metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ-aqua-di­aquabis­[μ-2-cyano-2-(oxido­imino)­acetato]­copper(II)dipotassium]

aKiev National Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kiev, Ukraine, bDepartment of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, and cDepartment of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev, Ukraine
*Correspondence e-mail: kalibabchuk@ukr.net

(Received 18 August 2012; accepted 22 August 2012; online 26 September 2012)

In the title compound, [CuK2(C3N2O3)2(H2O)3]n, the Cu2+ atom is in a distorted square-pyramidal coordination geometry. Two N atoms belonging to the oxime groups and two O atoms belonging to the carboxyl­ate groups of two trans-disposed doubly deprotonated residues of 2-cyano-2-(hy­droxy­imino)­acetic acid make up the basal plane and the apical position is occupied by the water mol­ecule. The neighboring Cu-containing moieties are linked into a three-dimensional framework by K—O and K—N contacts formed by two potassium cations with the carboxyl­ate and the oxime O atoms and the nitrile N atoms of the ligand. The environments of the K+ cations are complemented to octa- and nona­coordinated, by K—O contacts with H2O mol­ecules. The crystal structure features O—H⋯O hydrogen bonds.

Related literature

For the use of mononuclear complexes in the preparation of polynuclear complexes, see: Kahn (1993[Kahn, O. (1993). In Molecular Magnetism. New York: VCH.]); Goodwin et al. (2000[Goodwin, J. C., Sessoli, R. & Gatteschi, D. (2000). J. Chem. Soc. Dalton Trans. pp. 1835-1840.]); Krämer & Fritsky (2000[Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505-3510.]); Fritsky et al. (2001[Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2001). Chem. Eur. J. 7, 1221-1231.], 2003[Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Inorg. Chim. Acta, 346, 111-118.]); Wörl et al. (2005[Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27-29.]). For the use of derivatives of 2-hy­droxy­imino­carb­oxy­lic acids and their derivatives as versatile ligands, see: Dvorkin et al. (1990a[Dvorkin, A. A., Fritskii, I. O., Simonov, I. A., Lampeka, R. D., Mazus, M. D. & Malinovskii, T. I. (1990a). Dokl. Akad. Nauk SSSR, 310, 87-90.],b[Dvorkin, A. A., Simonov, I. A., Skopenko, V. V., Fritskii, I. O. & Lampeka, R. D. (1990b). Dokl. Akad. Nauk SSSR, 313, 98-101.]); Lampeka et al. (1989[Lampeka, R. D., Dvorkin, A. A., Simonov, Y. A., Fritsky, I. O. & Skopenko, V. V. (1989). Ukr. Khim. Zh. 55, 458-461.]); Skopenko et al. (1990[Skopenko, V. V., Lampeka, R. D. & Fritskii, I. O. (1990). Dokl. Akad. Nauk SSSR, 312, 123-128.]); Sachse et al. (2008[Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800-806.]); Fritsky et al. (1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.], 2006[Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]); Kanderal et al. (2005[Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428-1437.]); Moroz et al. (2008[Moroz, Y. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem. 47, 5656-5665.], 2010[Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750-4752.], 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]). For metal complexes of 2-cyano-2-(hy­droxy­imino)­acetic acid, see: Sliva et al. (1998[Sliva, T. Y., Dobosz, A., Jerzykiewicz, L., Karaczyn, A., Moreeuw, A. M., Świątek-Kozłowska, J., Głowiak, T. & Kozłowski, H. (1998). J. Chem. Soc. Dalton Trans. pp. 1863-1868.]); Mokhir et al. (2002[Mokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.]); Eddings et al. (2004[Eddings, D., Barnes, C., Gerasimchuk, N., Durham, P. & Domasevich, K. (2004). Inorg. Chem. 43, 3894-3909.]). For related structures, see: Duda et al. (1997[Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853-3859.]); Fritsky et al. (2004[Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Yu. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746-3752.]); Onindo et al. (1995[Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911-3915.]); Sliva et al. (1997[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287-294.]); Świątek-Kozłowska et al. (2000[Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064-4068.]); Kovbasyuk et al. (2004[Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880-881.]). For the synthesis of the ligand, see: Sliva et al. (1998[Sliva, T. Y., Dobosz, A., Jerzykiewicz, L., Karaczyn, A., Moreeuw, A. M., Świątek-Kozłowska, J., Głowiak, T. & Kozłowski, H. (1998). J. Chem. Soc. Dalton Trans. pp. 1863-1868.]).

[Scheme 1]

Experimental

Crystal data
  • [CuK2(C3N2O3)2(H2O)3]

  • Mr = 419.89

  • Monoclinic, P 21 /c

  • a = 8.767 (2) Å

  • b = 12.426 (3) Å

  • c = 13.159 (5) Å

  • β = 108.26 (3)°

  • V = 1361.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.27 mm−1

  • T = 100 K

  • 0.24 × 0.16 × 0.07 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.657, Tmax = 0.859

  • 9166 measured reflections

  • 3189 independent reflections

  • 3006 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.062

  • S = 1.09

  • 3189 reflections

  • 205 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O3Ai 0.89 1.85 2.7257 (19) 171
O1W—H21W⋯O3ii 0.80 1.96 2.6910 (19) 151
O2W—H12W⋯O1iii 0.81 2.19 2.993 (2) 173
O2W—H22W⋯O3Ai 0.92 2.02 2.926 (2) 164
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many reported mononuclear complexes of 3 d-metals contains vacant donor atoms or chelate centers, so that they can be considered as ligands for preparation of homo- and heteropolynuclear systems which are widely used in bioinorganic modeling, catalysis and in molecular magnetism (Kahn, 1993; Goodwin et al., 2000; Krämer et al., 2000; Fritsky et al., 2001; Fritsky et al., 2003; Wörl et al., 2005). Polydentate ligands containing oxime and carboxylic groups attract particular attention due to their potential for the bridging mode of coordination and mediation of strong magnetic exchange interactions between metal ions (Lampeka et al., 1989; Dvorkin et al., 1990a, 1990b; Skopenko et al., 1990; Sachse et al., 2008; Moroz et al., 2008, 2010, 2012) and for preparation of metal complexes with efficient stabilization of unusually high oxidation states of 3 d-metal ions like copper(III) and nickel(III) (Fritsky et al., 1998; Kanderal et al., 2005; Fritsky et al., 2006). 2-cyano-2-(hydroxyimino)acetic acid (aaco) is an efficient chelating ligand for Cu(II) and Ni(II) ions (Sliva et al., 1998; Mokhir et al., 2002). To date, only one heterometallic complex containing this ligand K2[Pd(aaco-2H)2].4H2O has been structurally characterized (Eddings et al., 2004). Herein we report the second heterometallic complex based on 2-cyan-2-hydroxyiminoacetic acid.

The title compound, [K2Cu(C3N2O3)2(H2O)3]n, has an ionic structure containing 2- charged Cu(II)-centered complex anions, potassium cations and water molecules (Fig. 1). The Cu atom is in a distorted square-pyramidal geometry, defined by two N atoms belonging to the oxime groups and two O atoms belonging to the carboxylic groups of two trans-disposed doubly deprotonated residues of 2-cyano-2-(hydroxyimino)acetic acid. The apical position is occupied by the water molecule O1W which also serves as a bridge between Cu1 and K1 ions. The coordination bond lengths Cu—N and Cu—O (Table 1) are typical for square-pyramidal Cu(II) complexes with deprotonated oxime and carboxylate donors (Sliva et al., 1997; Kanderal et al., 2005). The bite angles around the central atom deviate from an ideal square-planar configuration [e.g. O2—Cu1—N1 = 82.89 (6)°], which is a consequence of the formation of five-membered chelate rings. The bond lengths C—O, N—O and C—N in the coordinated 2-oximinocarboxylate ligand are typical for copper(II) complexes with cyanoximes and carboxylates (Onindo et al., 1995; Duda et al., 1997; Fritsky et al., 2004;).

The potassium cations K1 and K2 are bound to the copper(II) complex anion in a chelate fashion via the oxime oxygen (O1A and O1, respectively) and the carboxylic oxygen (O2 and O2A, respectively) atoms. Such coordination of two potassium cations from the different side of the complex anion results in a closed metallamacrocylic framework. Both potassium cations also forms additional K—O and K—N contacts with the carboxylic and the oxime O atoms and the nitrile N atoms of the neighboring Cu complex anions thus uniting them in a three-dimensional framework (Fig. 2). The environments of K1 and K2 potassium cation are complemented to octa- and nona-coordinated, respectively, by K—O contacts with H2O molecules. The K—O and K—N bond lengths are normal for potassium cations and close to those reported in the structures of the carboxylate and the oximate complexes (Fritsky et al., 1998; Świątek-Kozłowska et al., 2000; Kovbasyuk et al., 20040). The crystal structure involves intermolecular O—H···O hydrogen bonds where the water molecules act as donors, and the carboxylic and the oxime O atoms act as acceptors (Table 2).

Related literature top

For the use of mononuclear complexes in the preparation of polynuclear complexes, see: Kahn (1993); Goodwin et al. (2000); Krämer et al. (2000); Fritsky et al. (2001, 2003); Wörl et al. (2005). For the use of derivatives of 2-hydroxyiminocarboxylic acids and their derivatives as versatile ligands, see: Dvorkin et al. (1990a,b); Lampeka et al. (1989); Skopenko et al. (1990); Sachse et al. (2008); Fritsky et al. (1998, 2006); Kanderal et al. (2005); Moroz et al. (2008, 2010, 2012). For metal complexes of 2-cyano-2-(hydroxyimino)acetic acid, see: Sliva et al. (1998); Mokhir et al. (2002); Eddings et al. (2004). For related structures see: Duda et al. (1997); Fritsky et al. (2004); Onindo et al. (1995); Sliva et al. (1997); Świątek-Kozłowska et al. (2000); Kovbasyuk et al. (2004). For the synthesis of the ligand, see: Sliva et al. (1998).

Experimental top

Cu(NO3)2.3H2O (0.242 g, 1 mmol) was dissolved in water (3 ml) and added to the methanolic solution (15 ml) of 2-cyano-2-(hydroxyimino)acetic acid (0.228 g, 2 mmol), synthesizsed according to Sliva et al., 1998). To the obtained mixture, aqueous solution of potassium hydroxide (1M, 4 ml) was added with vigorous stirring at room temperature. The obtained transparent solution was stirred 20 min. and then set aside for crystallization at ambient temperature. Bright brown crystals were separated by filtration after 72 h, washed with cold water (10 ml) and dried (yield 78%). Analysis calculated for C6H6Cu K2N4O9: C 17.16, H 1.44, N 13.34%; found: C 17.10, H 1.53, N 13.42%.

Refinement top

The H atoms of the water molecule were located at the difference Fourier map and their coordinates were allowed to ride on the coordinates of the parent atom with Uiso(H) = 1.5Ueq.

Structure description top

Many reported mononuclear complexes of 3 d-metals contains vacant donor atoms or chelate centers, so that they can be considered as ligands for preparation of homo- and heteropolynuclear systems which are widely used in bioinorganic modeling, catalysis and in molecular magnetism (Kahn, 1993; Goodwin et al., 2000; Krämer et al., 2000; Fritsky et al., 2001; Fritsky et al., 2003; Wörl et al., 2005). Polydentate ligands containing oxime and carboxylic groups attract particular attention due to their potential for the bridging mode of coordination and mediation of strong magnetic exchange interactions between metal ions (Lampeka et al., 1989; Dvorkin et al., 1990a, 1990b; Skopenko et al., 1990; Sachse et al., 2008; Moroz et al., 2008, 2010, 2012) and for preparation of metal complexes with efficient stabilization of unusually high oxidation states of 3 d-metal ions like copper(III) and nickel(III) (Fritsky et al., 1998; Kanderal et al., 2005; Fritsky et al., 2006). 2-cyano-2-(hydroxyimino)acetic acid (aaco) is an efficient chelating ligand for Cu(II) and Ni(II) ions (Sliva et al., 1998; Mokhir et al., 2002). To date, only one heterometallic complex containing this ligand K2[Pd(aaco-2H)2].4H2O has been structurally characterized (Eddings et al., 2004). Herein we report the second heterometallic complex based on 2-cyan-2-hydroxyiminoacetic acid.

The title compound, [K2Cu(C3N2O3)2(H2O)3]n, has an ionic structure containing 2- charged Cu(II)-centered complex anions, potassium cations and water molecules (Fig. 1). The Cu atom is in a distorted square-pyramidal geometry, defined by two N atoms belonging to the oxime groups and two O atoms belonging to the carboxylic groups of two trans-disposed doubly deprotonated residues of 2-cyano-2-(hydroxyimino)acetic acid. The apical position is occupied by the water molecule O1W which also serves as a bridge between Cu1 and K1 ions. The coordination bond lengths Cu—N and Cu—O (Table 1) are typical for square-pyramidal Cu(II) complexes with deprotonated oxime and carboxylate donors (Sliva et al., 1997; Kanderal et al., 2005). The bite angles around the central atom deviate from an ideal square-planar configuration [e.g. O2—Cu1—N1 = 82.89 (6)°], which is a consequence of the formation of five-membered chelate rings. The bond lengths C—O, N—O and C—N in the coordinated 2-oximinocarboxylate ligand are typical for copper(II) complexes with cyanoximes and carboxylates (Onindo et al., 1995; Duda et al., 1997; Fritsky et al., 2004;).

The potassium cations K1 and K2 are bound to the copper(II) complex anion in a chelate fashion via the oxime oxygen (O1A and O1, respectively) and the carboxylic oxygen (O2 and O2A, respectively) atoms. Such coordination of two potassium cations from the different side of the complex anion results in a closed metallamacrocylic framework. Both potassium cations also forms additional K—O and K—N contacts with the carboxylic and the oxime O atoms and the nitrile N atoms of the neighboring Cu complex anions thus uniting them in a three-dimensional framework (Fig. 2). The environments of K1 and K2 potassium cation are complemented to octa- and nona-coordinated, respectively, by K—O contacts with H2O molecules. The K—O and K—N bond lengths are normal for potassium cations and close to those reported in the structures of the carboxylate and the oximate complexes (Fritsky et al., 1998; Świątek-Kozłowska et al., 2000; Kovbasyuk et al., 20040). The crystal structure involves intermolecular O—H···O hydrogen bonds where the water molecules act as donors, and the carboxylic and the oxime O atoms act as acceptors (Table 2).

For the use of mononuclear complexes in the preparation of polynuclear complexes, see: Kahn (1993); Goodwin et al. (2000); Krämer et al. (2000); Fritsky et al. (2001, 2003); Wörl et al. (2005). For the use of derivatives of 2-hydroxyiminocarboxylic acids and their derivatives as versatile ligands, see: Dvorkin et al. (1990a,b); Lampeka et al. (1989); Skopenko et al. (1990); Sachse et al. (2008); Fritsky et al. (1998, 2006); Kanderal et al. (2005); Moroz et al. (2008, 2010, 2012). For metal complexes of 2-cyano-2-(hydroxyimino)acetic acid, see: Sliva et al. (1998); Mokhir et al. (2002); Eddings et al. (2004). For related structures see: Duda et al. (1997); Fritsky et al. (2004); Onindo et al. (1995); Sliva et al. (1997); Świątek-Kozłowska et al. (2000); Kovbasyuk et al. (2004). For the synthesis of the ligand, see: Sliva et al. (1998).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of compound (I), with displacement ellipsoids shown at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. Symmetry codes: (i) -x, -y + 1, -z; (ii) -x + 1, y - 1/2, -z + 1/2; (iii) -x + 1, -y + 1, -z; (iv) x - 1, -y + 1/2, z - 1/2; (v) -x + 1, y + 1/2, -z + 1/2; (vi) x + 1, -y + 3/2, z + 1/2; (vii) -x + 2, y + 1/2, -z + 1/2.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are indicated by dashed lines.
Poly[µ-aqua-diaquabis[µ-2-cyano-2-(oxidoimino)acetato]copper(II)dipotassium] top
Crystal data top
[CuK2(C3N2O3)2(H2O)3]F(000) = 836
Mr = 419.89Dx = 2.049 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3744 reflections
a = 8.767 (2) Åθ = 1.0–27.5°
b = 12.426 (3) ŵ = 2.27 mm1
c = 13.159 (5) ÅT = 100 K
β = 108.26 (3)°Block, brown
V = 1361.3 (7) Å30.24 × 0.16 × 0.07 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
3189 independent reflections
Radiation source: fine-focus sealed tube3006 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 28.4°, θmin = 3.7°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.657, Tmax = 0.859k = 1515
9166 measured reflectionsl = 1417
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.028P)2 + 0.9392P]
where P = (Fo2 + 2Fc2)/3
3189 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.56 e Å3
4 restraintsΔρmin = 0.56 e Å3
Crystal data top
[CuK2(C3N2O3)2(H2O)3]V = 1361.3 (7) Å3
Mr = 419.89Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.767 (2) ŵ = 2.27 mm1
b = 12.426 (3) ÅT = 100 K
c = 13.159 (5) Å0.24 × 0.16 × 0.07 mm
β = 108.26 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3189 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
3006 reflections with I > 2σ(I)
Tmin = 0.657, Tmax = 0.859Rint = 0.043
9166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0244 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.09Δρmax = 0.56 e Å3
3189 reflectionsΔρmin = 0.56 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.53009 (2)0.529307 (15)0.136932 (15)0.00981 (7)
K10.10262 (4)0.38634 (3)0.06404 (3)0.01425 (9)
K20.86027 (5)0.61378 (3)0.38164 (3)0.01645 (9)
O10.86577 (14)0.45133 (10)0.22512 (10)0.0138 (2)
O1A0.20044 (14)0.60207 (10)0.03346 (10)0.0151 (2)
O20.41091 (14)0.39928 (10)0.08061 (10)0.0139 (2)
O2A0.65548 (14)0.66325 (10)0.16771 (9)0.0117 (2)
O30.43256 (15)0.22059 (10)0.09720 (10)0.0160 (3)
O3A0.61938 (14)0.84124 (10)0.16679 (10)0.0140 (2)
O1W0.52488 (16)0.52800 (10)0.30436 (10)0.0160 (3)
H11W0.4781 (7)0.4699 (8)0.3201 (2)0.024*
H21W0.5029 (3)0.5835 (8)0.3278 (3)0.024*
O2W0.10231 (16)0.33982 (12)0.13939 (11)0.0205 (3)
H12W0.0333 (11)0.3648 (4)0.1612 (4)0.031*
H22W0.1900 (14)0.3541 (3)0.1987 (10)0.031*
O3W0.89136 (15)0.65821 (11)0.59001 (11)0.0194 (3)
H13W0.8132 (13)0.6471 (2)0.6103 (4)0.029*
H23W0.9754 (14)0.6349 (4)0.6428 (9)0.029*
N10.71631 (17)0.42739 (12)0.18069 (11)0.0111 (3)
N1A0.34617 (17)0.62774 (12)0.07855 (11)0.0113 (3)
N20.86325 (19)0.16875 (13)0.23004 (13)0.0203 (3)
N2A0.19141 (19)0.88673 (13)0.03683 (13)0.0186 (3)
C10.7741 (2)0.23825 (14)0.20181 (13)0.0125 (3)
C1A0.2811 (2)0.81670 (14)0.06281 (13)0.0128 (3)
C20.66627 (19)0.32726 (14)0.16742 (13)0.0111 (3)
C2A0.3926 (2)0.72992 (14)0.09515 (13)0.0114 (3)
C30.4904 (2)0.31178 (13)0.11168 (13)0.0114 (3)
C3A0.5671 (2)0.74813 (14)0.14657 (13)0.0109 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00914 (11)0.00802 (11)0.01111 (11)0.00006 (7)0.00152 (8)0.00062 (7)
K10.01241 (17)0.01672 (18)0.01307 (17)0.00156 (13)0.00320 (13)0.00110 (13)
K20.01638 (18)0.01814 (19)0.01222 (17)0.00000 (14)0.00070 (14)0.00195 (13)
O10.0092 (5)0.0152 (6)0.0157 (6)0.0015 (4)0.0020 (5)0.0016 (5)
O1A0.0103 (6)0.0166 (6)0.0168 (6)0.0026 (5)0.0019 (5)0.0013 (5)
O20.0106 (5)0.0111 (6)0.0173 (6)0.0003 (4)0.0006 (5)0.0008 (4)
O2A0.0103 (5)0.0101 (5)0.0142 (6)0.0007 (4)0.0029 (4)0.0002 (4)
O30.0155 (6)0.0104 (6)0.0197 (6)0.0020 (5)0.0021 (5)0.0001 (5)
O3A0.0138 (6)0.0112 (6)0.0165 (6)0.0003 (5)0.0037 (5)0.0016 (5)
O1W0.0230 (7)0.0095 (6)0.0175 (6)0.0016 (5)0.0093 (5)0.0011 (4)
O2W0.0131 (6)0.0311 (7)0.0163 (6)0.0019 (5)0.0033 (5)0.0007 (5)
O3W0.0145 (6)0.0269 (7)0.0169 (6)0.0023 (5)0.0049 (5)0.0017 (5)
N10.0110 (6)0.0134 (7)0.0088 (6)0.0010 (5)0.0030 (5)0.0006 (5)
N1A0.0103 (6)0.0138 (7)0.0098 (6)0.0007 (5)0.0034 (5)0.0002 (5)
N20.0195 (8)0.0178 (8)0.0200 (8)0.0028 (6)0.0010 (6)0.0000 (6)
N2A0.0147 (7)0.0180 (8)0.0212 (8)0.0026 (6)0.0029 (6)0.0006 (6)
C10.0118 (7)0.0140 (8)0.0103 (7)0.0018 (6)0.0015 (6)0.0009 (6)
C1A0.0120 (7)0.0149 (8)0.0110 (7)0.0017 (6)0.0028 (6)0.0017 (6)
C20.0115 (7)0.0123 (7)0.0093 (7)0.0009 (6)0.0030 (6)0.0000 (6)
C2A0.0117 (8)0.0131 (8)0.0094 (7)0.0021 (6)0.0036 (6)0.0000 (6)
C30.0111 (7)0.0140 (8)0.0085 (7)0.0004 (6)0.0023 (6)0.0006 (6)
C3A0.0112 (7)0.0139 (8)0.0080 (7)0.0014 (6)0.0038 (6)0.0008 (6)
Geometric parameters (Å, º) top
Cu1—O21.9407 (14)O2—C31.287 (2)
Cu1—O2A1.9656 (14)O2A—C3A1.287 (2)
Cu1—N1A1.9774 (16)O2A—K1iii2.9244 (15)
Cu1—N12.0029 (16)O3—C31.231 (2)
Cu1—O1W2.2181 (15)O3—K2ii2.9795 (16)
K1—O2W2.7395 (17)O3A—C3A1.242 (2)
K1—O22.7803 (16)O1W—H11W0.8863
K1—O1Ai2.8128 (14)O1W—H21W0.8027
K1—O3Wii2.8578 (16)O2W—K2ii2.8513 (17)
K1—O2Aiii2.9244 (15)O2W—H12W0.8088
K1—N2iv2.941 (2)O2W—H22W0.9250
K1—O1A2.9795 (16)O3W—K1v2.8578 (16)
K1—O1iii3.0011 (16)O3W—H13W0.8215
K2—O3W2.7255 (17)O3W—H23W0.8882
K2—O2Wv2.8513 (17)N1—C21.313 (2)
K2—O2A2.8911 (18)N1—K1iii3.4294 (18)
K2—O12.8951 (16)N1A—C2A1.330 (2)
K2—O3v2.9795 (16)N2—C11.146 (2)
K2—N2Avi2.981 (2)N2—K1viii2.941 (2)
K2—O1W2.9904 (17)N2—K2ix3.2763 (19)
K2—N2Aii3.1018 (19)N2A—C1A1.151 (2)
K2—N2vii3.2763 (19)N2A—K2x2.981 (2)
K2—N13.444 (2)N2A—K2v3.1018 (18)
O1—N11.2911 (19)C1—C21.433 (2)
O1—K1iii3.0011 (16)C1A—C2A1.428 (2)
O1A—N1A1.2692 (19)C2—C31.498 (2)
O1A—K1i2.8128 (14)C2A—C3A1.483 (2)
O2—Cu1—O2A169.44 (5)O2Wv—K2—N2vii68.12 (5)
O2—Cu1—N1A95.20 (6)O2A—K2—N2vii80.79 (5)
O2A—Cu1—N1A83.78 (6)O1—K2—N2vii69.31 (5)
O2—Cu1—N182.89 (6)O3v—K2—N2vii136.83 (4)
O2A—Cu1—N197.08 (6)N2Avi—K2—N2vii66.99 (5)
N1A—Cu1—N1174.16 (6)O1W—K2—N2vii135.12 (4)
O2—Cu1—O1W101.37 (6)N2Aii—K2—N2vii123.61 (5)
O2A—Cu1—O1W89.19 (6)O3W—K2—Cu1136.80 (4)
N1A—Cu1—O1W97.03 (6)O2Wv—K2—Cu1105.92 (4)
N1—Cu1—O1W88.76 (6)O2A—K2—Cu131.24 (3)
O2—Cu1—K2137.80 (4)O1—K2—Cu151.18 (3)
O2A—Cu1—K249.71 (4)O3v—K2—Cu175.44 (4)
N1A—Cu1—K2118.52 (5)N2Avi—K2—Cu1156.01 (4)
N1—Cu1—K265.73 (5)O1W—K2—Cu136.34 (3)
O1W—Cu1—K253.03 (4)N2Aii—K2—Cu183.40 (5)
O2—Cu1—K1iii122.19 (4)N2vii—K2—Cu198.86 (4)
O2A—Cu1—K1iii49.64 (4)N1—K2—Cu132.02 (3)
N1A—Cu1—K1iii112.66 (5)O3W—K2—K1v43.95 (4)
N1—Cu1—K1iii64.30 (5)O2Wv—K2—K1v41.71 (3)
O1W—Cu1—K1iii122.53 (4)O2A—K2—K1v107.77 (4)
K2—Cu1—K1iii69.53 (3)O1—K2—K1v167.26 (3)
O2W—K1—O269.00 (5)O3v—K2—K1v59.37 (4)
O2W—K1—O1Ai65.22 (5)N2Avi—K2—K1v73.70 (5)
O2—K1—O1Ai131.17 (4)O1W—K2—K1v112.48 (4)
O2W—K1—O3Wii85.02 (5)N2Aii—K2—K1v122.80 (4)
O2—K1—O3Wii95.09 (5)N2vii—K2—K1v98.98 (4)
O1Ai—K1—O3Wii96.98 (5)N1—K2—K1v161.23 (3)
O2W—K1—O2Aiii129.37 (5)Cu1—K2—K1v129.25 (3)
O2—K1—O2Aiii68.90 (4)O3W—K2—H21W91.8
O1Ai—K1—O2Aiii158.93 (4)O2Wv—K2—H21W104.1
O3Wii—K1—O2Aiii72.05 (4)O2A—K2—H21W61.0
O2W—K1—N2iv129.21 (5)O1—K2—H21W89.6
O2—K1—N2iv154.70 (5)O3v—K2—H21W38.2
O1Ai—K1—N2iv73.17 (5)N2Avi—K2—H21W151.5
O3Wii—K1—N2iv72.16 (5)O1W—K2—H21W15.4
O2Aiii—K1—N2iv86.19 (5)N2Aii—K2—H21W73.4
O2W—K1—O1A81.80 (5)N2vii—K2—H21W141.4
O2—K1—O1A64.30 (5)N1—K2—H21W68.4
O1Ai—K1—O1A92.85 (4)Cu1—K2—H21W45.2
O3Wii—K1—O1A158.48 (4)K1v—K2—H21W97.3
O2Aiii—K1—O1A103.74 (4)N1—O1—K2104.00 (9)
N2iv—K1—O1A129.20 (5)N1—O1—K1iii98.06 (9)
O2W—K1—O1iii149.39 (4)K2—O1—K1iii93.42 (5)
O2—K1—O1iii99.18 (5)N1A—O1A—K1i141.06 (10)
O1Ai—K1—O1iii111.53 (5)N1A—O1A—K1122.63 (10)
O3Wii—K1—O1iii124.96 (4)K1i—O1A—K187.15 (4)
O2Aiii—K1—O1iii64.61 (4)C3—O2—Cu1114.14 (11)
N2iv—K1—O1iii72.71 (5)C3—O2—K1118.81 (10)
O1A—K1—O1iii67.77 (4)Cu1—O2—K1126.95 (6)
O2W—K1—Cu1iii124.58 (4)C3A—O2A—Cu1112.93 (11)
O2—K1—Cu1iii55.64 (4)C3A—O2A—K2122.22 (10)
O1Ai—K1—Cu1iii159.87 (3)Cu1—O2A—K299.04 (6)
O3Wii—K1—Cu1iii101.26 (4)C3A—O2A—K1iii123.20 (10)
O2Aiii—K1—Cu1iii30.81 (3)Cu1—O2A—K1iii99.55 (5)
N2iv—K1—Cu1iii104.42 (4)K2—O2A—K1iii95.14 (5)
O1A—K1—Cu1iii72.96 (4)C3—O3—K2ii136.08 (11)
O1iii—K1—Cu1iii50.26 (3)Cu1—O1W—K290.63 (5)
N1iii—K1—Cu1iii31.75 (3)Cu1—O1W—H11W113.2
O2W—K1—K1i66.33 (4)K2—O1W—H11W133.5
O2—K1—K1i98.05 (4)Cu1—O1W—H21W117.2
O1Ai—K1—K1i48.16 (3)K2—O1W—H21W83.8
O3Wii—K1—K1i141.22 (3)H11W—O1W—H21W115.1
O2Aiii—K1—K1i146.54 (3)K1—O2W—K2ii94.45 (5)
N2iv—K1—K1i105.52 (5)K1—O2W—H12W119.7
O1A—K1—K1i44.69 (3)K2ii—O2W—H12W122.3
O1iii—K1—K1i88.64 (4)K1—O2W—H22W122.0
N1iii—K1—K1i92.55 (3)K2ii—O2W—H22W100.4
Cu1iii—K1—K1i116.27 (3)H12W—O2W—H22W98.2
O2W—K1—K2ii43.83 (4)K2—O3W—K1v94.61 (5)
O2—K1—K2ii76.44 (4)K2—O3W—H13W117.5
O1Ai—K1—K2ii82.18 (4)K1v—O3W—H13W104.7
O3Wii—K1—K2ii41.44 (3)K2—O3W—H23W121.2
O2Aiii—K1—K2ii99.36 (4)K1v—O3W—H23W112.0
N2iv—K1—K2ii104.45 (5)H13W—O3W—H23W105.3
O1A—K1—K2ii122.09 (4)O1—N1—C2121.88 (14)
O1iii—K1—K2ii163.67 (3)O1—N1—Cu1127.20 (11)
N1iii—K1—K2ii148.83 (3)C2—N1—Cu1110.65 (11)
Cu1iii—K1—K2ii117.31 (3)O1—N1—K1iii60.05 (8)
K1i—K1—K2ii107.48 (3)C2—N1—K1iii139.68 (11)
O3W—K2—O2Wv85.40 (5)Cu1—N1—K1iii83.94 (5)
O3W—K2—O2A140.56 (4)O1—N1—K254.66 (8)
O2Wv—K2—O2A75.60 (5)C2—N1—K2140.04 (11)
O3W—K2—O1146.95 (4)Cu1—N1—K282.25 (5)
O2Wv—K2—O1126.14 (4)K1iii—N1—K277.30 (4)
O2A—K2—O166.37 (5)O1A—N1A—C2A121.87 (15)
O3W—K2—O3v68.49 (5)O1A—N1A—Cu1127.23 (12)
O2Wv—K2—O3v72.48 (4)C2A—N1A—Cu1110.87 (11)
O2A—K2—O3v72.90 (5)C1—N2—K1viii133.74 (14)
O1—K2—O3v125.73 (4)C1—N2—K2ix122.50 (13)
O3W—K2—N2Avi62.76 (5)K1viii—N2—K2ix87.14 (5)
O2Wv—K2—N2Avi87.22 (5)C1A—N2A—K2x129.07 (13)
O2A—K2—N2Avi147.35 (5)C1A—N2A—K2v138.19 (13)
O1—K2—N2Avi104.84 (5)K2x—N2A—K2v91.29 (6)
O3v—K2—N2Avi128.30 (5)N2—C1—C2178.38 (19)
O3W—K2—O1W101.07 (5)N2A—C1A—C2A179.9 (3)
O2Wv—K2—O1W116.68 (5)N1—C2—C1121.99 (15)
O2A—K2—O1W60.02 (4)N1—C2—C3115.90 (15)
O1—K2—O1W75.13 (5)C1—C2—C3122.10 (15)
O3v—K2—O1W53.59 (4)N1A—C2A—C1A121.76 (15)
N2Avi—K2—O1W151.06 (4)N1A—C2A—C3A116.05 (15)
O3W—K2—N2Aii79.38 (5)C1A—C2A—C3A122.17 (15)
O2Wv—K2—N2Aii164.43 (4)O3—C3—O2124.94 (15)
O2A—K2—N2Aii114.63 (5)O3—C3—C2120.30 (15)
O1—K2—N2Aii69.43 (5)O2—C3—C2114.75 (15)
O3v—K2—N2Aii98.59 (5)O3A—C3A—O2A124.08 (15)
N2Avi—K2—N2Aii88.71 (6)O3A—C3A—C2A119.89 (15)
O1W—K2—N2Aii63.82 (5)O2A—C3A—C2A116.03 (15)
O3W—K2—N2vii123.65 (5)
O2—Cu1—O2A—C3A90.4 (3)O1—N1—C2—C3178.21 (13)
N1A—Cu1—O2A—C3A5.42 (11)Cu1—N1—C2—C37.32 (17)
N1—Cu1—O2A—C3A179.61 (11)O1A—N1A—C2A—C1A0.2 (2)
O1W—Cu1—O2A—C3A91.74 (11)Cu1—N1A—C2A—C1A178.39 (12)
O2—Cu1—N1—O1175.68 (13)O1A—N1A—C2A—C3A178.72 (14)
O2A—Cu1—N1—O16.32 (14)Cu1—O2—C3—O3170.18 (14)
O1W—Cu1—N1—O182.70 (13)Cu1—O2—C3—C210.95 (18)
O2—Cu1—N1—C210.22 (11)N1—C2—C3—O3178.94 (15)
O2A—Cu1—N1—C2179.58 (11)C1—C2—C3—O32.5 (2)
O1W—Cu1—N1—C291.39 (12)N1—C2—C3—O22.1 (2)
O2—Cu1—N1A—O1A7.99 (14)C1—C2—C3—O2176.39 (15)
O2A—Cu1—N1A—O1A177.43 (14)Cu1—O2A—C3A—O3A174.67 (13)
O1W—Cu1—N1A—O1A94.17 (14)Cu1—O2A—C3A—C2A5.14 (17)
O2—Cu1—N1A—C2A173.99 (11)N1A—C2A—C3A—O3A178.48 (14)
O2A—Cu1—N1A—C2A4.55 (11)C1A—C2A—C3A—O3A3.0 (2)
O1W—Cu1—N1A—C2A83.86 (12)N1A—C2A—C3A—O2A1.3 (2)
O1—N1—C2—C10.3 (2)C1A—C2A—C3A—O2A177.14 (14)
Cu1—N1—C2—C1174.16 (12)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1, z; (iv) x1, y+1/2, z1/2; (v) x+1, y+1/2, z+1/2; (vi) x+1, y+3/2, z+1/2; (vii) x+2, y+1/2, z+1/2; (viii) x+1, y+1/2, z+1/2; (ix) x+2, y1/2, z+1/2; (x) x1, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O3Aii0.891.852.7257 (19)171
O1W—H21W···O3v0.801.962.6910 (19)151
O2W—H12W···O1xi0.812.192.993 (2)173
O2W—H22W···O3Aii0.922.022.926 (2)164
Symmetry codes: (ii) x+1, y1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (xi) x1, y, z.

Experimental details

Crystal data
Chemical formula[CuK2(C3N2O3)2(H2O)3]
Mr419.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.767 (2), 12.426 (3), 13.159 (5)
β (°) 108.26 (3)
V3)1361.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.27
Crystal size (mm)0.24 × 0.16 × 0.07
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.657, 0.859
No. of measured, independent and
observed [I > 2σ(I)] reflections
9166, 3189, 3006
Rint0.043
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.062, 1.09
No. of reflections3189
No. of parameters205
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.56

Computer programs: COLLECT (Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O3Ai0.891.852.7257 (19)171.4
O1W—H21W···O3ii0.801.962.6910 (19)150.8
O2W—H12W···O1iii0.812.192.993 (2)172.6
O2W—H22W···O3Ai0.922.022.926 (2)164.3
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z.
 

Acknowledgements

This work was supported by the State Fund for Fundamental Researches of Ukraine (grant No. F40.3/041), the Russian Fund for Basic Research (grants11–03-00262 and 11–03-90417) and the Federal Targeted Program Scientific and Scientific-Pedagogical Personnel of Innovative Russia in 2009–2013 (contract P1294 from 09/06/2010).

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853–3859.  CSD CrossRef Web of Science Google Scholar
First citationDvorkin, A. A., Fritskii, I. O., Simonov, I. A., Lampeka, R. D., Mazus, M. D. & Malinovskii, T. I. (1990a). Dokl. Akad. Nauk SSSR, 310, 87–90.  CAS Google Scholar
First citationDvorkin, A. A., Simonov, I. A., Skopenko, V. V., Fritskii, I. O. & Lampeka, R. D. (1990b). Dokl. Akad. Nauk SSSR, 313, 98–101.  CAS Google Scholar
First citationEddings, D., Barnes, C., Gerasimchuk, N., Durham, P. & Domasevich, K. (2004). Inorg. Chem. 43, 3894–3909.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2001). Chem. Eur. J. 7, 1221–1231.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Inorg. Chim. Acta, 346, 111–118.  Web of Science CSD CrossRef CAS Google Scholar
First citationFritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Yu. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752.  Web of Science CSD CrossRef CAS Google Scholar
First citationGoodwin, J. C., Sessoli, R. & Gatteschi, D. (2000). J. Chem. Soc. Dalton Trans. pp. 1835–1840.  Web of Science CSD CrossRef Google Scholar
First citationKahn, O. (1993). In Molecular Magnetism. New York: VCH.  Google Scholar
First citationKanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.  Web of Science CrossRef PubMed Google Scholar
First citationKovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880–881.  Web of Science CrossRef Google Scholar
First citationKrämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.  Google Scholar
First citationLampeka, R. D., Dvorkin, A. A., Simonov, Y. A., Fritsky, I. O. & Skopenko, V. V. (1989). Ukr. Khim. Zh. 55, 458–461.  CAS Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMoroz, Y. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem. 47, 5656–5665.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOnindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915.  CrossRef Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkopenko, V. V., Lampeka, R. D. & Fritskii, I. O. (1990). Dokl. Akad. Nauk SSSR, 312, 123–128.  CAS Google Scholar
First citationSliva, T. Y., Dobosz, A., Jerzykiewicz, L., Karaczyn, A., Moreeuw, A. M., Świątek-Kozłowska, J., Głowiak, T. & Kozłowski, H. (1998). J. Chem. Soc. Dalton Trans. pp. 1863–1868.  Web of Science CSD CrossRef Google Scholar
First citationSliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.  CSD CrossRef CAS Web of Science Google Scholar
First citationŚwiątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.  Google Scholar
First citationWörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27–29.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds