metal-organic compounds
Poly[μ-aqua-diaquabis[μ-2-cyano-2-(oxidoimino)acetato]copper(II)dipotassium]
aKiev National Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kiev, Ukraine, bDepartment of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, and cDepartment of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev, Ukraine
*Correspondence e-mail: kalibabchuk@ukr.net
In the title compound, [CuK2(C3N2O3)2(H2O)3]n, the Cu2+ atom is in a distorted square-pyramidal coordination geometry. Two N atoms belonging to the oxime groups and two O atoms belonging to the carboxylate groups of two trans-disposed doubly deprotonated residues of 2-cyano-2-(hydroxyimino)acetic acid make up the basal plane and the apical position is occupied by the water molecule. The neighboring Cu-containing moieties are linked into a three-dimensional framework by K—O and K—N contacts formed by two potassium cations with the carboxylate and the oxime O atoms and the nitrile N atoms of the ligand. The environments of the K+ cations are complemented to octa- and nonacoordinated, by K—O contacts with H2O molecules. The features O—H⋯O hydrogen bonds.
Related literature
For the use of mononuclear complexes in the preparation of polynuclear complexes, see: Kahn (1993); Goodwin et al. (2000); Krämer & Fritsky (2000); Fritsky et al. (2001, 2003); Wörl et al. (2005). For the use of derivatives of 2-hydroxyiminocarboxylic acids and their derivatives as versatile ligands, see: Dvorkin et al. (1990a,b); Lampeka et al. (1989); Skopenko et al. (1990); Sachse et al. (2008); Fritsky et al. (1998, 2006); Kanderal et al. (2005); Moroz et al. (2008, 2010, 2012). For metal complexes of 2-cyano-2-(hydroxyimino)acetic acid, see: Sliva et al. (1998); Mokhir et al. (2002); Eddings et al. (2004). For related structures, see: Duda et al. (1997); Fritsky et al. (2004); Onindo et al. (1995); Sliva et al. (1997); Świątek-Kozłowska et al. (2000); Kovbasyuk et al. (2004). For the synthesis of the ligand, see: Sliva et al. (1998).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2000); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536812036641/hp2047sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812036641/hp2047Isup2.hkl
Cu(NO3)2.3H2O (0.242 g, 1 mmol) was dissolved in water (3 ml) and added to the methanolic solution (15 ml) of 2-cyano-2-(hydroxyimino)acetic acid (0.228 g, 2 mmol), synthesizsed according to Sliva et al., 1998). To the obtained mixture, aqueous solution of potassium hydroxide (1M, 4 ml) was added with vigorous stirring at room temperature. The obtained transparent solution was stirred 20 min. and then set aside for crystallization at ambient temperature. Bright brown crystals were separated by filtration after 72 h, washed with cold water (10 ml) and dried (yield 78%). Analysis calculated for C6H6Cu K2N4O9: C 17.16, H 1.44, N 13.34%; found: C 17.10, H 1.53, N 13.42%.
The H atoms of the water molecule were located at the difference Fourier map and their coordinates were allowed to ride on the coordinates of the parent atom with Uiso(H) = 1.5Ueq.
Many reported mononuclear complexes of 3 d-metals contains vacant donor atoms or chelate centers, so that they can be considered as ligands for preparation of homo- and heteropolynuclear systems which are widely used in bioinorganic modeling, catalysis and in molecular magnetism (Kahn, 1993; Goodwin et al., 2000; Krämer et al., 2000; Fritsky et al., 2001; Fritsky et al., 2003; Wörl et al., 2005). Polydentate ligands containing oxime and carboxylic groups attract particular attention due to their potential for the bridging mode of coordination and mediation of strong magnetic exchange interactions between metal ions (Lampeka et al., 1989; Dvorkin et al., 1990a, 1990b; Skopenko et al., 1990; Sachse et al., 2008; Moroz et al., 2008, 2010, 2012) and for preparation of metal complexes with efficient stabilization of unusually high oxidation states of 3 d-metal ions like copper(III) and nickel(III) (Fritsky et al., 1998; Kanderal et al., 2005; Fritsky et al., 2006). 2-cyano-2-(hydroxyimino)acetic acid (aaco) is an efficient chelating ligand for Cu(II) and Ni(II) ions (Sliva et al., 1998; Mokhir et al., 2002). To date, only one heterometallic complex containing this ligand K2[Pd(aaco-2H)2].4H2O has been structurally characterized (Eddings et al., 2004). Herein we report the second heterometallic complex based on 2-cyan-2-hydroxyiminoacetic acid.
The title compound, [K2Cu(C3N2O3)2(H2O)3]n, has an ionic structure containing 2- charged Cu(II)-centered complex anions, potassium cations and water molecules (Fig. 1). The Cu atom is in a distorted square-pyramidal geometry, defined by two N atoms belonging to the oxime groups and two O atoms belonging to the carboxylic groups of two trans-disposed doubly deprotonated residues of 2-cyano-2-(hydroxyimino)acetic acid. The apical position is occupied by the water molecule O1W which also serves as a bridge between Cu1 and K1 ions. The coordination bond lengths Cu—N and Cu—O (Table 1) are typical for square-pyramidal Cu(II) complexes with deprotonated oxime and carboxylate donors (Sliva et al., 1997; Kanderal et al., 2005). The bite angles around the central atom deviate from an ideal square-planar configuration [e.g. O2—Cu1—N1 = 82.89 (6)°], which is a consequence of the formation of five-membered chelate rings. The bond lengths C—O, N—O and C—N in the coordinated 2-oximinocarboxylate ligand are typical for copper(II) complexes with cyanoximes and carboxylates (Onindo et al., 1995; Duda et al., 1997; Fritsky et al., 2004;).
The potassium cations K1 and K2 are bound to the copper(II) complex anion in a chelate fashion via the oxime oxygen (O1A and O1, respectively) and the carboxylic oxygen (O2 and O2A, respectively) atoms. Such coordination of two potassium cations from the different side of the complex anion results in a closed metallamacrocylic framework. Both potassium cations also forms additional K—O and K—N contacts with the carboxylic and the oxime O atoms and the nitrile N atoms of the neighboring Cu complex anions thus uniting them in a three-dimensional framework (Fig. 2). The environments of K1 and K2 potassium cation are complemented to octa- and nona-coordinated, respectively, by K—O contacts with H2O molecules. The K—O and K—N bond lengths are normal for potassium cations and close to those reported in the structures of the carboxylate and the oximate complexes (Fritsky et al., 1998; Świątek-Kozłowska et al., 2000; Kovbasyuk et al., 20040). The
involves intermolecular O—H···O hydrogen bonds where the water molecules act as donors, and the carboxylic and the oxime O atoms act as acceptors (Table 2).For the use of mononuclear complexes in the preparation of polynuclear complexes, see: Kahn (1993); Goodwin et al. (2000); Krämer et al. (2000); Fritsky et al. (2001, 2003); Wörl et al. (2005). For the use of derivatives of 2-hydroxyiminocarboxylic acids and their derivatives as versatile ligands, see: Dvorkin et al. (1990a,b); Lampeka et al. (1989); Skopenko et al. (1990); Sachse et al. (2008); Fritsky et al. (1998, 2006); Kanderal et al. (2005); Moroz et al. (2008, 2010, 2012). For metal complexes of 2-cyano-2-(hydroxyimino)acetic acid, see: Sliva et al. (1998); Mokhir et al. (2002); Eddings et al. (2004). For related structures see: Duda et al. (1997); Fritsky et al. (2004); Onindo et al. (1995); Sliva et al. (1997); Świątek-Kozłowska et al. (2000); Kovbasyuk et al. (2004). For the synthesis of the ligand, see: Sliva et al. (1998).
Data collection: COLLECT (Nonius, 2000); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[CuK2(C3N2O3)2(H2O)3] | F(000) = 836 |
Mr = 419.89 | Dx = 2.049 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3744 reflections |
a = 8.767 (2) Å | θ = 1.0–27.5° |
b = 12.426 (3) Å | µ = 2.27 mm−1 |
c = 13.159 (5) Å | T = 100 K |
β = 108.26 (3)° | Block, brown |
V = 1361.3 (7) Å3 | 0.24 × 0.16 × 0.07 mm |
Z = 4 |
Nonius KappaCCD area-detector diffractometer | 3189 independent reflections |
Radiation source: fine-focus sealed tube | 3006 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
ω scans | θmax = 28.4°, θmin = 3.7° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −11→11 |
Tmin = 0.657, Tmax = 0.859 | k = −15→15 |
9166 measured reflections | l = −14→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.062 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.028P)2 + 0.9392P] where P = (Fo2 + 2Fc2)/3 |
3189 reflections | (Δ/σ)max = 0.001 |
205 parameters | Δρmax = 0.56 e Å−3 |
4 restraints | Δρmin = −0.56 e Å−3 |
[CuK2(C3N2O3)2(H2O)3] | V = 1361.3 (7) Å3 |
Mr = 419.89 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.767 (2) Å | µ = 2.27 mm−1 |
b = 12.426 (3) Å | T = 100 K |
c = 13.159 (5) Å | 0.24 × 0.16 × 0.07 mm |
β = 108.26 (3)° |
Nonius KappaCCD area-detector diffractometer | 3189 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 3006 reflections with I > 2σ(I) |
Tmin = 0.657, Tmax = 0.859 | Rint = 0.043 |
9166 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 4 restraints |
wR(F2) = 0.062 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.56 e Å−3 |
3189 reflections | Δρmin = −0.56 e Å−3 |
205 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.53009 (2) | 0.529307 (15) | 0.136932 (15) | 0.00981 (7) | |
K1 | 0.10262 (4) | 0.38634 (3) | −0.06404 (3) | 0.01425 (9) | |
K2 | 0.86027 (5) | 0.61378 (3) | 0.38164 (3) | 0.01645 (9) | |
O1 | 0.86577 (14) | 0.45133 (10) | 0.22512 (10) | 0.0138 (2) | |
O1A | 0.20044 (14) | 0.60207 (10) | 0.03346 (10) | 0.0151 (2) | |
O2 | 0.41091 (14) | 0.39928 (10) | 0.08061 (10) | 0.0139 (2) | |
O2A | 0.65548 (14) | 0.66325 (10) | 0.16771 (9) | 0.0117 (2) | |
O3 | 0.43256 (15) | 0.22059 (10) | 0.09720 (10) | 0.0160 (3) | |
O3A | 0.61938 (14) | 0.84124 (10) | 0.16679 (10) | 0.0140 (2) | |
O1W | 0.52488 (16) | 0.52800 (10) | 0.30436 (10) | 0.0160 (3) | |
H11W | 0.4781 (7) | 0.4699 (8) | 0.3201 (2) | 0.024* | |
H21W | 0.5029 (3) | 0.5835 (8) | 0.3278 (3) | 0.024* | |
O2W | 0.10231 (16) | 0.33982 (12) | 0.13939 (11) | 0.0205 (3) | |
H12W | 0.0333 (11) | 0.3648 (4) | 0.1612 (4) | 0.031* | |
H22W | 0.1900 (14) | 0.3541 (3) | 0.1987 (10) | 0.031* | |
O3W | 0.89136 (15) | 0.65821 (11) | 0.59001 (11) | 0.0194 (3) | |
H13W | 0.8132 (13) | 0.6471 (2) | 0.6103 (4) | 0.029* | |
H23W | 0.9754 (14) | 0.6349 (4) | 0.6428 (9) | 0.029* | |
N1 | 0.71631 (17) | 0.42739 (12) | 0.18069 (11) | 0.0111 (3) | |
N1A | 0.34617 (17) | 0.62774 (12) | 0.07855 (11) | 0.0113 (3) | |
N2 | 0.86325 (19) | 0.16875 (13) | 0.23004 (13) | 0.0203 (3) | |
N2A | 0.19141 (19) | 0.88673 (13) | 0.03683 (13) | 0.0186 (3) | |
C1 | 0.7741 (2) | 0.23825 (14) | 0.20181 (13) | 0.0125 (3) | |
C1A | 0.2811 (2) | 0.81670 (14) | 0.06281 (13) | 0.0128 (3) | |
C2 | 0.66627 (19) | 0.32726 (14) | 0.16742 (13) | 0.0111 (3) | |
C2A | 0.3926 (2) | 0.72992 (14) | 0.09515 (13) | 0.0114 (3) | |
C3 | 0.4904 (2) | 0.31178 (13) | 0.11168 (13) | 0.0114 (3) | |
C3A | 0.5671 (2) | 0.74813 (14) | 0.14657 (13) | 0.0109 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.00914 (11) | 0.00802 (11) | 0.01111 (11) | 0.00006 (7) | 0.00152 (8) | −0.00062 (7) |
K1 | 0.01241 (17) | 0.01672 (18) | 0.01307 (17) | −0.00156 (13) | 0.00320 (13) | −0.00110 (13) |
K2 | 0.01638 (18) | 0.01814 (19) | 0.01222 (17) | 0.00000 (14) | 0.00070 (14) | −0.00195 (13) |
O1 | 0.0092 (5) | 0.0152 (6) | 0.0157 (6) | −0.0015 (4) | 0.0020 (5) | −0.0016 (5) |
O1A | 0.0103 (6) | 0.0166 (6) | 0.0168 (6) | −0.0026 (5) | 0.0019 (5) | −0.0013 (5) |
O2 | 0.0106 (5) | 0.0111 (6) | 0.0173 (6) | 0.0003 (4) | 0.0006 (5) | −0.0008 (4) |
O2A | 0.0103 (5) | 0.0101 (5) | 0.0142 (6) | 0.0007 (4) | 0.0029 (4) | 0.0002 (4) |
O3 | 0.0155 (6) | 0.0104 (6) | 0.0197 (6) | −0.0020 (5) | 0.0021 (5) | −0.0001 (5) |
O3A | 0.0138 (6) | 0.0112 (6) | 0.0165 (6) | −0.0003 (5) | 0.0037 (5) | −0.0016 (5) |
O1W | 0.0230 (7) | 0.0095 (6) | 0.0175 (6) | −0.0016 (5) | 0.0093 (5) | −0.0011 (4) |
O2W | 0.0131 (6) | 0.0311 (7) | 0.0163 (6) | 0.0019 (5) | 0.0033 (5) | −0.0007 (5) |
O3W | 0.0145 (6) | 0.0269 (7) | 0.0169 (6) | 0.0023 (5) | 0.0049 (5) | 0.0017 (5) |
N1 | 0.0110 (6) | 0.0134 (7) | 0.0088 (6) | 0.0010 (5) | 0.0030 (5) | −0.0006 (5) |
N1A | 0.0103 (6) | 0.0138 (7) | 0.0098 (6) | −0.0007 (5) | 0.0034 (5) | −0.0002 (5) |
N2 | 0.0195 (8) | 0.0178 (8) | 0.0200 (8) | 0.0028 (6) | 0.0010 (6) | 0.0000 (6) |
N2A | 0.0147 (7) | 0.0180 (8) | 0.0212 (8) | 0.0026 (6) | 0.0029 (6) | 0.0006 (6) |
C1 | 0.0118 (7) | 0.0140 (8) | 0.0103 (7) | −0.0018 (6) | 0.0015 (6) | −0.0009 (6) |
C1A | 0.0120 (7) | 0.0149 (8) | 0.0110 (7) | −0.0017 (6) | 0.0028 (6) | −0.0017 (6) |
C2 | 0.0115 (7) | 0.0123 (7) | 0.0093 (7) | 0.0009 (6) | 0.0030 (6) | 0.0000 (6) |
C2A | 0.0117 (8) | 0.0131 (8) | 0.0094 (7) | 0.0021 (6) | 0.0036 (6) | 0.0000 (6) |
C3 | 0.0111 (7) | 0.0140 (8) | 0.0085 (7) | −0.0004 (6) | 0.0023 (6) | 0.0006 (6) |
C3A | 0.0112 (7) | 0.0139 (8) | 0.0080 (7) | 0.0014 (6) | 0.0038 (6) | 0.0008 (6) |
Cu1—O2 | 1.9407 (14) | O2—C3 | 1.287 (2) |
Cu1—O2A | 1.9656 (14) | O2A—C3A | 1.287 (2) |
Cu1—N1A | 1.9774 (16) | O2A—K1iii | 2.9244 (15) |
Cu1—N1 | 2.0029 (16) | O3—C3 | 1.231 (2) |
Cu1—O1W | 2.2181 (15) | O3—K2ii | 2.9795 (16) |
K1—O2W | 2.7395 (17) | O3A—C3A | 1.242 (2) |
K1—O2 | 2.7803 (16) | O1W—H11W | 0.8863 |
K1—O1Ai | 2.8128 (14) | O1W—H21W | 0.8027 |
K1—O3Wii | 2.8578 (16) | O2W—K2ii | 2.8513 (17) |
K1—O2Aiii | 2.9244 (15) | O2W—H12W | 0.8088 |
K1—N2iv | 2.941 (2) | O2W—H22W | 0.9250 |
K1—O1A | 2.9795 (16) | O3W—K1v | 2.8578 (16) |
K1—O1iii | 3.0011 (16) | O3W—H13W | 0.8215 |
K2—O3W | 2.7255 (17) | O3W—H23W | 0.8882 |
K2—O2Wv | 2.8513 (17) | N1—C2 | 1.313 (2) |
K2—O2A | 2.8911 (18) | N1—K1iii | 3.4294 (18) |
K2—O1 | 2.8951 (16) | N1A—C2A | 1.330 (2) |
K2—O3v | 2.9795 (16) | N2—C1 | 1.146 (2) |
K2—N2Avi | 2.981 (2) | N2—K1viii | 2.941 (2) |
K2—O1W | 2.9904 (17) | N2—K2ix | 3.2763 (19) |
K2—N2Aii | 3.1018 (19) | N2A—C1A | 1.151 (2) |
K2—N2vii | 3.2763 (19) | N2A—K2x | 2.981 (2) |
K2—N1 | 3.444 (2) | N2A—K2v | 3.1018 (18) |
O1—N1 | 1.2911 (19) | C1—C2 | 1.433 (2) |
O1—K1iii | 3.0011 (16) | C1A—C2A | 1.428 (2) |
O1A—N1A | 1.2692 (19) | C2—C3 | 1.498 (2) |
O1A—K1i | 2.8128 (14) | C2A—C3A | 1.483 (2) |
O2—Cu1—O2A | 169.44 (5) | O2Wv—K2—N2vii | 68.12 (5) |
O2—Cu1—N1A | 95.20 (6) | O2A—K2—N2vii | 80.79 (5) |
O2A—Cu1—N1A | 83.78 (6) | O1—K2—N2vii | 69.31 (5) |
O2—Cu1—N1 | 82.89 (6) | O3v—K2—N2vii | 136.83 (4) |
O2A—Cu1—N1 | 97.08 (6) | N2Avi—K2—N2vii | 66.99 (5) |
N1A—Cu1—N1 | 174.16 (6) | O1W—K2—N2vii | 135.12 (4) |
O2—Cu1—O1W | 101.37 (6) | N2Aii—K2—N2vii | 123.61 (5) |
O2A—Cu1—O1W | 89.19 (6) | O3W—K2—Cu1 | 136.80 (4) |
N1A—Cu1—O1W | 97.03 (6) | O2Wv—K2—Cu1 | 105.92 (4) |
N1—Cu1—O1W | 88.76 (6) | O2A—K2—Cu1 | 31.24 (3) |
O2—Cu1—K2 | 137.80 (4) | O1—K2—Cu1 | 51.18 (3) |
O2A—Cu1—K2 | 49.71 (4) | O3v—K2—Cu1 | 75.44 (4) |
N1A—Cu1—K2 | 118.52 (5) | N2Avi—K2—Cu1 | 156.01 (4) |
N1—Cu1—K2 | 65.73 (5) | O1W—K2—Cu1 | 36.34 (3) |
O1W—Cu1—K2 | 53.03 (4) | N2Aii—K2—Cu1 | 83.40 (5) |
O2—Cu1—K1iii | 122.19 (4) | N2vii—K2—Cu1 | 98.86 (4) |
O2A—Cu1—K1iii | 49.64 (4) | N1—K2—Cu1 | 32.02 (3) |
N1A—Cu1—K1iii | 112.66 (5) | O3W—K2—K1v | 43.95 (4) |
N1—Cu1—K1iii | 64.30 (5) | O2Wv—K2—K1v | 41.71 (3) |
O1W—Cu1—K1iii | 122.53 (4) | O2A—K2—K1v | 107.77 (4) |
K2—Cu1—K1iii | 69.53 (3) | O1—K2—K1v | 167.26 (3) |
O2W—K1—O2 | 69.00 (5) | O3v—K2—K1v | 59.37 (4) |
O2W—K1—O1Ai | 65.22 (5) | N2Avi—K2—K1v | 73.70 (5) |
O2—K1—O1Ai | 131.17 (4) | O1W—K2—K1v | 112.48 (4) |
O2W—K1—O3Wii | 85.02 (5) | N2Aii—K2—K1v | 122.80 (4) |
O2—K1—O3Wii | 95.09 (5) | N2vii—K2—K1v | 98.98 (4) |
O1Ai—K1—O3Wii | 96.98 (5) | N1—K2—K1v | 161.23 (3) |
O2W—K1—O2Aiii | 129.37 (5) | Cu1—K2—K1v | 129.25 (3) |
O2—K1—O2Aiii | 68.90 (4) | O3W—K2—H21W | 91.8 |
O1Ai—K1—O2Aiii | 158.93 (4) | O2Wv—K2—H21W | 104.1 |
O3Wii—K1—O2Aiii | 72.05 (4) | O2A—K2—H21W | 61.0 |
O2W—K1—N2iv | 129.21 (5) | O1—K2—H21W | 89.6 |
O2—K1—N2iv | 154.70 (5) | O3v—K2—H21W | 38.2 |
O1Ai—K1—N2iv | 73.17 (5) | N2Avi—K2—H21W | 151.5 |
O3Wii—K1—N2iv | 72.16 (5) | O1W—K2—H21W | 15.4 |
O2Aiii—K1—N2iv | 86.19 (5) | N2Aii—K2—H21W | 73.4 |
O2W—K1—O1A | 81.80 (5) | N2vii—K2—H21W | 141.4 |
O2—K1—O1A | 64.30 (5) | N1—K2—H21W | 68.4 |
O1Ai—K1—O1A | 92.85 (4) | Cu1—K2—H21W | 45.2 |
O3Wii—K1—O1A | 158.48 (4) | K1v—K2—H21W | 97.3 |
O2Aiii—K1—O1A | 103.74 (4) | N1—O1—K2 | 104.00 (9) |
N2iv—K1—O1A | 129.20 (5) | N1—O1—K1iii | 98.06 (9) |
O2W—K1—O1iii | 149.39 (4) | K2—O1—K1iii | 93.42 (5) |
O2—K1—O1iii | 99.18 (5) | N1A—O1A—K1i | 141.06 (10) |
O1Ai—K1—O1iii | 111.53 (5) | N1A—O1A—K1 | 122.63 (10) |
O3Wii—K1—O1iii | 124.96 (4) | K1i—O1A—K1 | 87.15 (4) |
O2Aiii—K1—O1iii | 64.61 (4) | C3—O2—Cu1 | 114.14 (11) |
N2iv—K1—O1iii | 72.71 (5) | C3—O2—K1 | 118.81 (10) |
O1A—K1—O1iii | 67.77 (4) | Cu1—O2—K1 | 126.95 (6) |
O2W—K1—Cu1iii | 124.58 (4) | C3A—O2A—Cu1 | 112.93 (11) |
O2—K1—Cu1iii | 55.64 (4) | C3A—O2A—K2 | 122.22 (10) |
O1Ai—K1—Cu1iii | 159.87 (3) | Cu1—O2A—K2 | 99.04 (6) |
O3Wii—K1—Cu1iii | 101.26 (4) | C3A—O2A—K1iii | 123.20 (10) |
O2Aiii—K1—Cu1iii | 30.81 (3) | Cu1—O2A—K1iii | 99.55 (5) |
N2iv—K1—Cu1iii | 104.42 (4) | K2—O2A—K1iii | 95.14 (5) |
O1A—K1—Cu1iii | 72.96 (4) | C3—O3—K2ii | 136.08 (11) |
O1iii—K1—Cu1iii | 50.26 (3) | Cu1—O1W—K2 | 90.63 (5) |
N1iii—K1—Cu1iii | 31.75 (3) | Cu1—O1W—H11W | 113.2 |
O2W—K1—K1i | 66.33 (4) | K2—O1W—H11W | 133.5 |
O2—K1—K1i | 98.05 (4) | Cu1—O1W—H21W | 117.2 |
O1Ai—K1—K1i | 48.16 (3) | K2—O1W—H21W | 83.8 |
O3Wii—K1—K1i | 141.22 (3) | H11W—O1W—H21W | 115.1 |
O2Aiii—K1—K1i | 146.54 (3) | K1—O2W—K2ii | 94.45 (5) |
N2iv—K1—K1i | 105.52 (5) | K1—O2W—H12W | 119.7 |
O1A—K1—K1i | 44.69 (3) | K2ii—O2W—H12W | 122.3 |
O1iii—K1—K1i | 88.64 (4) | K1—O2W—H22W | 122.0 |
N1iii—K1—K1i | 92.55 (3) | K2ii—O2W—H22W | 100.4 |
Cu1iii—K1—K1i | 116.27 (3) | H12W—O2W—H22W | 98.2 |
O2W—K1—K2ii | 43.83 (4) | K2—O3W—K1v | 94.61 (5) |
O2—K1—K2ii | 76.44 (4) | K2—O3W—H13W | 117.5 |
O1Ai—K1—K2ii | 82.18 (4) | K1v—O3W—H13W | 104.7 |
O3Wii—K1—K2ii | 41.44 (3) | K2—O3W—H23W | 121.2 |
O2Aiii—K1—K2ii | 99.36 (4) | K1v—O3W—H23W | 112.0 |
N2iv—K1—K2ii | 104.45 (5) | H13W—O3W—H23W | 105.3 |
O1A—K1—K2ii | 122.09 (4) | O1—N1—C2 | 121.88 (14) |
O1iii—K1—K2ii | 163.67 (3) | O1—N1—Cu1 | 127.20 (11) |
N1iii—K1—K2ii | 148.83 (3) | C2—N1—Cu1 | 110.65 (11) |
Cu1iii—K1—K2ii | 117.31 (3) | O1—N1—K1iii | 60.05 (8) |
K1i—K1—K2ii | 107.48 (3) | C2—N1—K1iii | 139.68 (11) |
O3W—K2—O2Wv | 85.40 (5) | Cu1—N1—K1iii | 83.94 (5) |
O3W—K2—O2A | 140.56 (4) | O1—N1—K2 | 54.66 (8) |
O2Wv—K2—O2A | 75.60 (5) | C2—N1—K2 | 140.04 (11) |
O3W—K2—O1 | 146.95 (4) | Cu1—N1—K2 | 82.25 (5) |
O2Wv—K2—O1 | 126.14 (4) | K1iii—N1—K2 | 77.30 (4) |
O2A—K2—O1 | 66.37 (5) | O1A—N1A—C2A | 121.87 (15) |
O3W—K2—O3v | 68.49 (5) | O1A—N1A—Cu1 | 127.23 (12) |
O2Wv—K2—O3v | 72.48 (4) | C2A—N1A—Cu1 | 110.87 (11) |
O2A—K2—O3v | 72.90 (5) | C1—N2—K1viii | 133.74 (14) |
O1—K2—O3v | 125.73 (4) | C1—N2—K2ix | 122.50 (13) |
O3W—K2—N2Avi | 62.76 (5) | K1viii—N2—K2ix | 87.14 (5) |
O2Wv—K2—N2Avi | 87.22 (5) | C1A—N2A—K2x | 129.07 (13) |
O2A—K2—N2Avi | 147.35 (5) | C1A—N2A—K2v | 138.19 (13) |
O1—K2—N2Avi | 104.84 (5) | K2x—N2A—K2v | 91.29 (6) |
O3v—K2—N2Avi | 128.30 (5) | N2—C1—C2 | 178.38 (19) |
O3W—K2—O1W | 101.07 (5) | N2A—C1A—C2A | 179.9 (3) |
O2Wv—K2—O1W | 116.68 (5) | N1—C2—C1 | 121.99 (15) |
O2A—K2—O1W | 60.02 (4) | N1—C2—C3 | 115.90 (15) |
O1—K2—O1W | 75.13 (5) | C1—C2—C3 | 122.10 (15) |
O3v—K2—O1W | 53.59 (4) | N1A—C2A—C1A | 121.76 (15) |
N2Avi—K2—O1W | 151.06 (4) | N1A—C2A—C3A | 116.05 (15) |
O3W—K2—N2Aii | 79.38 (5) | C1A—C2A—C3A | 122.17 (15) |
O2Wv—K2—N2Aii | 164.43 (4) | O3—C3—O2 | 124.94 (15) |
O2A—K2—N2Aii | 114.63 (5) | O3—C3—C2 | 120.30 (15) |
O1—K2—N2Aii | 69.43 (5) | O2—C3—C2 | 114.75 (15) |
O3v—K2—N2Aii | 98.59 (5) | O3A—C3A—O2A | 124.08 (15) |
N2Avi—K2—N2Aii | 88.71 (6) | O3A—C3A—C2A | 119.89 (15) |
O1W—K2—N2Aii | 63.82 (5) | O2A—C3A—C2A | 116.03 (15) |
O3W—K2—N2vii | 123.65 (5) | ||
O2—Cu1—O2A—C3A | 90.4 (3) | O1—N1—C2—C3 | −178.21 (13) |
N1A—Cu1—O2A—C3A | 5.42 (11) | Cu1—N1—C2—C3 | 7.32 (17) |
N1—Cu1—O2A—C3A | 179.61 (11) | O1A—N1A—C2A—C1A | −0.2 (2) |
O1W—Cu1—O2A—C3A | −91.74 (11) | Cu1—N1A—C2A—C1A | −178.39 (12) |
O2—Cu1—N1—O1 | 175.68 (13) | O1A—N1A—C2A—C3A | −178.72 (14) |
O2A—Cu1—N1—O1 | 6.32 (14) | Cu1—O2—C3—O3 | 170.18 (14) |
O1W—Cu1—N1—O1 | −82.70 (13) | Cu1—O2—C3—C2 | −10.95 (18) |
O2—Cu1—N1—C2 | −10.22 (11) | N1—C2—C3—O3 | −178.94 (15) |
O2A—Cu1—N1—C2 | −179.58 (11) | C1—C2—C3—O3 | 2.5 (2) |
O1W—Cu1—N1—C2 | 91.39 (12) | N1—C2—C3—O2 | 2.1 (2) |
O2—Cu1—N1A—O1A | 7.99 (14) | C1—C2—C3—O2 | −176.39 (15) |
O2A—Cu1—N1A—O1A | 177.43 (14) | Cu1—O2A—C3A—O3A | 174.67 (13) |
O1W—Cu1—N1A—O1A | −94.17 (14) | Cu1—O2A—C3A—C2A | −5.14 (17) |
O2—Cu1—N1A—C2A | −173.99 (11) | N1A—C2A—C3A—O3A | −178.48 (14) |
O2A—Cu1—N1A—C2A | −4.55 (11) | C1A—C2A—C3A—O3A | 3.0 (2) |
O1W—Cu1—N1A—C2A | 83.86 (12) | N1A—C2A—C3A—O2A | 1.3 (2) |
O1—N1—C2—C1 | 0.3 (2) | C1A—C2A—C3A—O2A | −177.14 (14) |
Cu1—N1—C2—C1 | −174.16 (12) |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z; (iv) x−1, −y+1/2, z−1/2; (v) −x+1, y+1/2, −z+1/2; (vi) x+1, −y+3/2, z+1/2; (vii) −x+2, y+1/2, −z+1/2; (viii) x+1, −y+1/2, z+1/2; (ix) −x+2, y−1/2, −z+1/2; (x) x−1, −y+3/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···O3Aii | 0.89 | 1.85 | 2.7257 (19) | 171 |
O1W—H21W···O3v | 0.80 | 1.96 | 2.6910 (19) | 151 |
O2W—H12W···O1xi | 0.81 | 2.19 | 2.993 (2) | 173 |
O2W—H22W···O3Aii | 0.92 | 2.02 | 2.926 (2) | 164 |
Symmetry codes: (ii) −x+1, y−1/2, −z+1/2; (v) −x+1, y+1/2, −z+1/2; (xi) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [CuK2(C3N2O3)2(H2O)3] |
Mr | 419.89 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 8.767 (2), 12.426 (3), 13.159 (5) |
β (°) | 108.26 (3) |
V (Å3) | 1361.3 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.27 |
Crystal size (mm) | 0.24 × 0.16 × 0.07 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector |
Absorption correction | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.657, 0.859 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9166, 3189, 3006 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.062, 1.09 |
No. of reflections | 3189 |
No. of parameters | 205 |
No. of restraints | 4 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.56, −0.56 |
Computer programs: COLLECT (Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···O3Ai | 0.89 | 1.85 | 2.7257 (19) | 171.4 |
O1W—H21W···O3ii | 0.80 | 1.96 | 2.6910 (19) | 150.8 |
O2W—H12W···O1iii | 0.81 | 2.19 | 2.993 (2) | 172.6 |
O2W—H22W···O3Ai | 0.92 | 2.02 | 2.926 (2) | 164.3 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) x−1, y, z. |
Acknowledgements
This work was supported by the State Fund for Fundamental Researches of Ukraine (grant No. F40.3/041), the Russian Fund for Basic Research (grants11–03-00262 and 11–03-90417) and the Federal Targeted Program Scientific and Scientific-Pedagogical Personnel of Innovative Russia in 2009–2013 (contract P1294 from 09/06/2010).
References
Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853–3859. CSD CrossRef Web of Science Google Scholar
Dvorkin, A. A., Fritskii, I. O., Simonov, I. A., Lampeka, R. D., Mazus, M. D. & Malinovskii, T. I. (1990a). Dokl. Akad. Nauk SSSR, 310, 87–90. CAS Google Scholar
Dvorkin, A. A., Simonov, I. A., Skopenko, V. V., Fritskii, I. O. & Lampeka, R. D. (1990b). Dokl. Akad. Nauk SSSR, 313, 98–101. CAS Google Scholar
Eddings, D., Barnes, C., Gerasimchuk, N., Durham, P. & Domasevich, K. (2004). Inorg. Chem. 43, 3894–3909. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127. Web of Science CSD CrossRef Google Scholar
Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274. Web of Science CSD CrossRef Google Scholar
Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2001). Chem. Eur. J. 7, 1221–1231. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Inorg. Chim. Acta, 346, 111–118. Web of Science CSD CrossRef CAS Google Scholar
Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Yu. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752. Web of Science CSD CrossRef CAS Google Scholar
Goodwin, J. C., Sessoli, R. & Gatteschi, D. (2000). J. Chem. Soc. Dalton Trans. pp. 1835–1840. Web of Science CSD CrossRef Google Scholar
Kahn, O. (1993). In Molecular Magnetism. New York: VCH. Google Scholar
Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437. Web of Science CrossRef PubMed Google Scholar
Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880–881. Web of Science CrossRef Google Scholar
Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510. Google Scholar
Lampeka, R. D., Dvorkin, A. A., Simonov, Y. A., Fritsky, I. O. & Skopenko, V. V. (1989). Ukr. Khim. Zh. 55, 458–461. CAS Google Scholar
Mokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121. Web of Science CSD CrossRef CAS Google Scholar
Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. Web of Science CSD CrossRef CAS PubMed Google Scholar
Moroz, Y. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem. 47, 5656–5665. Web of Science CSD CrossRef PubMed CAS Google Scholar
Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752. Web of Science CSD CrossRef CAS PubMed Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915. CrossRef Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Skopenko, V. V., Lampeka, R. D. & Fritskii, I. O. (1990). Dokl. Akad. Nauk SSSR, 312, 123–128. CAS Google Scholar
Sliva, T. Y., Dobosz, A., Jerzykiewicz, L., Karaczyn, A., Moreeuw, A. M., Świątek-Kozłowska, J., Głowiak, T. & Kozłowski, H. (1998). J. Chem. Soc. Dalton Trans. pp. 1863–1868. Web of Science CSD CrossRef Google Scholar
Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294. CSD CrossRef CAS Web of Science Google Scholar
Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068. Google Scholar
Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27–29. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Many reported mononuclear complexes of 3 d-metals contains vacant donor atoms or chelate centers, so that they can be considered as ligands for preparation of homo- and heteropolynuclear systems which are widely used in bioinorganic modeling, catalysis and in molecular magnetism (Kahn, 1993; Goodwin et al., 2000; Krämer et al., 2000; Fritsky et al., 2001; Fritsky et al., 2003; Wörl et al., 2005). Polydentate ligands containing oxime and carboxylic groups attract particular attention due to their potential for the bridging mode of coordination and mediation of strong magnetic exchange interactions between metal ions (Lampeka et al., 1989; Dvorkin et al., 1990a, 1990b; Skopenko et al., 1990; Sachse et al., 2008; Moroz et al., 2008, 2010, 2012) and for preparation of metal complexes with efficient stabilization of unusually high oxidation states of 3 d-metal ions like copper(III) and nickel(III) (Fritsky et al., 1998; Kanderal et al., 2005; Fritsky et al., 2006). 2-cyano-2-(hydroxyimino)acetic acid (aaco) is an efficient chelating ligand for Cu(II) and Ni(II) ions (Sliva et al., 1998; Mokhir et al., 2002). To date, only one heterometallic complex containing this ligand K2[Pd(aaco-2H)2].4H2O has been structurally characterized (Eddings et al., 2004). Herein we report the second heterometallic complex based on 2-cyan-2-hydroxyiminoacetic acid.
The title compound, [K2Cu(C3N2O3)2(H2O)3]n, has an ionic structure containing 2- charged Cu(II)-centered complex anions, potassium cations and water molecules (Fig. 1). The Cu atom is in a distorted square-pyramidal geometry, defined by two N atoms belonging to the oxime groups and two O atoms belonging to the carboxylic groups of two trans-disposed doubly deprotonated residues of 2-cyano-2-(hydroxyimino)acetic acid. The apical position is occupied by the water molecule O1W which also serves as a bridge between Cu1 and K1 ions. The coordination bond lengths Cu—N and Cu—O (Table 1) are typical for square-pyramidal Cu(II) complexes with deprotonated oxime and carboxylate donors (Sliva et al., 1997; Kanderal et al., 2005). The bite angles around the central atom deviate from an ideal square-planar configuration [e.g. O2—Cu1—N1 = 82.89 (6)°], which is a consequence of the formation of five-membered chelate rings. The bond lengths C—O, N—O and C—N in the coordinated 2-oximinocarboxylate ligand are typical for copper(II) complexes with cyanoximes and carboxylates (Onindo et al., 1995; Duda et al., 1997; Fritsky et al., 2004;).
The potassium cations K1 and K2 are bound to the copper(II) complex anion in a chelate fashion via the oxime oxygen (O1A and O1, respectively) and the carboxylic oxygen (O2 and O2A, respectively) atoms. Such coordination of two potassium cations from the different side of the complex anion results in a closed metallamacrocylic framework. Both potassium cations also forms additional K—O and K—N contacts with the carboxylic and the oxime O atoms and the nitrile N atoms of the neighboring Cu complex anions thus uniting them in a three-dimensional framework (Fig. 2). The environments of K1 and K2 potassium cation are complemented to octa- and nona-coordinated, respectively, by K—O contacts with H2O molecules. The K—O and K—N bond lengths are normal for potassium cations and close to those reported in the structures of the carboxylate and the oximate complexes (Fritsky et al., 1998; Świątek-Kozłowska et al., 2000; Kovbasyuk et al., 20040). The crystal structure involves intermolecular O—H···O hydrogen bonds where the water molecules act as donors, and the carboxylic and the oxime O atoms act as acceptors (Table 2).