metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2,6-Bis[(2,6-diiso­propyl­phosphan­yl)­­oxy]-4-fluoro­phenyl-κ3P,C1,P′}(1H-pyrazole-κN2)nickel(II) hexa­fluoro­phosphate

aDepartment of Chemistry, John Carroll University, University Heights, OH 44118, USA, bDepartment of Chemistry, Texas A&M University, College Station, TX 77843, USA, and cDepartment of Chemistry, University of South Alabama, Mobile, AL 36688, USA
*Correspondence e-mail: rsykora@southalabama.edu

(Received 10 September 2012; accepted 13 September 2012; online 19 September 2012)

The title compound, [Ni(C18H30FO2P2)(C3H4N2)]PF6, was prepared by halide abstraction with TlPF6 in the presence of CH3CN in CDCl3 from the respective neutral pincer chlorido analogue followed by addition of pyrazole. The PO—C—OP pincer ligand acts in typical trans-P2 tridentate fashion to generate a distorted square-planar nickel structure. The Ni—N(pyrazole) distance is 1.925 (2) Å and the plane of the pyrazole ligand is rotated 56.2 (1)° relative to the approximate square plane surrounding the NiII center in which the pyrazole is bound to the NiII atom through its sp2-hybridized N atom. This Ni—N distance is similar to bond lengths in the other reported NiII pincer-ligand square-planar pyrazole complex structures; however, its dihedral angle is significantly larger than any of those for the latter set of pyrazole complexes.

Related literature

For recent studies on the chemistry of d-block PO—C—OP pincer complexes, see Chen et al. (2012[Chen, T., Yang, L., Li, L. & Huang, K.-W. (2012). Tetrahedron, 68, 6152-6157.]); Zhang et al. (2012[Zhang, J., Adhikary, A., King, K. M., Krause, J. A. & Guan, H. (2012). Dalton Trans. 41, 7959-7968.]); Salah & Zargarian (2011[Salah, A. B. & Zargarian, D. (2011). Dalton Trans. 40, 8977-8985.]); Hoffman et al. (2009[Hoffman, N. W., Stenson, A. C., Sykora, R. E., Traylor, R. K., Wicker, B. F., Riley, S., Dixon, D. A., Marshall, A. G., Kwan, M.-L. & Schroder, P. (2009). Abstracts, Central Regional Meeting, American Chemical Society, Cleveland, OH, United States, May 20-23, CRM-213.]); Wicker et al. (2011[Wicker, B. F., Seaman, R., Hoffman, N. W., Davis, J. H. & Sykora, R. E. (2011). Acta Cryst. E67, m286-m287.]). For structures of other NiII pincer-ligand square-planar pyrazole complexes, see Salem et al. (2007[Salem, N. M. H., El-Sayed, L., Foro, S., Haase, W. & Iskander, M. F. (2007). Polyhedron, 26, 4161-4172.], 2008[Salem, N. M. H., El-Sayed, L. & Iskander, M. F. (2008). Polyhedron, 27, 3215-3226.]); Peng et al. (2010[Peng, Q.-L., Zhao, G.-Q., Chen, L.-H. & Xue, L.-W. (2010). Acta Cryst. E66, m1127-m1128.]). For information regarding the 19F NMR reference, see: Ji et al. (2005[Ji, S., Hoye, T. R. & Macasko, C. W. (2005). Macromolecules, 38, 4679-4686.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C18H30FO2P2)(C3H4N2)]PF6

  • Mr = 631.12

  • Monoclinic, P 21 /n

  • a = 9.0380 (9) Å

  • b = 20.1878 (16) Å

  • c = 16.1480 (16) Å

  • β = 98.659 (8)°

  • V = 2912.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 290 K

  • 0.58 × 0.52 × 0.34 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.265, Tmax = 0.315

  • 5464 measured reflections

  • 5122 independent reflections

  • 3432 reflections with I > 2σ(I)

  • Rint = 0.024

  • 3 standard reflections every 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.00

  • 5122 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1993[Enraf-Nonius (1993). CAD-4-PC Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: XCAD4-PC (Harms & Wocadlo, 1995)[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Considerable attention has recently been devoted to nickel PO—C—OP pincer complexes (e.g., Salah & Zargarian, 2011; Chen et al., 2012; Zhang et al., 2012). Our interest in studying relative binding affinities of metal centers for ligands of moderate donor power using 19F and 31P NMR spectroscopy (Hoffman et al., 2009) to monitor ligand-substitution equilibria led us to prepare the title complex (I). The fluoro-pincer ligand precursor was generated by heating 5-fluororesorcinol and diisopropylchlorophosphine in THF in the presence of triethylamine, and then anhydrous NiCl2 was added to form the (PO—C—OP)NiCl complex. Chloride abstraction with TlPF6 in the presence of CH3CN from this species followed by addition of pyrazole afforded an excellent yield of the cationic complex whose structure is shown below in Fig 1. Suitable single crystals were grown via vapor diffusion of methyl tert-butyl ether into a CDCl3 solution of the highly soluble reaction product at room temperature. Its Ni—N distance, 1.925 (2) Å, fell within the range of such values for the five square-planar NiII-pincer unsubstituted-pyrazole complexes found in the Cambridge Structural Database (Salem et al. (2008), Peng et al. (2010), and Salem et al. (2007)). However, its pyrazole-ring/Ni-coordination-plane dihedral angle, 56.2 (1)°, falls significantly outside the range (3–28°) of those for the latter set of pyrazole complexes, in which none of the pendant-ligand arms exert meaningful steric force upon the pyrazole position. The C—F bond length for this complex, 1.355 (4) Å, is identical within experimental error to that, 1.357 (3) Å, of Pd{(3–2,6-[(C6H5)2PO]2-C6H2-4-F}(C4H4NO4S), a Pd(II) acesulfamato complex containing a similar fluoro-pincer ligand (Wicker et al., 2011). Detailed lists of dimensions are available in the archived CIF.

Related literature top

For recent studies on the chemistry of d-block PO—C—OP pincer complexes, see Chen et al. (2012); Zhang et al. (2012); Salah & Zargarian (2011); Hoffman et al. (2009); Wicker et al. (2011). For structures of other NiII pincer-ligand square-planar pyrazole complexes, see Salem et al. (2007, 2008); Peng et al. (2010). For information regarding the 19F NMR reference, see: Ji et al. (2005).

Experimental top

The first step entailed generating a neutral nickel(II) halido pincer complex, abbreviated as Pr{NiF}Cl. An anhydrous solution of 5-fluororesorcinol (330 mg, 2.58 mmol) in THF was prepared in a 100-ml Kontes Teflon screw-cap flask inside a glovebox. To this solution was added via syringe 1.50 ml NEt3 (10.77 mmol) followed by 850 µL of ClPPri2 (5.34 mmol); immediately a large volume of white precipitate formed. The flask was brought out of the glovebox and heated for 20 minutes at 80 °C; thereafter the flask was returned to the glovebox, where 0.57 grams of anhydrous NiCl2 (4.40 mmol) was added to afford an orange mixture. After 24 h under heavy stirring at 80 °C, the resulting green-yellow mixture was filtered through a plug of Celite and concentrated under vacuum. This solution was layered with pentane and left overnight in a -30 °C freezer to give dark yellow-brown crystals of Pr{NiF}Cl (608 mg, 52% yield).

Complex I, [Ni(C3H2N2)(C12H16FO2P2)]PF6, abbreviated as Pr{NiF}(Pz)]PF6, was prepared as follows. Pr{NiF}Cl (32.4 mg, 0.0799 mmol) was stirred at ambient temperature for 24 h with TlPF6 (Strem Chemicals; 1.15 mol equiv.) in CDCl3 (Cambridge Isotopes Lab; 1.25 ml) to which 25 µL CH3CN (Fisher reagent) had been added. The resulting mixture was filtered to remove insoluble TlCl and excess TlPF6. To the resulting yellow-orange solution of Pr{NiF}(CH3CN)]PF6 was added a slight excess of solid pyrazole (Aldrich; 5.7 mg), and the reaction solution was stirred one hour. Then it was subjected to vapor diffusion with 30 ml me thyl tert-butyl ether (MTBE; Fisher reagent) at 22 °C for 3 days. The very pale yellow liquid of the resulting mixture was removed from the vial by a small-diameter syringe needle, and the rod-like orange crystals were washed twice with 1.5 ml of MTBE, removed from the vial, and then air-dried overnight in the dark (91% yield). The complex was characterized by NMR at 24 °C in CDCl3. Unusual features of the spectra are discussed below the data tabulation.

1H: (relative to internal TMS) δ 11.66 (broad singlet, 0.74 H); δ 8.07 (overlapping doublet of doublets, 1H); δ 7.64 (overlapping doublet of doublets, 1H); δ 6.58 (2H, doublet, 3JF—H=9.6 Hz) δ 2.34 (4H, septuplet, 3JH—H=7.1 Hz); δ 1.35 (overlapping inequivalent triplets, 12H); δ 1.08 (overlapping inequivalent triplets, 12H)

19F: (relative to internal C6H5CF3 at δ -63.00; (Ji et al., 2005)) aryl-F at δ -109.41 (triplet of triplets, 3JH—F=9.6 Hz, 5JP—F=1.0 Hz) and counterion PF6- at δ -72.28 (doublet, 2JP—F=713 Hz)

31P: (relative to external 85% aq. phosphoric acid) pincer-P at δ 190.31 (doublet, 5JP—F=1.0 Hz) and counterion PF6- at δ -143.79 (septuplet, 2JP—F=713 Hz)

13C: (relative to internal TMS)

Pyrazole: δ 108.59(s), δ 135.21(s), δ 141.43(s).

Pincer Aryl: ipso δ 115.49(t of d; 4JF—C=2.9 Hz, 2JP—C=21 Hz) ortho δ 168.55 (d of t; 3JF—C=15 Hz, 2JP—C~7.4 Hz) meta δ 94.89(d of t; 2JF—C=33 Hz, 4JP—C~6.6 Hz) para δ 165.16 (d; 1JF—C=246 Hz Pri2P: methyne, δ 27.66(t; 1JP—C=11 Hz) methyls δ 16.58(t; 2JP—C=11 Hz), δ 16.41(s)

Integrals recorded for 1H signals of Pr{NiF}(Pz)]PF6 match expected values except for the low-field pyrazole N—H resonance in which strong hydrogen-bonding to the hexafluorophosphate counterion is likely. Overlap of 1H triplets for the inequivalent isopropyl methyl groups created by different rotation rates around the Ni—Pz, P—C, and C—C bonds affords pseudo-quartets centered at δ 1.35 and δ 1.08 (Fig. 2). The same rotational phenomena generate a more unusual 13C-NMR methyls pattern (Fig. 3), in which a triplet at δ 16.58 (2JP—C=11 Hz) and singlet at δ 16.41 (no measurable P—C coupling observed) of equal intensity appear. Recording the 13C-NMR spectrum with longer relaxation delay (4 s versus 1 s) or at 44 °C affords no change in this pattern.

Refinement top

Hydrogen atoms were placed in calculated positions and allowed to ride during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å for the H atoms on the pyrazole carbons, Uiso(H) = 1.2Ueq(N) and an N—H distance of 0.86 Å for the H atom on the pyrazole N, Uiso(H) = 1.2Ueq(C) and C—H distances of 0.98 Å for the H atoms on the tertiary carbons, and Uiso(H) = 1.5Ueq(C) and C—H distances of 0.96 Å for the methyl H atoms.

Structure description top

Considerable attention has recently been devoted to nickel PO—C—OP pincer complexes (e.g., Salah & Zargarian, 2011; Chen et al., 2012; Zhang et al., 2012). Our interest in studying relative binding affinities of metal centers for ligands of moderate donor power using 19F and 31P NMR spectroscopy (Hoffman et al., 2009) to monitor ligand-substitution equilibria led us to prepare the title complex (I). The fluoro-pincer ligand precursor was generated by heating 5-fluororesorcinol and diisopropylchlorophosphine in THF in the presence of triethylamine, and then anhydrous NiCl2 was added to form the (PO—C—OP)NiCl complex. Chloride abstraction with TlPF6 in the presence of CH3CN from this species followed by addition of pyrazole afforded an excellent yield of the cationic complex whose structure is shown below in Fig 1. Suitable single crystals were grown via vapor diffusion of methyl tert-butyl ether into a CDCl3 solution of the highly soluble reaction product at room temperature. Its Ni—N distance, 1.925 (2) Å, fell within the range of such values for the five square-planar NiII-pincer unsubstituted-pyrazole complexes found in the Cambridge Structural Database (Salem et al. (2008), Peng et al. (2010), and Salem et al. (2007)). However, its pyrazole-ring/Ni-coordination-plane dihedral angle, 56.2 (1)°, falls significantly outside the range (3–28°) of those for the latter set of pyrazole complexes, in which none of the pendant-ligand arms exert meaningful steric force upon the pyrazole position. The C—F bond length for this complex, 1.355 (4) Å, is identical within experimental error to that, 1.357 (3) Å, of Pd{(3–2,6-[(C6H5)2PO]2-C6H2-4-F}(C4H4NO4S), a Pd(II) acesulfamato complex containing a similar fluoro-pincer ligand (Wicker et al., 2011). Detailed lists of dimensions are available in the archived CIF.

For recent studies on the chemistry of d-block PO—C—OP pincer complexes, see Chen et al. (2012); Zhang et al. (2012); Salah & Zargarian (2011); Hoffman et al. (2009); Wicker et al. (2011). For structures of other NiII pincer-ligand square-planar pyrazole complexes, see Salem et al. (2007, 2008); Peng et al. (2010). For information regarding the 19F NMR reference, see: Ji et al. (2005).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell refinement: CAD-4-PC (Enraf–Nonius, 1993); data reduction: XCAD4-PC (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A thermal ellipsoid plot (50%) of the title compound showing the labeling scheme.
[Figure 2] Fig. 2. 1H NMR spectrum of the title compound at 23 °C.
[Figure 3] Fig. 3. 13C NMR spectrum of the title compound at 23 °C.
{2,6-Bis[(2,6-diisopropylphosphanyl)oxy]-4-fluorophenyl- κ3P,C1,P'}(1H-pyrazole- κN2)nickel(II) hexafluorophosphate top
Crystal data top
[Ni(C18H30FO2P2)(C3H4N2)]PF6F(000) = 1304
Mr = 631.12Dx = 1.439 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 9.0380 (9) Åθ = 9.5–13.0°
b = 20.1878 (16) ŵ = 0.90 mm1
c = 16.1480 (16) ÅT = 290 K
β = 98.659 (8)°Prism, yellow
V = 2912.7 (5) Å30.58 × 0.52 × 0.34 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
3432 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
θ/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 023
Tmin = 0.265, Tmax = 0.315l = 1918
5464 measured reflections3 standard reflections every 120 min
5122 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.9656P]
where P = (Fo2 + 2Fc2)/3
5122 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Ni(C18H30FO2P2)(C3H4N2)]PF6V = 2912.7 (5) Å3
Mr = 631.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0380 (9) ŵ = 0.90 mm1
b = 20.1878 (16) ÅT = 290 K
c = 16.1480 (16) Å0.58 × 0.52 × 0.34 mm
β = 98.659 (8)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3432 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.024
Tmin = 0.265, Tmax = 0.3153 standard reflections every 120 min
5464 measured reflections intensity decay: none
5122 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
5122 reflectionsΔρmin = 0.29 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.32898 (5)0.127947 (18)0.28825 (2)0.04161 (12)
P10.23694 (10)0.18930 (4)0.37905 (6)0.0479 (2)
P20.39378 (11)0.04384 (4)0.21782 (5)0.0479 (2)
P30.20240 (11)0.13469 (5)0.89133 (6)0.0559 (2)
O10.1773 (3)0.13751 (11)0.44521 (15)0.0617 (7)
O20.3652 (3)0.02228 (10)0.27213 (14)0.0609 (7)
N10.3831 (3)0.19614 (12)0.21502 (16)0.0446 (6)
N20.4812 (3)0.24504 (14)0.23638 (18)0.0568 (7)
H2A0.53050.25020.28580.068*
F10.1762 (3)0.08905 (11)0.51487 (15)0.0953 (8)
F20.1974 (3)0.21394 (10)0.87960 (15)0.0789 (7)
F30.1327 (3)0.14307 (11)0.97561 (13)0.0792 (7)
F40.0382 (2)0.13121 (10)0.84026 (14)0.0761 (6)
F50.2707 (3)0.12876 (13)0.80763 (16)0.0966 (8)
F60.2071 (3)0.05746 (10)0.90361 (15)0.0837 (7)
F70.3643 (3)0.14096 (13)0.94371 (17)0.0969 (8)
C10.2761 (4)0.05995 (15)0.3580 (2)0.0487 (8)
C20.2103 (4)0.07201 (16)0.4286 (2)0.0519 (8)
C30.1765 (4)0.02385 (18)0.4828 (2)0.0658 (10)
H3A0.13410.03400.53030.079*
C40.2087 (5)0.04016 (19)0.4630 (2)0.0680 (11)
C50.2699 (5)0.05769 (17)0.3935 (2)0.0650 (10)
H5A0.28830.10170.38130.078*
C60.3028 (4)0.00660 (16)0.3426 (2)0.0527 (8)
C70.3621 (4)0.24172 (17)0.4498 (2)0.0573 (9)
H7A0.40450.27510.41610.069*
C80.4897 (5)0.1988 (2)0.4920 (3)0.0838 (13)
H8A0.55810.22550.52910.126*
H8B0.54130.17940.45010.126*
H8C0.45030.16430.52330.126*
C90.2836 (5)0.2780 (2)0.5141 (3)0.0912 (15)
H9A0.35450.30540.54870.137*
H9B0.24220.24630.54850.137*
H9C0.20470.30510.48550.137*
C100.0709 (4)0.23715 (19)0.3406 (3)0.0684 (10)
H10A0.03140.25590.38880.082*
C110.1109 (5)0.2940 (2)0.2859 (3)0.0895 (14)
H11A0.02250.31900.26590.134*
H11B0.15250.27650.23920.134*
H11C0.18310.32230.31830.134*
C120.0481 (5)0.1917 (2)0.2934 (3)0.1067 (18)
H12A0.13590.21710.27300.160*
H12B0.07340.15770.33040.160*
H12C0.00990.17170.24700.160*
C130.2776 (4)0.02806 (16)0.1181 (2)0.0573 (9)
H13A0.30160.06190.07860.069*
C140.1133 (5)0.0365 (2)0.1272 (3)0.0880 (14)
H14A0.05220.02870.07420.132*
H14B0.09680.08080.14560.132*
H14C0.08750.00540.16770.132*
C150.3067 (7)0.0397 (2)0.0809 (3)0.1052 (18)
H15A0.24310.04500.02810.158*
H15B0.28560.07400.11870.158*
H15C0.40950.04250.07270.158*
C160.5878 (4)0.03345 (18)0.2048 (2)0.0621 (10)
H16A0.59790.00990.17890.074*
C170.6377 (5)0.0857 (2)0.1476 (3)0.0824 (13)
H17A0.74050.07830.14170.124*
H17B0.62740.12880.17130.124*
H17C0.57670.08320.09360.124*
C180.6859 (5)0.0334 (3)0.2900 (3)0.1030 (16)
H18A0.78860.02750.28280.155*
H18B0.65620.00230.32330.155*
H18C0.67480.07470.31770.155*
C190.4934 (5)0.28489 (18)0.1717 (2)0.0706 (11)
H19A0.55430.32210.17250.085*
C200.4012 (5)0.26112 (18)0.1053 (2)0.0665 (10)
H20A0.38590.27820.05120.080*
C210.3346 (4)0.20647 (16)0.1337 (2)0.0535 (9)
H21A0.26480.18000.10080.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0490 (2)0.0336 (2)0.0428 (2)0.00062 (18)0.00846 (17)0.00333 (17)
P10.0493 (5)0.0408 (4)0.0564 (5)0.0048 (4)0.0168 (4)0.0095 (4)
P20.0663 (6)0.0357 (4)0.0420 (5)0.0042 (4)0.0095 (4)0.0027 (3)
P30.0559 (6)0.0504 (5)0.0615 (6)0.0087 (4)0.0092 (4)0.0069 (4)
O10.0703 (16)0.0510 (14)0.0714 (16)0.0127 (12)0.0351 (13)0.0105 (12)
O20.0977 (19)0.0355 (12)0.0512 (14)0.0088 (12)0.0169 (13)0.0017 (10)
N10.0494 (16)0.0355 (14)0.0489 (16)0.0027 (12)0.0070 (13)0.0046 (11)
N20.0654 (19)0.0532 (16)0.0511 (17)0.0163 (15)0.0069 (14)0.0071 (14)
F10.145 (2)0.0653 (15)0.0830 (16)0.0156 (15)0.0418 (16)0.0215 (13)
F20.0833 (16)0.0520 (12)0.0982 (17)0.0014 (11)0.0041 (13)0.0099 (12)
F30.0881 (16)0.0868 (16)0.0655 (14)0.0200 (13)0.0205 (12)0.0081 (12)
F40.0689 (14)0.0729 (14)0.0799 (15)0.0058 (11)0.0105 (11)0.0113 (12)
F50.119 (2)0.0951 (18)0.0864 (17)0.0124 (15)0.0492 (15)0.0068 (14)
F60.1030 (19)0.0539 (13)0.0971 (18)0.0157 (12)0.0244 (14)0.0103 (12)
F70.0593 (14)0.109 (2)0.116 (2)0.0090 (14)0.0080 (13)0.0128 (16)
C10.055 (2)0.0428 (17)0.0487 (19)0.0047 (15)0.0081 (16)0.0002 (14)
C20.056 (2)0.0430 (18)0.058 (2)0.0083 (16)0.0145 (17)0.0068 (16)
C30.081 (3)0.063 (2)0.057 (2)0.016 (2)0.024 (2)0.0002 (19)
C40.086 (3)0.057 (2)0.062 (2)0.016 (2)0.014 (2)0.0118 (19)
C50.092 (3)0.0413 (19)0.063 (2)0.0023 (18)0.014 (2)0.0042 (17)
C60.070 (2)0.0414 (17)0.0461 (19)0.0010 (16)0.0062 (17)0.0003 (15)
C70.064 (2)0.053 (2)0.057 (2)0.0149 (17)0.0145 (17)0.0149 (17)
C80.075 (3)0.086 (3)0.085 (3)0.015 (2)0.006 (2)0.004 (2)
C90.117 (4)0.084 (3)0.079 (3)0.018 (3)0.034 (3)0.037 (3)
C100.056 (2)0.067 (2)0.085 (3)0.0098 (19)0.019 (2)0.015 (2)
C110.092 (3)0.072 (3)0.104 (4)0.032 (3)0.014 (3)0.007 (3)
C120.058 (3)0.104 (4)0.149 (5)0.007 (3)0.013 (3)0.032 (3)
C130.085 (3)0.0400 (18)0.0441 (19)0.0001 (18)0.0004 (18)0.0052 (15)
C140.082 (3)0.093 (3)0.083 (3)0.020 (3)0.008 (2)0.007 (3)
C150.187 (5)0.054 (2)0.064 (3)0.021 (3)0.013 (3)0.025 (2)
C160.067 (2)0.056 (2)0.064 (2)0.0121 (19)0.0124 (19)0.0068 (18)
C170.073 (3)0.083 (3)0.098 (3)0.009 (2)0.035 (2)0.004 (3)
C180.080 (3)0.130 (4)0.094 (4)0.011 (3)0.003 (3)0.013 (3)
C190.087 (3)0.056 (2)0.072 (3)0.022 (2)0.023 (2)0.004 (2)
C200.093 (3)0.055 (2)0.051 (2)0.004 (2)0.012 (2)0.0097 (18)
C210.066 (2)0.0458 (19)0.046 (2)0.0012 (17)0.0004 (17)0.0013 (15)
Geometric parameters (Å, º) top
Ni1—C11.883 (3)C8—H8C0.9600
Ni1—N11.925 (2)C9—H9A0.9600
Ni1—P22.1727 (9)C9—H9B0.9600
Ni1—P12.1779 (9)C9—H9C0.9600
P1—O11.643 (2)C10—C111.525 (5)
P1—C101.814 (4)C10—C121.528 (5)
P1—C71.821 (3)C10—H10A0.9800
P2—O21.639 (2)C11—H11A0.9600
P2—C161.810 (4)C11—H11B0.9600
P2—C131.814 (3)C11—H11C0.9600
P3—F61.571 (2)C12—H12A0.9600
P3—F51.573 (2)C12—H12B0.9600
P3—F71.581 (2)C12—H12C0.9600
P3—F41.587 (2)C13—C141.523 (5)
P3—F31.592 (2)C13—C151.532 (5)
P3—F21.611 (2)C13—H13A0.9800
O1—C21.391 (4)C14—H14A0.9600
O2—C61.380 (4)C14—H14B0.9600
N1—C211.337 (4)C14—H14C0.9600
N1—N21.337 (3)C15—H15A0.9600
N2—C191.336 (4)C15—H15B0.9600
N2—H2A0.8600C15—H15C0.9600
F1—C41.355 (4)C16—C171.515 (5)
C1—C21.384 (4)C16—C181.521 (5)
C1—C61.394 (4)C16—H16A0.9800
C2—C31.373 (5)C17—H17A0.9600
C3—C41.373 (5)C17—H17B0.9600
C3—H3A0.9300C17—H17C0.9600
C4—C51.370 (5)C18—H18A0.9600
C5—C61.379 (5)C18—H18B0.9600
C5—H5A0.9300C18—H18C0.9600
C7—C81.519 (5)C19—C201.344 (5)
C7—C91.530 (5)C19—H19A0.9300
C7—H7A0.9800C20—C211.369 (5)
C8—H8A0.9600C20—H20A0.9300
C8—H8B0.9600C21—H21A0.9300
C1—Ni1—N1178.79 (12)H8B—C8—H8C109.5
C1—Ni1—P281.73 (10)C7—C9—H9A109.5
N1—Ni1—P297.11 (8)C7—C9—H9B109.5
C1—Ni1—P181.64 (10)H9A—C9—H9B109.5
N1—Ni1—P199.49 (8)C7—C9—H9C109.5
P2—Ni1—P1163.19 (4)H9A—C9—H9C109.5
O1—P1—C10103.04 (16)H9B—C9—H9C109.5
O1—P1—C7101.28 (15)C11—C10—C12111.9 (4)
C10—P1—C7108.00 (18)C11—C10—P1110.0 (3)
O1—P1—Ni1105.77 (9)C12—C10—P1109.6 (3)
C10—P1—Ni1116.93 (14)C11—C10—H10A108.4
C7—P1—Ni1119.25 (12)C12—C10—H10A108.4
O2—P2—C16101.63 (16)P1—C10—H10A108.4
O2—P2—C13102.43 (15)C10—C11—H11A109.5
C16—P2—C13108.56 (18)C10—C11—H11B109.5
O2—P2—Ni1106.24 (9)H11A—C11—H11B109.5
C16—P2—Ni1119.58 (13)C10—C11—H11C109.5
C13—P2—Ni1115.87 (12)H11A—C11—H11C109.5
F6—P3—F591.51 (14)H11B—C11—H11C109.5
F6—P3—F790.39 (14)C10—C12—H12A109.5
F5—P3—F790.82 (16)C10—C12—H12B109.5
F6—P3—F491.55 (13)H12A—C12—H12B109.5
F5—P3—F490.44 (14)C10—C12—H12C109.5
F7—P3—F4177.66 (15)H12A—C12—H12C109.5
F6—P3—F390.24 (13)H12B—C12—H12C109.5
F5—P3—F3178.25 (14)C14—C13—C15111.4 (4)
F7—P3—F389.28 (14)C14—C13—P2109.7 (3)
F4—P3—F389.40 (13)C15—C13—P2113.2 (3)
F6—P3—F2179.49 (15)C14—C13—H13A107.4
F5—P3—F288.98 (14)C15—C13—H13A107.4
F7—P3—F289.46 (13)P2—C13—H13A107.4
F4—P3—F288.59 (12)C13—C14—H14A109.5
F3—P3—F289.27 (13)C13—C14—H14B109.5
C2—O1—P1112.2 (2)H14A—C14—H14B109.5
C6—O2—P2111.79 (19)C13—C14—H14C109.5
C21—N1—N2104.2 (3)H14A—C14—H14C109.5
C21—N1—Ni1129.7 (2)H14B—C14—H14C109.5
N2—N1—Ni1126.1 (2)C13—C15—H15A109.5
C19—N2—N1111.9 (3)C13—C15—H15B109.5
C19—N2—H2A124.1H15A—C15—H15B109.5
N1—N2—H2A124.1C13—C15—H15C109.5
C2—C1—C6115.1 (3)H15A—C15—H15C109.5
C2—C1—Ni1122.9 (2)H15B—C15—H15C109.5
C6—C1—Ni1121.9 (3)C17—C16—C18111.5 (4)
C3—C2—C1124.4 (3)C17—C16—P2111.9 (3)
C3—C2—O1118.4 (3)C18—C16—P2109.8 (3)
C1—C2—O1117.2 (3)C17—C16—H16A107.9
C4—C3—C2116.3 (3)C18—C16—H16A107.9
C4—C3—H3A121.9P2—C16—H16A107.9
C2—C3—H3A121.9C16—C17—H17A109.5
F1—C4—C5118.0 (3)C16—C17—H17B109.5
F1—C4—C3117.9 (4)H17A—C17—H17B109.5
C5—C4—C3124.0 (3)C16—C17—H17C109.5
C4—C5—C6116.4 (3)H17A—C17—H17C109.5
C4—C5—H5A121.8H17B—C17—H17C109.5
C6—C5—H5A121.8C16—C18—H18A109.5
C5—C6—O2118.1 (3)C16—C18—H18B109.5
C5—C6—C1123.7 (3)H18A—C18—H18B109.5
O2—C6—C1118.1 (3)C16—C18—H18C109.5
C8—C7—C9111.6 (3)H18A—C18—H18C109.5
C8—C7—P1107.9 (2)H18B—C18—H18C109.5
C9—C7—P1113.3 (3)N2—C19—C20107.1 (3)
C8—C7—H7A107.9N2—C19—H19A126.4
C9—C7—H7A107.9C20—C19—H19A126.4
P1—C7—H7A107.9C19—C20—C21105.7 (3)
C7—C8—H8A109.5C19—C20—H20A127.1
C7—C8—H8B109.5C21—C20—H20A127.1
H8A—C8—H8B109.5N1—C21—C20111.1 (3)
C7—C8—H8C109.5N1—C21—H21A124.5
H8A—C8—H8C109.5C20—C21—H21A124.5

Experimental details

Crystal data
Chemical formula[Ni(C18H30FO2P2)(C3H4N2)]PF6
Mr631.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)290
a, b, c (Å)9.0380 (9), 20.1878 (16), 16.1480 (16)
β (°) 98.659 (8)
V3)2912.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.58 × 0.52 × 0.34
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.265, 0.315
No. of measured, independent and
observed [I > 2σ(I)] reflections
5464, 5122, 3432
Rint0.024
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.00
No. of reflections5122
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.29

Computer programs: CAD-4-PC (Enraf–Nonius, 1993), XCAD4-PC (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

 

Acknowledgements

The authors gratefully acknowledge the Department of Chemistry and the Univeristy Committee for Undergraduate Research at the University of South Alabama for their generous support and the Department of Energy and Oak Ridge National Laboratory for the X-ray diffractometer used in these studies. They also appreciate support from the National Science Foundation: grant #CHE-99–09502, REU Supplement with Alan Marshall of Florida State University/National High Magnetic Field Laboratory, Tallahassee, FL, USA and grant CHE-0846680, NSF CAREER grant to RES.

References

First citationChen, T., Yang, L., Li, L. & Huang, K.-W. (2012). Tetrahedron, 68, 6152–6157.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnraf–Nonius (1993). CAD-4-PC Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHoffman, N. W., Stenson, A. C., Sykora, R. E., Traylor, R. K., Wicker, B. F., Riley, S., Dixon, D. A., Marshall, A. G., Kwan, M.-L. & Schroder, P. (2009). Abstracts, Central Regional Meeting, American Chemical Society, Cleveland, OH, United States, May 20–23, CRM-213.  Google Scholar
First citationJi, S., Hoye, T. R. & Macasko, C. W. (2005). Macromolecules, 38, 4679–4686.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPeng, Q.-L., Zhao, G.-Q., Chen, L.-H. & Xue, L.-W. (2010). Acta Cryst. E66, m1127–m1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalah, A. B. & Zargarian, D. (2011). Dalton Trans. 40, 8977–8985.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSalem, N. M. H., El-Sayed, L., Foro, S., Haase, W. & Iskander, M. F. (2007). Polyhedron, 26, 4161–4172.  Web of Science CSD CrossRef CAS Google Scholar
First citationSalem, N. M. H., El-Sayed, L. & Iskander, M. F. (2008). Polyhedron, 27, 3215–3226.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWicker, B. F., Seaman, R., Hoffman, N. W., Davis, J. H. & Sykora, R. E. (2011). Acta Cryst. E67, m286–m287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J., Adhikary, A., King, K. M., Krause, J. A. & Guan, H. (2012). Dalton Trans. 41, 7959–7968.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds