound (I) is shown in Fig. 1. Although a number of bulvalene (two fused benzene rings) and semibulvalene (one fused benzene) structures have previously been reported, three have features that make comparison to (I) particularly meaningful. The bulvalene 8c,8d-dibenzoyl-4b-methoxy-4b,8b,8c,8d-tetrahydrodibenzo(a,f)cyclopropa(cd)pentalene, CSD (Allen, 2002) refcode: ROHFAV, has a methoxy group in the same bridgehead location as in the title compound (Muneer et al., 1997). Furthermore, the two sites on the cyclopropane ring are also substituted, albeit with phenyl ketone groups in place of the esters. The semibulvalene methyl 6c-benzoyl-2a,2b,6b,6c-tetrahydrobenzo(a)cyclopropa(cd)pentalene-6b-carboxylate has a methyl ester functional group in place of the methoxy at the bridgehead C in (I) and has one phenyl ketone group attached at the cyclopropane ring (CSD refcode: LEKLES; Pokkuluri, Scheffer, Trotter & Yap, 1994). The semibulvalene dimethyl 3,8-diphenyl-2a,2b,8b,8c-tetrahydrocyclopropa(1',2',3':3,3a,4) pentaleno(1,2 - b)naphthalene-2a,8c-dicarboxylate shares with (I) the substitution of two methyl ester groups in the same locations (CSD refcode: LEKLIW; Pokkuluri, Scheffer, & Trotter, 1994). This structure differs by not having a bridgehead methoxy group and that the fused aromatic ring is a diphenyl-substituted naphthalene ring in place of the unsubstituted benzene ring in (I). A comparison of the metric parameters common to these four structures shows great similarity with only a few values deviating by more than 1%.

The five short intermolecular contacts in the crystal lattice of (I) are displayed in Fig. 2 looking down the b axis with c horizontal. The contacts extend in such a way as to develop a "double layer" parallel to the bc planes. The contact distances are O2···H6', 2.530 (1); O5···H10' 2.5353 (8); C6···H10', 2.810 (1); H6···H10', 2.3578 (2) and H7···C9', 2.9307 (2) Å. The interactions involving O2 and O5 are sufficient to develop the sheet structure; the doubling of the sheets exclusively involves "T-shaped" interactions between H7 and C9.

For general background, see: Bender & Brooks (1975). For related structures, see: Muneer et al. (1997); Pokkuluri, Scheffer & Trotter (1994); Pokkuluri, Scheffer, Trotter & Yap (1994). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal plot viewed down the b axis (c axis horizontal) displaying H···O, H···C and H···H contacts less than the sum of the v. d. Waals' radii [Symmetry codes: (i) 1 - x, y, 1.5 - z; (ii) 1 - x, -y, 1 - z; (iii) x, -y, -0.5 + z; (iv) x, -y, 0.5 - z; (v) 1 - x, -y, 2 - z.] Displacement ellipsoids are drawn at the 30% probability level; only those H atoms involved in short contacts are included and are drawn as spheres of arbitrary radius. Short contacts are drawn as dashed tubes.
[Figure 3] Fig. 3. Scheme showing the photochemical preparation of (I) from the barrelene (II) as well as other preparative chemical steps.
Dimethyl 7-methoxytetracyclo[6.4.0.02,4.03,7]dodeca-1(12),5,8,10-tetraene- 3,4-dicarboxylate top
Crystal data top
C17H16O5F(000) = 1264
Mr = 300.30Dx = 1.354 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9907 reflections
a = 23.892 (2) Åθ = 2.6–28.8°
b = 7.9999 (8) ŵ = 0.10 mm1
c = 15.4182 (15) ÅT = 173 K
β = 90.028 (1)°Block, colourless
V = 2946.9 (5) Å30.37 × 0.33 × 0.28 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
3005 independent reflections
Radiation source: fine-focus sealed tube, Bruker D82607 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 66.06 pixels mm-1θmax = 26.4°, θmin = 1.7°
φ and ω scansh = 2929
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 99
Tmin = 0.672, Tmax = 0.746l = 1919
19005 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0508P)2 + 1.467P]
where P = (Fo2 + 2Fc2)/3
3005 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H16O5V = 2946.9 (5) Å3
Mr = 300.30Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.892 (2) ŵ = 0.10 mm1
b = 7.9999 (8) ÅT = 173 K
c = 15.4182 (15) Å0.37 × 0.33 × 0.28 mm
β = 90.028 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3005 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2607 reflections with I > 2σ(I)
Tmin = 0.672, Tmax = 0.746Rint = 0.029
19005 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
3005 reflectionsΔρmin = 0.21 e Å3
202 parameters
Special details top

Experimental. A crystal coated in Paratone (TM) oil was mounted on the end of a thin glass capillary and cooled in the gas stream of the diffractometer Kryoflex device.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.38022 (5)0.25083 (15)0.81435 (7)0.0222 (3)
C60.42265 (5)0.09543 (15)0.64775 (7)0.0226 (3)
H60.43170.01460.62940.027*
C70.45963 (5)0.21768 (15)0.65739 (7)0.0225 (2)
H70.49900.20360.65250.027*
C20.38959 (5)0.39617 (14)0.75702 (7)0.0216 (2)
H20.38090.51040.77960.026*
C170.26658 (5)0.11991 (17)0.64184 (9)0.0315 (3)
H17A0.25850.06380.69700.047*
H17B0.24060.07960.59730.047*
H17C0.26200.24090.64890.047*
C40.36095 (5)0.11440 (14)0.76658 (7)0.0217 (2)
C120.34945 (5)0.03788 (16)0.80631 (8)0.0285 (3)
H120.33770.13190.77330.034*
C160.27099 (6)0.67723 (17)0.60114 (10)0.0359 (3)
H16A0.29660.75880.57520.054*
H16B0.24360.73560.63740.054*
H16C0.25150.61620.55510.054*
C80.43190 (5)0.37858 (15)0.67664 (7)0.0219 (3)
C150.33539 (5)0.45632 (14)0.60978 (7)0.0226 (3)
C130.45429 (5)0.54272 (15)0.64747 (8)0.0264 (3)
C110.35563 (5)0.04820 (18)0.89585 (9)0.0339 (3)
H110.34680.14960.92480.041*
C10.36939 (5)0.34981 (14)0.66910 (7)0.0198 (2)
C90.38762 (5)0.23822 (17)0.90355 (8)0.0283 (3)
H90.40120.33020.93630.034*
C50.36397 (5)0.15424 (14)0.66990 (7)0.0204 (2)
C100.37463 (5)0.08795 (19)0.94345 (8)0.0339 (3)
H100.37880.07781.00450.041*
C140.53073 (7)0.6835 (2)0.58505 (12)0.0471 (4)
H14A0.50570.73680.54290.071*
H14B0.56680.65950.55750.071*
H14C0.53650.75870.63440.071*
O50.32282 (3)0.08404 (11)0.61609 (5)0.0250 (2)
O40.33743 (4)0.44688 (12)0.53199 (6)0.0350 (2)
O30.30236 (4)0.56102 (11)0.65372 (6)0.0275 (2)
O10.50578 (4)0.52885 (12)0.61514 (6)0.0344 (2)
O20.42898 (4)0.67223 (12)0.65173 (8)0.0458 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0184 (5)0.0274 (6)0.0207 (6)0.0024 (5)0.0014 (4)0.0011 (4)
C60.0257 (6)0.0226 (6)0.0195 (5)0.0039 (5)0.0025 (4)0.0009 (4)
C70.0216 (6)0.0256 (6)0.0204 (5)0.0029 (5)0.0020 (4)0.0028 (4)
C20.0227 (6)0.0220 (6)0.0201 (6)0.0017 (4)0.0005 (4)0.0021 (4)
C170.0227 (6)0.0329 (7)0.0389 (7)0.0019 (5)0.0017 (5)0.0055 (6)
C40.0191 (5)0.0239 (6)0.0221 (6)0.0024 (4)0.0020 (4)0.0025 (4)
C120.0254 (6)0.0253 (6)0.0346 (7)0.0020 (5)0.0043 (5)0.0061 (5)
C160.0276 (7)0.0304 (7)0.0496 (8)0.0063 (5)0.0019 (6)0.0148 (6)
C80.0209 (6)0.0232 (6)0.0215 (6)0.0009 (5)0.0006 (4)0.0014 (4)
C150.0219 (6)0.0222 (6)0.0237 (6)0.0012 (5)0.0007 (4)0.0036 (4)
C130.0255 (6)0.0247 (6)0.0289 (6)0.0027 (5)0.0010 (5)0.0025 (5)
C110.0270 (6)0.0380 (7)0.0366 (7)0.0060 (6)0.0071 (5)0.0190 (6)
C10.0205 (5)0.0196 (5)0.0194 (5)0.0001 (4)0.0011 (4)0.0000 (4)
C90.0223 (6)0.0419 (7)0.0205 (6)0.0028 (5)0.0005 (4)0.0001 (5)
C50.0219 (6)0.0191 (5)0.0201 (6)0.0001 (4)0.0001 (4)0.0005 (4)
C100.0252 (6)0.0540 (9)0.0226 (6)0.0073 (6)0.0027 (5)0.0121 (6)
C140.0404 (8)0.0356 (8)0.0654 (10)0.0129 (7)0.0139 (7)0.0118 (7)
O50.0227 (4)0.0273 (4)0.0251 (4)0.0022 (3)0.0014 (3)0.0064 (3)
O40.0426 (6)0.0401 (6)0.0223 (5)0.0058 (4)0.0014 (4)0.0062 (4)
O30.0257 (4)0.0261 (4)0.0309 (5)0.0075 (3)0.0013 (4)0.0053 (3)
O10.0273 (5)0.0291 (5)0.0468 (6)0.0052 (4)0.0079 (4)0.0083 (4)
O20.0387 (6)0.0227 (5)0.0760 (8)0.0002 (4)0.0146 (5)0.0079 (5)
Geometric parameters (Å, º) top
C3—C91.3902 (17)C16—H16B0.9800
C3—C41.3948 (17)C16—H16C0.9800
C3—C21.4776 (16)C8—C131.4874 (16)
C6—C71.3262 (17)C8—C11.5157 (16)
C6—C51.5179 (15)C15—O41.2028 (15)
C6—H60.9500C15—O31.3356 (14)
C7—C81.4778 (16)C15—C11.4906 (16)
C7—H70.9500C13—O21.2014 (16)
C2—C11.4857 (16)C13—O11.3323 (15)
C2—C81.6060 (16)C11—C101.389 (2)
C2—H21.0000C11—H110.9500
C17—O51.4304 (15)C1—C51.5699 (16)
C17—H17A0.9800C9—C101.3856 (19)
C17—H17B0.9800C9—H90.9500
C17—H17C0.9800C5—O51.4035 (14)
C4—C121.3910 (17)C10—H100.9500
C4—C51.5260 (15)C14—O11.4495 (16)
C12—C111.3908 (19)C14—H14A0.9800
C12—H120.9500C14—H14B0.9800
C16—O31.4432 (15)C14—H14C0.9800
C16—H16A0.9800
C9—C3—C4120.49 (11)C1—C8—C256.75 (7)
C9—C3—C2129.03 (11)O4—C15—O3124.71 (11)
C4—C3—C2110.48 (10)O4—C15—C1123.62 (11)
C7—C6—C5111.19 (10)O3—C15—C1111.66 (9)
C7—C6—H6124.4O2—C13—O1123.86 (11)
C5—C6—H6124.4O2—C13—C8124.31 (11)
C6—C7—C8111.48 (10)O1—C13—C8111.83 (10)
C6—C7—H7124.3C10—C11—C12120.81 (12)
C8—C7—H7124.3C10—C11—H11119.6
C3—C2—C1107.47 (10)C12—C11—H11119.6
C3—C2—C8119.23 (9)C2—C1—C15126.43 (10)
C1—C2—C858.56 (7)C2—C1—C864.69 (8)
C3—C2—H2118.6C15—C1—C8119.80 (9)
C1—C2—H2118.6C2—C1—C5105.57 (9)
C8—C2—H2118.6C15—C1—C5121.98 (10)
O5—C17—H17A109.5C8—C1—C5103.41 (9)
O5—C17—H17B109.5C10—C9—C3118.28 (12)
H17A—C17—H17B109.5C10—C9—H9120.9
O5—C17—H17C109.5C3—C9—H9120.9
H17A—C17—H17C109.5O5—C5—C6112.94 (9)
H17B—C17—H17C109.5O5—C5—C4117.42 (9)
C12—C4—C3121.20 (11)C6—C5—C4101.49 (9)
C12—C4—C5128.50 (11)O5—C5—C1116.86 (9)
C3—C4—C5109.67 (10)C6—C5—C1103.35 (9)
C11—C12—C4117.92 (12)C4—C5—C1102.69 (9)
C11—C12—H12121.0C9—C10—C11121.25 (12)
C4—C12—H12121.0C9—C10—H10119.4
O3—C16—H16A109.5C11—C10—H10119.4
O3—C16—H16B109.5O1—C14—H14A109.5
H16A—C16—H16B109.5O1—C14—H14B109.5
O3—C16—H16C109.5H14A—C14—H14B109.5
H16A—C16—H16C109.5O1—C14—H14C109.5
H16B—C16—H16C109.5H14A—C14—H14C109.5
C7—C8—C13123.16 (10)H14B—C14—H14C109.5
C7—C8—C1107.10 (9)C5—O5—C17114.42 (9)
C13—C8—C1117.74 (10)C15—O3—C16115.20 (10)
C7—C8—C2120.91 (9)C13—O1—C14115.38 (11)
C13—C8—C2112.49 (10)
C5—C6—C7—C86.71 (14)C7—C8—C1—C2116.16 (10)
C9—C3—C2—C1173.72 (11)C13—C8—C1—C299.91 (11)
C4—C3—C2—C15.71 (13)C7—C8—C1—C15124.75 (11)
C9—C3—C2—C8123.07 (13)C13—C8—C1—C1519.19 (15)
C4—C3—C2—C857.51 (14)C2—C8—C1—C15119.09 (12)
C9—C3—C4—C120.96 (18)C7—C8—C1—C515.07 (11)
C2—C3—C4—C12179.56 (10)C13—C8—C1—C5159.00 (10)
C9—C3—C4—C5172.58 (10)C2—C8—C1—C5101.09 (9)
C2—C3—C4—C57.94 (13)C4—C3—C9—C100.89 (17)
C3—C4—C12—C112.51 (18)C2—C3—C9—C10178.49 (11)
C5—C4—C12—C11172.41 (11)C7—C6—C5—O5143.12 (10)
C6—C7—C8—C13147.41 (11)C7—C6—C5—C490.27 (11)
C6—C7—C8—C15.91 (13)C7—C6—C5—C115.91 (12)
C6—C7—C8—C255.12 (14)C12—C4—C5—O542.13 (16)
C3—C2—C8—C72.50 (16)C3—C4—C5—O5147.04 (10)
C1—C2—C8—C791.00 (12)C12—C4—C5—C681.48 (14)
C3—C2—C8—C13157.18 (11)C3—C4—C5—C689.36 (11)
C1—C2—C8—C13109.32 (11)C12—C4—C5—C1171.82 (11)
C3—C2—C8—C193.50 (11)C3—C4—C5—C117.34 (12)
C7—C8—C13—O2169.30 (13)C2—C1—C5—O5150.13 (9)
C1—C8—C13—O231.53 (18)C15—C1—C5—O54.12 (15)
C2—C8—C13—O231.55 (17)C8—C1—C5—O5142.81 (9)
C7—C8—C13—O110.10 (16)C2—C1—C5—C685.17 (10)
C1—C8—C13—O1147.87 (11)C15—C1—C5—C6120.58 (11)
C2—C8—C13—O1149.05 (10)C8—C1—C5—C618.11 (11)
C4—C12—C11—C102.25 (19)C2—C1—C5—C420.10 (11)
C3—C2—C1—C15136.43 (11)C15—C1—C5—C4134.15 (10)
C8—C2—C1—C15109.52 (12)C8—C1—C5—C487.16 (10)
C3—C2—C1—C8114.05 (10)C3—C9—C10—C111.14 (18)
C3—C2—C1—C516.31 (12)C12—C11—C10—C90.5 (2)
C8—C2—C1—C597.74 (9)C6—C5—O5—C17172.52 (10)
O4—C15—C1—C2150.54 (12)C4—C5—O5—C1754.92 (14)
O3—C15—C1—C230.10 (15)C1—C5—O5—C1767.78 (13)
O4—C15—C1—C871.47 (16)O4—C15—O3—C164.97 (17)
O3—C15—C1—C8109.17 (11)C1—C15—O3—C16175.68 (10)
O4—C15—C1—C560.80 (16)O2—C13—O1—C140.5 (2)
O3—C15—C1—C5118.56 (11)C8—C13—O1—C14179.94 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.533.3895 (16)151
C10—H10···O5ii0.952.543.2425 (15)131
C7—H7···C9iii0.952.863.773 (2)162
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1/2; (iii) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H16O5
Mr300.30
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)23.892 (2), 7.9999 (8), 15.4182 (15)
β (°) 90.028 (1)
V3)2946.9 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.37 × 0.33 × 0.28
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.672, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
19005, 3005, 2607
Rint0.029
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.07
No. of reflections3005
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.21

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.533.3895 (16)151
C10—H10···O5ii0.952.543.2425 (15)131
C7—H7···C9iii0.952.863.773 (2)162
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1/2; (iii) x+1, y, z+3/2.
 

Acknowledgements

Shaun Boyle is thanked for the sample preparation and both COB and RTB gratefully acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada. The diffractometer at the University of Lethbridge X-ray Diffraction Facility was purchased with the help of NSERC and the University of Lethbridge.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBender, C. O. & Brooks, D. W. (1975). Can. J. Chem. 53, 1684–1689.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMuneer, M., Rath, N. P. & George, M. V. (1997). Acta Cryst. C53, 1475–1478.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPokkuluri, P. R., Scheffer, J. R. & Trotter, J. (1994). Acta Cryst. C50, 581–583.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPokkuluri, P. R., Scheffer, J. R., Trotter, J. & Yap, M. (1994). Acta Cryst. C50, 578–581.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds