organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-Meth­­oxy-9-(2-meth­­oxy­phen­yl)-9H-xanthene

aChemistry Department, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa, and bSasol Technologies, R&D Klasie Havenga Road 1, Sasolburg 1947, South Africa
*Correspondence e-mail: jacobsa@cput.ac.za

(Received 27 August 2012; accepted 30 August 2012; online 5 September 2012)

In the title compound, C21H18O3, the xanthene system and the meth­oxy­phenyl ring are practically orthogonal with a dihedral angle between their mean planes of 89.27 (3)°. The meth­oxy group attached to the phenyl ring makes a C—O—C—C torsion angle of 11.56 (18)°. In the crystal, mol­ecules are linked by C—H⋯O inter­actions into chains along [010]. Weak C—H⋯π inter­actions also occur.

Related literature

For the synthesis of the parent xanthenol compound 9-(2-meth­oxy­phen­yl)-9H-xanthen-9-ol, see: Dilthey et al. (1939[Dilthey, W., Quint, F. & Heinen, J. (1939). J. Prakt. Chem. 152, 49-98.]). For related inclusion chemistry of 9-(2-meth­oxy­phen­yl)-9H-xanthen-9-ol, see: Jacobs et al. (2005[Jacobs, A., Nassimbeni, L. R., Su, H. & Taljaard, B. (2005). Org. Biomol. Chem. 3, 1319-1322.], 2007[Jacobs, A., Faleni, N., Nassimbeni, L. R. & Taljaard, J. H. (2007). Cryst. Growth Des. 7, 1003-1006.], 2009[Jacobs, A., Nassimbeni, L. R., Nohako, K. L., Ramon, G. & Taljaard, J. H. (2009). New J. Chem. 33, 1960-1964.]). For related structures, see: Das et al. (2007[Das, G., Kavala, V., Murru, S. & Patel, B. K. (2007). J. Chem. Crystallogr. 37, 527-535.]). For the design of host compounds, see: Weber (1991[Weber, E. (1991). Inclusion Compounds, edited by J. L. Atwood, J. E. D. Davies & D. D. MacNicol. Oxford University Press.]) and for a review of C—H⋯O inter­actions, see: Steiner (1997[Steiner, T. (1997). Chem. Commun. pp. 727-734.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18O3

  • Mr = 318.35

  • Monoclinic, P 21 /c

  • a = 8.0665 (6) Å

  • b = 9.7653 (7) Å

  • c = 21.3191 (15) Å

  • β = 105.560 (2)°

  • V = 1617.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.22 × 0.16 × 0.03 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.833, Tmax = 0.997

  • 15054 measured reflections

  • 4041 independent reflections

  • 2779 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.117

  • S = 1.02

  • 4041 reflections

  • 219 parameters

  • H-atom parameters not refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O1i 0.95 2.55 3.303 (2) 136
C20—H20CCgii 0.98 2.82 3.6802 (16) 147
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The starting material, 9-(2-methoxyphenyl)-9H-xanthen-9-ol, was synthesized by reported methods (Dilthey et al., 1939). Xanthenol compounds have been used extensively in host–guest chemistry as versatile hosts for the inclusion of small organic guests (Jacobs et al., 2005), solvent free reactions (Jacobs et al., 2009) and guest exchange experiments (Jacobs et al., 2007). This class of compounds conforms to Weber's rules (Weber, 1991) for efficient hosts in that they are bulky and contain functionalities that can participate in hydrogen bonding. Charge delocalization into the adjacent aromatic rings of the xanthene moiety can stabilize a cationic centre at C13 (Fig. 1), facilitating nucleophilic attack. The loss of the hydroxyl group yields a compound without a strong hydrogen bond donor.

The structure crystallized in P21/c with one molecule in the asymmetric unit. Short C—H··· O contacts [C···O = 3.303 (2) Å and C—H···O = 136°] link adjacent molecules into anti-parallel chains along [010] (Fig. 2). Similar resonance assisted weak hydrogen bonding has been described (Steiner, 1997) for polarisable π-bond systems. An intramolecular C—H··· O contact [C···O = 2.663 (1) Å and C—H··· O = 102°] gives rise to a torsion angle O2—C13—C14—C19 = -0.14 (17)°.

Weaker C—H···π interactions include C20···π(C14—C19) = 3.680 Å and an intramolecular C21···π(O1—C13) = 2.974 Å. The shortest ππ contact of 4.034 Å is an intramolecular edge to face interaction between π(O1—C13) and π(C14—C19). Ten xanthene derivatives were synthesized from the parent compound 9-phenyl-9H-xanthene-9-ol and selected ketones (Das et al., 2007). C—H···π, C—H···O and ππ interactions dominated the structures with typical distances of 2.664 Å, 3.378 Å and 4.691 Å respectively.

The packing diagram down [010] is shown in Fig. 3. The xanthene ring and the methoxyphenyl moiety are practically orthogonal with a dihedral angle between the least squares planes of 89.27 (3)°. The methoxy moiety attached to the phenyl ring deviates from the C14—C19 plane with a resultant C20—O3—C15—C16 torsion angle of 11.56 (18)°.

Related literature top

For the synthesis of the parent xanthenol compound 9-(2-methoxyphenyl)-9H-xanthen-9-ol, see: Dilthey et al. (1939). For related inclusion chemistry of 9-(2-methoxyphenyl)-9H-xanthen-9-ol, see: Jacobs et al. (2005, 2007, 2009). For related structures, see: Das et al. (2007). For the design of host compounds, see: Weber (1991) and for a review of C—H···O interactions, see: Steiner (1997).

Experimental top

A crystal of 9-methoxy-9-(2-methoxyphenyl)-9H-xanthene was prepared serendipitously by slow evaporation of a dilute solution of 9-(2-methoxyphenyl)-9H-xanthen-9-ol and theophylline in a 50:50 mixture of methanol/chloroform.

Refinement top

The aromatic and methyl hydrogen atoms were geometrically constrained, with C—H distances fixed at 0.95 Å and 0.98 Å respectively. For the aromatic H atoms Uiso(H) = 1.2Ueq(Caryl) and for the methyl H atoms Uiso(H) = 1.5Ueq(Cmethyl).

Structure description top

The starting material, 9-(2-methoxyphenyl)-9H-xanthen-9-ol, was synthesized by reported methods (Dilthey et al., 1939). Xanthenol compounds have been used extensively in host–guest chemistry as versatile hosts for the inclusion of small organic guests (Jacobs et al., 2005), solvent free reactions (Jacobs et al., 2009) and guest exchange experiments (Jacobs et al., 2007). This class of compounds conforms to Weber's rules (Weber, 1991) for efficient hosts in that they are bulky and contain functionalities that can participate in hydrogen bonding. Charge delocalization into the adjacent aromatic rings of the xanthene moiety can stabilize a cationic centre at C13 (Fig. 1), facilitating nucleophilic attack. The loss of the hydroxyl group yields a compound without a strong hydrogen bond donor.

The structure crystallized in P21/c with one molecule in the asymmetric unit. Short C—H··· O contacts [C···O = 3.303 (2) Å and C—H···O = 136°] link adjacent molecules into anti-parallel chains along [010] (Fig. 2). Similar resonance assisted weak hydrogen bonding has been described (Steiner, 1997) for polarisable π-bond systems. An intramolecular C—H··· O contact [C···O = 2.663 (1) Å and C—H··· O = 102°] gives rise to a torsion angle O2—C13—C14—C19 = -0.14 (17)°.

Weaker C—H···π interactions include C20···π(C14—C19) = 3.680 Å and an intramolecular C21···π(O1—C13) = 2.974 Å. The shortest ππ contact of 4.034 Å is an intramolecular edge to face interaction between π(O1—C13) and π(C14—C19). Ten xanthene derivatives were synthesized from the parent compound 9-phenyl-9H-xanthene-9-ol and selected ketones (Das et al., 2007). C—H···π, C—H···O and ππ interactions dominated the structures with typical distances of 2.664 Å, 3.378 Å and 4.691 Å respectively.

The packing diagram down [010] is shown in Fig. 3. The xanthene ring and the methoxyphenyl moiety are practically orthogonal with a dihedral angle between the least squares planes of 89.27 (3)°. The methoxy moiety attached to the phenyl ring deviates from the C14—C19 plane with a resultant C20—O3—C15—C16 torsion angle of 11.56 (18)°.

For the synthesis of the parent xanthenol compound 9-(2-methoxyphenyl)-9H-xanthen-9-ol, see: Dilthey et al. (1939). For related inclusion chemistry of 9-(2-methoxyphenyl)-9H-xanthen-9-ol, see: Jacobs et al. (2005, 2007, 2009). For related structures, see: Das et al. (2007). For the design of host compounds, see: Weber (1991) and for a review of C—H···O interactions, see: Steiner (1997).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus and XPREP (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of 9-methoxy-9-(2-methoxyphenyl)-9H-xanthene at the 30% probability level indicating the atomic numbering scheme.
[Figure 2] Fig. 2. Packing diagram of 9-methoxy-9-(2-methoxyphenyl)-9H-xanthene down [100].
[Figure 3] Fig. 3. Packing diagram of 9-methoxy-9-(2-methoxyphenyl)-9H-xanthene down [010].
9-Methoxy-9-(2-methoxyphenyl)-9H-xanthene top
Crystal data top
C21H18O3F(000) = 672
Mr = 318.35Dx = 1.307 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15054 reflections
a = 8.0665 (6) Åθ = 0.1–28.4°
b = 9.7653 (7) ŵ = 0.09 mm1
c = 21.3191 (15) ÅT = 173 K
β = 105.560 (2)°Block, colourless
V = 1617.8 (2) Å30.22 × 0.16 × 0.03 mm
Z = 4
Data collection top
Bruker Kappa DUO APEXII
diffractometer
4041 independent reflections
Radiation source: fine-focus sealed tube2779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
1.2° φ scans and ω scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.833, Tmax = 0.997k = 1313
15054 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters not refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.1933P]
where P = (Fo2 + 2Fc2)/3
4041 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C21H18O3V = 1617.8 (2) Å3
Mr = 318.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0665 (6) ŵ = 0.09 mm1
b = 9.7653 (7) ÅT = 173 K
c = 21.3191 (15) Å0.22 × 0.16 × 0.03 mm
β = 105.560 (2)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
4041 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2779 reflections with I > 2σ(I)
Tmin = 0.833, Tmax = 0.997Rint = 0.039
15054 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.117H-atom parameters not refined
S = 1.02Δρmax = 0.27 e Å3
4041 reflectionsΔρmin = 0.19 e Å3
219 parameters
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.82930 (15)0.95042 (11)0.39263 (5)0.0427 (3)
C10.73618 (16)0.76549 (14)0.31531 (6)0.0251 (3)
O20.47131 (11)0.66412 (10)0.32726 (5)0.0325 (2)
C20.73692 (18)0.71286 (16)0.25441 (7)0.0313 (3)
H20.68150.62800.24060.038*
O30.99412 (11)0.65133 (9)0.42002 (5)0.0279 (2)
C30.8170 (2)0.78202 (17)0.21389 (7)0.0371 (4)
H30.81660.74450.17270.045*
C40.8974 (2)0.90572 (18)0.23344 (7)0.0399 (4)
H40.95250.95330.20570.048*
C50.8977 (2)0.96002 (17)0.29298 (8)0.0407 (4)
H50.95201.04540.30650.049*
C60.81755 (19)0.88880 (15)0.33336 (7)0.0312 (3)
C70.66711 (16)0.76469 (14)0.42281 (6)0.0246 (3)
C80.59500 (16)0.71138 (16)0.47021 (7)0.0296 (3)
H80.53800.62540.46300.036*
C90.60486 (18)0.78131 (17)0.52757 (7)0.0365 (4)
H90.55370.74420.55910.044*
C100.6899 (2)0.90574 (17)0.53863 (7)0.0396 (4)
H100.69720.95400.57800.047*
C110.7638 (2)0.95994 (16)0.49306 (7)0.0380 (4)
H110.82301.04500.50090.046*
C120.75102 (18)0.88861 (15)0.43524 (7)0.0299 (3)
C130.65042 (16)0.68674 (14)0.35959 (6)0.0241 (3)
C140.72913 (16)0.54401 (13)0.37383 (6)0.0233 (3)
C150.90553 (16)0.53114 (13)0.40499 (6)0.0228 (3)
C160.98038 (18)0.40271 (14)0.41893 (6)0.0278 (3)
H161.09930.39480.44060.033*
C170.88084 (19)0.28611 (15)0.40104 (7)0.0318 (3)
H170.93210.19830.41040.038*
C180.70841 (19)0.29672 (15)0.36984 (7)0.0336 (3)
H180.64120.21640.35740.040*
C190.63261 (18)0.42523 (14)0.35658 (7)0.0296 (3)
H190.51320.43190.33540.035*
C201.17721 (17)0.64420 (16)0.44035 (7)0.0330 (3)
H20C1.21370.59770.48260.050*
H20A1.22510.73700.44440.050*
H20B1.21880.59300.40810.050*
C210.3706 (2)0.78492 (18)0.31020 (8)0.0416 (4)
H21A0.37270.83700.34970.062*
H21B0.25170.75980.28800.062*
H21C0.41810.84120.28110.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0741 (8)0.0255 (5)0.0355 (6)0.0153 (5)0.0270 (6)0.0072 (5)
C10.0279 (7)0.0237 (7)0.0234 (7)0.0048 (5)0.0063 (5)0.0034 (5)
O20.0226 (5)0.0347 (6)0.0355 (6)0.0027 (4)0.0002 (4)0.0000 (5)
C20.0361 (7)0.0310 (8)0.0253 (7)0.0053 (6)0.0054 (6)0.0008 (6)
O30.0222 (5)0.0243 (5)0.0349 (5)0.0020 (4)0.0038 (4)0.0015 (4)
C30.0445 (8)0.0451 (9)0.0234 (7)0.0123 (7)0.0121 (6)0.0038 (7)
C40.0473 (9)0.0440 (10)0.0330 (8)0.0056 (7)0.0188 (7)0.0121 (7)
C50.0581 (10)0.0297 (8)0.0391 (9)0.0066 (7)0.0212 (8)0.0030 (7)
C60.0433 (8)0.0265 (7)0.0263 (7)0.0021 (6)0.0134 (6)0.0007 (6)
C70.0234 (6)0.0268 (7)0.0237 (6)0.0068 (5)0.0061 (5)0.0021 (5)
C80.0230 (6)0.0359 (8)0.0307 (7)0.0033 (6)0.0083 (5)0.0049 (6)
C90.0331 (8)0.0520 (10)0.0280 (7)0.0100 (7)0.0144 (6)0.0068 (7)
C100.0464 (9)0.0469 (10)0.0263 (8)0.0159 (8)0.0114 (7)0.0041 (7)
C110.0532 (9)0.0293 (8)0.0331 (8)0.0039 (7)0.0141 (7)0.0072 (7)
C120.0391 (8)0.0263 (7)0.0268 (7)0.0037 (6)0.0128 (6)0.0010 (6)
C130.0220 (6)0.0242 (7)0.0246 (7)0.0007 (5)0.0035 (5)0.0004 (5)
C140.0260 (6)0.0221 (6)0.0223 (6)0.0006 (5)0.0074 (5)0.0003 (5)
C150.0272 (6)0.0215 (7)0.0210 (6)0.0017 (5)0.0087 (5)0.0008 (5)
C160.0319 (7)0.0273 (7)0.0255 (7)0.0055 (6)0.0098 (6)0.0037 (6)
C170.0461 (8)0.0214 (7)0.0318 (7)0.0042 (6)0.0174 (6)0.0021 (6)
C180.0437 (8)0.0226 (7)0.0368 (8)0.0081 (6)0.0147 (7)0.0039 (6)
C190.0305 (7)0.0289 (7)0.0291 (7)0.0055 (6)0.0077 (6)0.0022 (6)
C200.0238 (7)0.0382 (9)0.0365 (8)0.0024 (6)0.0071 (6)0.0056 (7)
C210.0338 (8)0.0505 (10)0.0377 (9)0.0128 (7)0.0047 (7)0.0065 (8)
Geometric parameters (Å, º) top
O1—C121.3769 (17)C9—H90.9500
O1—C61.3796 (17)C10—C111.375 (2)
C1—C61.376 (2)C10—H100.9500
C1—C21.3979 (19)C11—C121.396 (2)
C1—C131.5202 (18)C11—H110.9500
O2—C211.4230 (18)C13—C141.5279 (18)
O2—C131.4412 (15)C14—C191.3904 (18)
C2—C31.385 (2)C14—C151.4052 (18)
C2—H20.9500C15—C161.3890 (18)
O3—C151.3668 (15)C16—C171.387 (2)
O3—C201.4250 (16)C16—H160.9500
C3—C41.382 (2)C17—C181.375 (2)
C3—H30.9500C17—H170.9500
C4—C51.375 (2)C18—C191.391 (2)
C4—H40.9500C18—H180.9500
C5—C61.393 (2)C19—H190.9500
C5—H50.9500C20—H20C0.9800
C7—C121.377 (2)C20—H20A0.9800
C7—C81.3950 (18)C20—H20B0.9800
C7—C131.5221 (18)C21—H21A0.9800
C8—C91.384 (2)C21—H21B0.9800
C8—H80.9500C21—H21C0.9800
C9—C101.384 (2)
C12—O1—C6118.82 (11)C7—C12—C11121.65 (14)
C6—C1—C2117.45 (13)O2—C13—C1110.21 (10)
C6—C1—C13122.10 (12)O2—C13—C7109.83 (10)
C2—C1—C13120.44 (12)C1—C13—C7110.48 (11)
C21—O2—C13115.17 (11)O2—C13—C14105.37 (10)
C3—C2—C1121.25 (14)C1—C13—C14110.54 (10)
C3—C2—H2119.4C7—C13—C14110.30 (11)
C1—C2—H2119.4C19—C14—C15118.33 (12)
C15—O3—C20117.61 (11)C19—C14—C13122.35 (12)
C4—C3—C2119.87 (14)C15—C14—C13119.32 (11)
C4—C3—H3120.1O3—C15—C16123.72 (12)
C2—C3—H3120.1O3—C15—C14115.69 (11)
C5—C4—C3119.99 (14)C16—C15—C14120.59 (12)
C5—C4—H4120.0C17—C16—C15119.75 (13)
C3—C4—H4120.0C17—C16—H16120.1
C4—C5—C6119.46 (15)C15—C16—H16120.1
C4—C5—H5120.3C18—C17—C16120.47 (13)
C6—C5—H5120.3C18—C17—H17119.8
C1—C6—O1123.24 (13)C16—C17—H17119.8
C1—C6—C5121.98 (14)C17—C18—C19119.91 (13)
O1—C6—C5114.77 (13)C17—C18—H18120.0
C12—C7—C8117.87 (13)C19—C18—H18120.0
C12—C7—C13122.14 (12)C14—C19—C18120.95 (13)
C8—C7—C13119.99 (12)C14—C19—H19119.5
C9—C8—C7121.30 (14)C18—C19—H19119.5
C9—C8—H8119.3O3—C20—H20C109.5
C7—C8—H8119.3O3—C20—H20A109.5
C10—C9—C8119.48 (14)H20C—C20—H20A109.5
C10—C9—H9120.3O3—C20—H20B109.5
C8—C9—H9120.3H20C—C20—H20B109.5
C11—C10—C9120.44 (14)H20A—C20—H20B109.5
C11—C10—H10119.8O2—C21—H21A109.5
C9—C10—H10119.8O2—C21—H21B109.5
C10—C11—C12119.25 (15)H21A—C21—H21B109.5
C10—C11—H11120.4O2—C21—H21C109.5
C12—C11—H11120.4H21A—C21—H21C109.5
O1—C12—C7123.16 (13)H21B—C21—H21C109.5
O1—C12—C11115.19 (13)
C6—C1—C2—C30.2 (2)C2—C1—C13—O258.56 (16)
C13—C1—C2—C3178.88 (12)C6—C1—C13—C70.85 (17)
C1—C2—C3—C40.3 (2)C2—C1—C13—C7179.88 (11)
C2—C3—C4—C50.1 (2)C6—C1—C13—C14121.52 (14)
C3—C4—C5—C60.5 (2)C2—C1—C13—C1457.51 (16)
C2—C1—C6—O1178.58 (13)C12—C7—C13—O2122.18 (13)
C13—C1—C6—O10.5 (2)C8—C7—C13—O257.33 (15)
C2—C1—C6—C50.2 (2)C12—C7—C13—C10.39 (17)
C13—C1—C6—C5179.28 (13)C8—C7—C13—C1179.12 (11)
C12—O1—C6—C12.3 (2)C12—C7—C13—C14122.12 (13)
C12—O1—C6—C5178.78 (13)C8—C7—C13—C1458.37 (15)
C4—C5—C6—C10.6 (2)O2—C13—C14—C190.14 (17)
C4—C5—C6—O1178.33 (14)C1—C13—C14—C19119.20 (14)
C12—C7—C8—C90.9 (2)C7—C13—C14—C19118.33 (14)
C13—C7—C8—C9178.59 (12)O2—C13—C14—C15179.34 (11)
C7—C8—C9—C100.9 (2)C1—C13—C14—C1560.29 (15)
C8—C9—C10—C110.1 (2)C7—C13—C14—C1562.19 (15)
C9—C10—C11—C120.5 (2)C20—O3—C15—C1611.56 (18)
C6—O1—C12—C72.8 (2)C20—O3—C15—C14168.57 (11)
C6—O1—C12—C11177.83 (13)C19—C14—C15—O3179.21 (12)
C8—C7—C12—O1179.04 (13)C13—C14—C15—O30.29 (17)
C13—C7—C12—O11.4 (2)C19—C14—C15—C160.92 (19)
C8—C7—C12—C110.3 (2)C13—C14—C15—C16179.58 (12)
C13—C7—C12—C11179.25 (13)O3—C15—C16—C17179.11 (12)
C10—C11—C12—O1179.81 (13)C14—C15—C16—C171.02 (19)
C10—C11—C12—C70.5 (2)C15—C16—C17—C180.3 (2)
C21—O2—C13—C161.78 (14)C16—C17—C18—C190.6 (2)
C21—O2—C13—C760.16 (15)C15—C14—C19—C180.1 (2)
C21—O2—C13—C14178.95 (11)C13—C14—C19—C18179.55 (13)
C6—C1—C13—O2122.41 (14)C17—C18—C19—C140.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.952.553.303 (2)136
C19—H19···O20.952.292.663 (1)102
C20—H20C···Cgii0.982.823.6802 (16)147
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H18O3
Mr318.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.0665 (6), 9.7653 (7), 21.3191 (15)
β (°) 105.560 (2)
V3)1617.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.16 × 0.03
Data collection
DiffractometerBruker Kappa DUO APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.833, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
15054, 4041, 2779
Rint0.039
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.117, 1.02
No. of reflections4041
No. of parameters219
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.27, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SAINT-Plus and XPREP (Bruker, 2005), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.952.553.303 (2)136
C20—H20C···Cgii0.982.823.6802 (16)147
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+1.
 

Acknowledgements

We thank the Cape Peninsula University of Technology and the National Research Foundation.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, G., Kavala, V., Murru, S. & Patel, B. K. (2007). J. Chem. Crystallogr. 37, 527–535.  Google Scholar
First citationDilthey, W., Quint, F. & Heinen, J. (1939). J. Prakt. Chem. 152, 49–98.  CrossRef CAS Google Scholar
First citationJacobs, A., Faleni, N., Nassimbeni, L. R. & Taljaard, J. H. (2007). Cryst. Growth Des. 7, 1003–1006.  Web of Science CSD CrossRef CAS Google Scholar
First citationJacobs, A., Nassimbeni, L. R., Nohako, K. L., Ramon, G. & Taljaard, J. H. (2009). New J. Chem. 33, 1960–1964.  Web of Science CSD CrossRef CAS Google Scholar
First citationJacobs, A., Nassimbeni, L. R., Su, H. & Taljaard, B. (2005). Org. Biomol. Chem. 3, 1319–1322.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (1997). Chem. Commun. pp. 727–734.  CrossRef Web of Science Google Scholar
First citationWeber, E. (1991). Inclusion Compounds, edited by J. L. Atwood, J. E. D. Davies & D. D. MacNicol. Oxford University Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds