metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(methanol-κO)bis­­(1,2-di­amino-2-hy­dr­oxy­imino­ethanone oximato-κ2N,N′)copper(II) bis­­(oxamide dioxime) methanol disolvate

aDepartment of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: yanggm@nankai.edu.cn

(Received 1 July 2012; accepted 25 August 2012; online 1 September 2012)

In the title compound, [Cu(C2H5N4O2)2(CH3OH)2]·2C2H6N4O2·2CH3OH, the CuII atom, lying on an inversion center, is coordinated by four N atoms from two 1,2-diamino-2-hy­droxy­imino­ethanone oximate anion and two O atoms from two methanol mol­ecules in a distorted octa­hedral geometry. The two uncoordinating oxamide dioxime mol­ecules, each lying on an inversion center, adopt a trans conformation. In the crystal, O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds link the complex mol­ecules and the oxamide dioxime and methanol mol­ecules.

Related literature

For related structures, see: Bélombé et al. (2006[Bélombé, M., Nenwa, J., Kammoe, A. L. & Poudeu, P. F. P. (2006). Acta Cryst. E62, m2583-m2585.]); Belombe et al. (2007)[Belombe, M. M., Nenwa, J., Bebga, G., Fokwa, B. P. T. & Dronskowski, R. (2007). Acta Cryst. E63, m2037-m2038.]; Egharevba et al. (1982[Egharevba, G. O., Mégnamisi-Bélombé, M., Endres, H. & Rossato, E. (1982). Acta Cryst. B38, 2901-2903.]); Endres (1980[Endres, H. (1980). Acta Cryst. B36, 57-60.]); Endres & Schlicksupp (1980[Endres, H. & Schlicksupp, L. (1980). Acta Cryst. B36, 715-716.]); Endres et al. (1983[Endres, H., Genc, N. & Nöthe, D. (1983). Acta Cryst. C39, 701-703.]); Gunasekaran et al. (1995[Gunasekaran, A., Jayachandran, T., Boyer, J. H. & Trudell, M. L. (1995). J. Heterocycl. Chem. 32, 1405-1407.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H5N4O2)2(CH4O)2]·2C2H6N4O2·2CH4O

  • Mr = 662.13

  • Triclinic, [P \overline 1]

  • a = 7.567 (3) Å

  • b = 8.874 (4) Å

  • c = 10.867 (5) Å

  • α = 92.046 (4)°

  • β = 103.327 (9)°

  • γ = 104.957 (5)°

  • V = 682.5 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 113 K

  • 0.28 × 0.24 × 0.22 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2009[Rigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.790, Tmax = 0.829

  • 7216 measured reflections

  • 3212 independent reflections

  • 2252 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.086

  • S = 0.99

  • 3212 reflections

  • 198 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.84 1.96 2.737 (3) 154
O3—H3⋯O5ii 0.84 1.92 2.744 (3) 166
O4—H4⋯O1iii 0.84 1.79 2.621 (3) 169
O5—H5⋯O1iv 0.81 (2) 1.87 (3) 2.657 (3) 164 (2)
O6—H6⋯O5v 0.79 (3) 1.94 (3) 2.721 (3) 173 (3)
N3—H3A⋯N7vi 0.88 2.50 3.195 (3) 136
N3—H3B⋯O6vii 0.88 2.32 3.167 (3) 162
N4—H4A⋯O4viii 0.88 2.35 3.112 (3) 145
N4—H4B⋯O6vii 0.88 2.00 2.878 (3) 172
N6—H6A⋯O3ix 0.88 2.26 3.097 (3) 159
N6—H6B⋯N7vii 0.88 2.19 3.007 (3) 155
N8—H8A⋯O4ix 0.88 2.20 3.043 (3) 159
N8—H8B⋯N5x 0.88 2.21 3.031 (3) 154
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+2, -y+1, -z+1; (iii) x, y+1, z-1; (iv) x, y, z-1; (v) x, y, z+1; (vi) -x+1, -y+1, -z+2; (vii) x-1, y, z; (viii) -x, -y+1, -z+1; (ix) -x+1, -y+1, -z+1; (x) x, y-1, z.

Data collection: CrystalClear (Rigaku, 2009[Rigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Owing to the variety of structures and unique properties, transition metal complexes of oxamide oxime (diaminoglyoxime, oaoH2) are of great interest. So far, most of the published work concerns 4-coordinated transition metal oxamide oximate complexs (Endres, 1980; Endres & Schlicksupp, 1980; Endres et al., 1983). The 6-coordinated transition metal oxamide oximate complexes have not been reported hitherto (Bélombé et al., 2006; Belombe et al., 2007; Egharevba et al., 1982). We used oxamide oxime as ligands (Gunasekaran et al., 1995) and obtained green crystals of the title compound from a methanol solution.

In the title compound, the CuII atom, lying on an inversion center, is surrounded in an octahedral environment defined by four N atoms from two oaoH ligands and two O atoms from two methanol molecules (Fig. 1). The methanol molecules are weakly coordinated to the Cu atom with a Cu—O distance of 2.797 (2) Å. In the crystal, O—H···O, N—H···O and N—H···N hydrogen bonds (Table 1) link the complex molecules and the oxamide oxime and methanol molecules.

Related literature top

For related structures, see: Bélombé et al. (2006); Belombe et al. (2007); Egharevba et al. (1982); Endres (1980); Endres & Schlicksupp (1980)); Endres et al. 1983); Gunasekaran et al. (1995).

Experimental top

A methanol solution (10 ml) of copper acetate (0.1 mmol) was added dropwise to a methanol solution (10 ml) of oxamide oxime (0.1 mmol). The title compound was obtained as green crystals by slow evaporation of the filtrate in air at room temperature 5 days later. Analysis, calculated for C12H38CuN16O12: C 21.77, H 5.78, N 33.85, O 29.00%; found: C 21.79, H 5.76, N 33.88, O 29.02%.

Refinement top

H atoms of methanol molecules were located from a difference Fourier map and refined isotropically with Uiso(H) = 1.5Ueq(O). The other H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.98, N—H = 0.88 and O—H = 0.84 Å and with Uiso(H) = 1.2(1.5 for methyl and hydroxyl)Ueq(C,N,O).

Structure description top

Owing to the variety of structures and unique properties, transition metal complexes of oxamide oxime (diaminoglyoxime, oaoH2) are of great interest. So far, most of the published work concerns 4-coordinated transition metal oxamide oximate complexs (Endres, 1980; Endres & Schlicksupp, 1980; Endres et al., 1983). The 6-coordinated transition metal oxamide oximate complexes have not been reported hitherto (Bélombé et al., 2006; Belombe et al., 2007; Egharevba et al., 1982). We used oxamide oxime as ligands (Gunasekaran et al., 1995) and obtained green crystals of the title compound from a methanol solution.

In the title compound, the CuII atom, lying on an inversion center, is surrounded in an octahedral environment defined by four N atoms from two oaoH ligands and two O atoms from two methanol molecules (Fig. 1). The methanol molecules are weakly coordinated to the Cu atom with a Cu—O distance of 2.797 (2) Å. In the crystal, O—H···O, N—H···O and N—H···N hydrogen bonds (Table 1) link the complex molecules and the oxamide oxime and methanol molecules.

For related structures, see: Bélombé et al. (2006); Belombe et al. (2007); Egharevba et al. (1982); Endres (1980); Endres & Schlicksupp (1980)); Endres et al. 1983); Gunasekaran et al. (1995).

Computing details top

Data collection: CrystalClear (Rigaku, 2009); cell refinement: CrystalClear (Rigaku, 2009); data reduction: CrystalClear (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1-x, -y, 2-z; (ii) -x, 2-y, 1-z; (iii) 1-x, 1-y, 1-z.]
Bis(methanol-κO)bis(oxamide oxime oximato-κ2N,N')copper(II) bis(oxamide dioxime) methanol disolvate top
Crystal data top
[Cu(C2H5N4O2)2(CH4O)2]·2C2H6N4O2·2CH4OZ = 1
Mr = 662.13F(000) = 347
Triclinic, P1Dx = 1.611 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.567 (3) ÅCell parameters from 2266 reflections
b = 8.874 (4) Åθ = 1.9–27.9°
c = 10.867 (5) ŵ = 0.89 mm1
α = 92.046 (4)°T = 113 K
β = 103.327 (9)°Block, green
γ = 104.957 (5)°0.28 × 0.24 × 0.22 mm
V = 682.5 (5) Å3
Data collection top
Rigaku Saturn724 CCD
diffractometer
3212 independent reflections
Radiation source: rotating anode2252 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.044
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 1.9°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
k = 1111
Tmin = 0.790, Tmax = 0.829l = 1114
7216 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0231P)2]
where P = (Fo2 + 2Fc2)/3
3212 reflections(Δ/σ)max = 0.001
198 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu(C2H5N4O2)2(CH4O)2]·2C2H6N4O2·2CH4Oγ = 104.957 (5)°
Mr = 662.13V = 682.5 (5) Å3
Triclinic, P1Z = 1
a = 7.567 (3) ÅMo Kα radiation
b = 8.874 (4) ŵ = 0.89 mm1
c = 10.867 (5) ÅT = 113 K
α = 92.046 (4)°0.28 × 0.24 × 0.22 mm
β = 103.327 (9)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
3212 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
2252 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 0.829Rint = 0.044
7216 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.30 e Å3
3212 reflectionsΔρmin = 0.39 e Å3
198 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2733 (3)0.1538 (3)1.0896 (2)0.0102 (5)
C20.2003 (3)0.1293 (3)0.9482 (2)0.0102 (5)
C30.0546 (3)0.9542 (3)0.47271 (19)0.0089 (5)
C40.5721 (3)0.4615 (3)0.53280 (19)0.0092 (5)
C50.6807 (3)0.4989 (3)0.2349 (2)0.0207 (6)
H5A0.71950.56850.31410.031*
H5B0.54330.45480.21260.031*
H5C0.71830.55860.16660.031*
C60.7357 (4)0.3711 (3)0.9294 (2)0.0317 (7)
H6C0.79990.48070.96210.048*
H6D0.59890.35350.91510.048*
H6E0.76580.34780.84900.048*
Cu10.50000.00001.00000.01296 (13)
N10.3058 (2)0.0743 (2)0.89207 (16)0.0131 (4)
N20.4170 (2)0.0981 (2)1.12976 (16)0.0105 (4)
N30.1956 (2)0.2296 (2)1.16254 (18)0.0165 (5)
H3A0.24230.24521.24540.020*
H3B0.09820.26361.12740.020*
N40.0410 (2)0.1635 (2)0.89006 (17)0.0163 (5)
H4A0.00110.14850.80670.020*
H4B0.02360.20100.93530.020*
N50.1797 (2)1.0348 (2)0.41876 (16)0.0100 (4)
N60.0166 (3)0.7998 (2)0.48310 (18)0.0168 (5)
H6A0.07920.74360.45170.020*
H6B0.07100.75460.52140.020*
N70.7401 (2)0.5552 (2)0.58021 (17)0.0118 (4)
N80.5201 (2)0.3067 (2)0.53953 (18)0.0172 (5)
H8A0.60300.25960.57880.021*
H8B0.40300.25190.50470.021*
O10.50028 (19)0.11732 (19)1.25853 (13)0.0127 (4)
O20.2404 (2)0.0421 (2)0.76012 (14)0.0200 (4)
H20.31550.00410.73150.030*
O30.86131 (19)0.46482 (19)0.63897 (15)0.0158 (4)
H30.97310.52170.66100.024*
O40.2651 (2)0.93020 (19)0.36628 (14)0.0130 (4)
H40.34930.98170.33360.019*
O50.7699 (2)0.3745 (2)0.25156 (15)0.0168 (4)
H50.688 (3)0.305 (3)0.267 (2)0.025*
O60.7980 (2)0.2702 (2)1.02027 (16)0.0238 (5)
H60.791 (4)0.308 (3)1.085 (3)0.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0102 (11)0.0089 (13)0.0107 (12)0.0007 (10)0.0048 (9)0.0005 (9)
C20.0085 (11)0.0089 (13)0.0121 (12)0.0014 (10)0.0041 (9)0.0038 (9)
C30.0072 (11)0.0099 (13)0.0082 (11)0.0025 (10)0.0006 (9)0.0002 (9)
C40.0116 (11)0.0100 (13)0.0073 (11)0.0026 (10)0.0054 (9)0.0003 (9)
C50.0196 (13)0.0204 (16)0.0233 (14)0.0076 (12)0.0047 (11)0.0038 (11)
C60.0400 (17)0.0313 (19)0.0320 (17)0.0188 (15)0.0132 (13)0.0151 (14)
Cu10.0131 (2)0.0178 (3)0.0095 (2)0.00752 (19)0.00211 (16)0.00014 (17)
N10.0129 (10)0.0201 (13)0.0062 (10)0.0060 (9)0.0005 (8)0.0006 (8)
N20.0082 (9)0.0146 (11)0.0079 (10)0.0026 (8)0.0010 (7)0.0004 (8)
N30.0149 (10)0.0232 (13)0.0136 (11)0.0109 (10)0.0019 (8)0.0016 (9)
N40.0150 (10)0.0236 (13)0.0110 (10)0.0086 (10)0.0013 (8)0.0006 (9)
N50.0102 (9)0.0090 (11)0.0126 (10)0.0047 (8)0.0038 (8)0.0002 (8)
N60.0185 (11)0.0108 (12)0.0279 (12)0.0046 (9)0.0177 (9)0.0049 (9)
N70.0083 (9)0.0109 (11)0.0171 (10)0.0055 (8)0.0017 (8)0.0025 (8)
N80.0085 (9)0.0082 (11)0.0307 (12)0.0021 (9)0.0032 (8)0.0016 (9)
O10.0122 (8)0.0186 (10)0.0067 (8)0.0030 (7)0.0025 (6)0.0010 (7)
O20.0206 (9)0.0349 (12)0.0080 (8)0.0158 (9)0.0013 (7)0.0009 (8)
O30.0085 (8)0.0121 (10)0.0238 (9)0.0039 (7)0.0030 (7)0.0029 (7)
O40.0143 (8)0.0118 (9)0.0185 (9)0.0053 (7)0.0131 (7)0.0032 (7)
O50.0125 (9)0.0142 (11)0.0210 (10)0.0002 (8)0.0031 (7)0.0030 (8)
O60.0330 (10)0.0288 (12)0.0191 (10)0.0202 (9)0.0114 (8)0.0069 (8)
Geometric parameters (Å, º) top
C1—N21.300 (3)Cu1—N2iii1.9349 (18)
C1—N31.344 (3)Cu1—N21.9349 (18)
C1—C21.496 (3)Cu1—O62.797 (2)
C2—N11.285 (3)N1—O21.397 (2)
C2—N41.340 (3)N2—O11.380 (2)
C3—N51.299 (3)N3—H3A0.8800
C3—N61.340 (3)N3—H3B0.8800
C3—C3i1.494 (4)N4—H4A0.8800
C4—N71.302 (3)N4—H4B0.8800
C4—N81.337 (3)N5—O41.430 (2)
C4—C4ii1.493 (4)N6—H6A0.8800
C5—O51.431 (3)N6—H6B0.8800
C5—H5A0.9800N7—O31.428 (2)
C5—H5B0.9800N8—H8A0.8800
C5—H5C0.9800N8—H8B0.8800
C6—O61.437 (3)O2—H20.8400
C6—H6C0.9800O3—H30.8400
C6—H6D0.9800O4—H40.8400
C6—H6E0.9800O5—H50.81 (3)
Cu1—N1iii1.9314 (18)O6—H60.79 (2)
Cu1—N11.9314 (18)
N2—C1—N3125.9 (2)N1—Cu1—O697.31 (8)
N2—C1—C2112.90 (18)N2iii—Cu1—O690.37 (7)
N3—C1—C2121.17 (19)N2—Cu1—O689.63 (7)
N1—C2—N4125.4 (2)C2—N1—O2115.67 (16)
N1—C2—C1112.98 (18)C2—N1—Cu1116.25 (15)
N4—C2—C1121.63 (19)O2—N1—Cu1126.33 (13)
N5—C3—N6126.10 (19)C1—N2—O1118.35 (17)
N5—C3—C3i115.4 (3)C1—N2—Cu1115.95 (15)
N6—C3—C3i118.5 (3)O1—N2—Cu1125.67 (13)
N7—C4—N8125.9 (2)C1—N3—H3A120.0
N7—C4—C4ii115.2 (3)C1—N3—H3B120.0
N8—C4—C4ii118.8 (2)H3A—N3—H3B120.0
O5—C5—H5A109.5C2—N4—H4A120.0
O5—C5—H5B109.5C2—N4—H4B120.0
H5A—C5—H5B109.5H4A—N4—H4B120.0
O5—C5—H5C109.5C3—N5—O4108.74 (18)
H5A—C5—H5C109.5C3—N6—H6A120.0
H5B—C5—H5C109.5C3—N6—H6B120.0
O6—C6—H6C109.5H6A—N6—H6B120.0
O6—C6—H6D109.5C4—N7—O3108.65 (19)
H6C—C6—H6D109.5C4—N8—H8A120.0
O6—C6—H6E109.5C4—N8—H8B120.0
H6C—C6—H6E109.5H8A—N8—H8B120.0
H6D—C6—H6E109.5N1—O2—H2109.5
N1iii—Cu1—N1179.999 (1)N7—O3—H3109.5
N1iii—Cu1—N2iii80.90 (8)N5—O4—H4109.5
N1—Cu1—N2iii99.10 (8)C5—O5—H5101.6 (18)
N1iii—Cu1—N299.10 (8)C6—O6—Cu1108.13 (15)
N1—Cu1—N280.90 (8)C6—O6—H6104 (2)
N2iii—Cu1—N2179.999 (1)Cu1—O6—H697 (2)
N1iii—Cu1—O682.69 (8)
N2—C1—C2—N17.5 (3)N3—C1—N2—Cu1178.33 (18)
N3—C1—C2—N1171.1 (2)C2—C1—N2—Cu10.2 (3)
N2—C1—C2—N4172.8 (2)N1iii—Cu1—N2—C1175.60 (18)
N3—C1—C2—N48.6 (4)N1—Cu1—N2—C14.40 (18)
N4—C2—N1—O23.1 (4)O6—Cu1—N2—C1101.86 (18)
C1—C2—N1—O2177.20 (19)N1iii—Cu1—N2—O16.43 (18)
N4—C2—N1—Cu1168.98 (19)N1—Cu1—N2—O1173.57 (18)
C1—C2—N1—Cu111.3 (3)O6—Cu1—N2—O176.10 (17)
N2iii—Cu1—N1—C2171.00 (17)N6—C3—N5—O42.8 (3)
N2—Cu1—N1—C29.00 (17)C3i—C3—N5—O4177.3 (2)
O6—Cu1—N1—C297.45 (18)N8—C4—N7—O31.0 (3)
N2iii—Cu1—N1—O26.80 (19)C4ii—C4—N7—O3179.8 (2)
N2—Cu1—N1—O2173.20 (19)N1iii—Cu1—O6—C6169.14 (15)
O6—Cu1—N1—O298.35 (17)N1—Cu1—O6—C610.87 (15)
N3—C1—N2—O10.2 (4)N2iii—Cu1—O6—C688.36 (15)
C2—C1—N2—O1178.31 (17)N2—Cu1—O6—C691.64 (15)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1iii0.841.962.737 (3)154
O3—H3···O5iv0.841.922.744 (3)166
O4—H4···O1v0.841.792.621 (3)169
O5—H5···O1vi0.81 (2)1.87 (3)2.657 (3)164 (2)
O6—H6···O5vii0.79 (3)1.94 (3)2.721 (3)173 (3)
N3—H3A···N7viii0.882.503.195 (3)136
N3—H3B···O6ix0.882.323.167 (3)162
N4—H4A···O4x0.882.353.112 (3)145
N4—H4B···O6ix0.882.002.878 (3)172
N6—H6A···O3ii0.882.263.097 (3)159
N6—H6B···N7ix0.882.193.007 (3)155
N8—H8A···O4ii0.882.203.043 (3)159
N8—H8B···N5xi0.882.213.031 (3)154
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y, z+2; (iv) x+2, y+1, z+1; (v) x, y+1, z1; (vi) x, y, z1; (vii) x, y, z+1; (viii) x+1, y+1, z+2; (ix) x1, y, z; (x) x, y+1, z+1; (xi) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C2H5N4O2)2(CH4O)2]·2C2H6N4O2·2CH4O
Mr662.13
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)7.567 (3), 8.874 (4), 10.867 (5)
α, β, γ (°)92.046 (4), 103.327 (9), 104.957 (5)
V3)682.5 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.28 × 0.24 × 0.22
Data collection
DiffractometerRigaku Saturn724 CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2009)
Tmin, Tmax0.790, 0.829
No. of measured, independent and
observed [I > 2σ(I)] reflections
7216, 3212, 2252
Rint0.044
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 0.99
No. of reflections3212
No. of parameters198
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.39

Computer programs: CrystalClear (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.841.962.737 (3)154
O3—H3···O5ii0.841.922.744 (3)166
O4—H4···O1iii0.841.792.621 (3)169
O5—H5···O1iv0.81 (2)1.87 (3)2.657 (3)164 (2)
O6—H6···O5v0.79 (3)1.94 (3)2.721 (3)173 (3)
N3—H3A···N7vi0.882.503.195 (3)136
N3—H3B···O6vii0.882.323.167 (3)162
N4—H4A···O4viii0.882.353.112 (3)145
N4—H4B···O6vii0.882.002.878 (3)172
N6—H6A···O3ix0.882.263.097 (3)159
N6—H6B···N7vii0.882.193.007 (3)155
N8—H8A···O4ix0.882.203.043 (3)159
N8—H8B···N5x0.882.213.031 (3)154
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y+1, z+1; (iii) x, y+1, z1; (iv) x, y, z1; (v) x, y, z+1; (vi) x+1, y+1, z+2; (vii) x1, y, z; (viii) x, y+1, z+1; (ix) x+1, y+1, z+1; (x) x, y1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 20941004, 21071084 and 90922032) and the MOE (IRT-0927), Tianjin Key Laboratory of Metal and Mol­ecule Based Material Chemistry.

References

First citationBelombe, M. M., Nenwa, J., Bebga, G., Fokwa, B. P. T. & Dronskowski, R. (2007). Acta Cryst. E63, m2037–m2038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBélombé, M., Nenwa, J., Kammoe, A. L. & Poudeu, P. F. P. (2006). Acta Cryst. E62, m2583–m2585.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEgharevba, G. O., Mégnamisi-Bélombé, M., Endres, H. & Rossato, E. (1982). Acta Cryst. B38, 2901–2903.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEndres, H. (1980). Acta Cryst. B36, 57–60.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEndres, H. & Schlicksupp, L. (1980). Acta Cryst. B36, 715–716.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEndres, H., Genc, N. & Nöthe, D. (1983). Acta Cryst. C39, 701–703.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGunasekaran, A., Jayachandran, T., Boyer, J. H. & Trudell, M. L. (1995). J. Heterocycl. Chem. 32, 1405–1407.  CrossRef CAS Google Scholar
First citationRigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds