metal-organic compounds
Bis(methanol-κO)bis(1,2-diamino-2-hydroxyiminoethanone oximato-κ2N,N′)copper(II) bis(oxamide dioxime) methanol disolvate
aDepartment of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: yanggm@nankai.edu.cn
In the title compound, [Cu(C2H5N4O2)2(CH3OH)2]·2C2H6N4O2·2CH3OH, the CuII atom, lying on an inversion center, is coordinated by four N atoms from two 1,2-diamino-2-hydroxyiminoethanone oximate anion and two O atoms from two methanol molecules in a distorted octahedral geometry. The two uncoordinating oxamide dioxime molecules, each lying on an inversion center, adopt a trans conformation. In the crystal, O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds link the complex molecules and the oxamide dioxime and methanol molecules.
Related literature
For related structures, see: Bélombé et al. (2006); Belombe et al. (2007); Egharevba et al. (1982); Endres (1980); Endres & Schlicksupp (1980); Endres et al. (1983); Gunasekaran et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2009); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536812036811/hy2572sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812036811/hy2572Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812036811/hy2572Isup4.cdx
A methanol solution (10 ml) of copper acetate (0.1 mmol) was added dropwise to a methanol solution (10 ml) of oxamide oxime (0.1 mmol). The title compound was obtained as green crystals by slow evaporation of the filtrate in air at room temperature 5 days later. Analysis, calculated for C12H38CuN16O12: C 21.77, H 5.78, N 33.85, O 29.00%; found: C 21.79, H 5.76, N 33.88, O 29.02%.
H atoms of methanol molecules were located from a difference Fourier map and refined isotropically with Uiso(H) = 1.5Ueq(O). The other H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.98, N—H = 0.88 and O—H = 0.84 Å and with Uiso(H) = 1.2(1.5 for methyl and hydroxyl)Ueq(C,N,O).
Owing to the variety of structures and unique properties, transition metal complexes of oxamide oxime (diaminoglyoxime, oaoH2) are of great interest. So far, most of the published work concerns 4-coordinated transition metal oxamide oximate complexs (Endres, 1980; Endres & Schlicksupp, 1980; Endres et al., 1983). The 6-coordinated transition metal oxamide oximate complexes have not been reported hitherto (Bélombé et al., 2006; Belombe et al., 2007; Egharevba et al., 1982). We used oxamide oxime as ligands (Gunasekaran et al., 1995) and obtained green crystals of the title compound from a methanol solution.
In the title compound, the CuII atom, lying on an inversion center, is surrounded in an octahedral environment defined by four N atoms from two oaoH ligands and two O atoms from two methanol molecules (Fig. 1). The methanol molecules are weakly coordinated to the Cu atom with a Cu—O distance of 2.797 (2) Å. In the crystal, O—H···O, N—H···O and N—H···N hydrogen bonds (Table 1) link the complex molecules and the oxamide oxime and methanol molecules.
For related structures, see: Bélombé et al. (2006); Belombe et al. (2007); Egharevba et al. (1982); Endres (1980); Endres & Schlicksupp (1980)); Endres et al. 1983); Gunasekaran et al. (1995).
Data collection: CrystalClear (Rigaku, 2009); cell
CrystalClear (Rigaku, 2009); data reduction: CrystalClear (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1-x, -y, 2-z; (ii) -x, 2-y, 1-z; (iii) 1-x, 1-y, 1-z.] |
[Cu(C2H5N4O2)2(CH4O)2]·2C2H6N4O2·2CH4O | Z = 1 |
Mr = 662.13 | F(000) = 347 |
Triclinic, P1 | Dx = 1.611 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.567 (3) Å | Cell parameters from 2266 reflections |
b = 8.874 (4) Å | θ = 1.9–27.9° |
c = 10.867 (5) Å | µ = 0.89 mm−1 |
α = 92.046 (4)° | T = 113 K |
β = 103.327 (9)° | Block, green |
γ = 104.957 (5)° | 0.28 × 0.24 × 0.22 mm |
V = 682.5 (5) Å3 |
Rigaku Saturn724 CCD diffractometer | 3212 independent reflections |
Radiation source: rotating anode | 2252 reflections with I > 2σ(I) |
Multilayer monochromator | Rint = 0.044 |
Detector resolution: 14.22 pixels mm-1 | θmax = 27.9°, θmin = 1.9° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2009) | k = −11→11 |
Tmin = 0.790, Tmax = 0.829 | l = −11→14 |
7216 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.086 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0231P)2] where P = (Fo2 + 2Fc2)/3 |
3212 reflections | (Δ/σ)max = 0.001 |
198 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
[Cu(C2H5N4O2)2(CH4O)2]·2C2H6N4O2·2CH4O | γ = 104.957 (5)° |
Mr = 662.13 | V = 682.5 (5) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.567 (3) Å | Mo Kα radiation |
b = 8.874 (4) Å | µ = 0.89 mm−1 |
c = 10.867 (5) Å | T = 113 K |
α = 92.046 (4)° | 0.28 × 0.24 × 0.22 mm |
β = 103.327 (9)° |
Rigaku Saturn724 CCD diffractometer | 3212 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2009) | 2252 reflections with I > 2σ(I) |
Tmin = 0.790, Tmax = 0.829 | Rint = 0.044 |
7216 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.086 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | Δρmax = 0.30 e Å−3 |
3212 reflections | Δρmin = −0.39 e Å−3 |
198 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2733 (3) | 0.1538 (3) | 1.0896 (2) | 0.0102 (5) | |
C2 | 0.2003 (3) | 0.1293 (3) | 0.9482 (2) | 0.0102 (5) | |
C3 | 0.0546 (3) | 0.9542 (3) | 0.47271 (19) | 0.0089 (5) | |
C4 | 0.5721 (3) | 0.4615 (3) | 0.53280 (19) | 0.0092 (5) | |
C5 | 0.6807 (3) | 0.4989 (3) | 0.2349 (2) | 0.0207 (6) | |
H5A | 0.7195 | 0.5685 | 0.3141 | 0.031* | |
H5B | 0.5433 | 0.4548 | 0.2126 | 0.031* | |
H5C | 0.7183 | 0.5586 | 0.1666 | 0.031* | |
C6 | 0.7357 (4) | 0.3711 (3) | 0.9294 (2) | 0.0317 (7) | |
H6C | 0.7999 | 0.4807 | 0.9621 | 0.048* | |
H6D | 0.5989 | 0.3535 | 0.9151 | 0.048* | |
H6E | 0.7658 | 0.3478 | 0.8490 | 0.048* | |
Cu1 | 0.5000 | 0.0000 | 1.0000 | 0.01296 (13) | |
N1 | 0.3058 (2) | 0.0743 (2) | 0.89207 (16) | 0.0131 (4) | |
N2 | 0.4170 (2) | 0.0981 (2) | 1.12976 (16) | 0.0105 (4) | |
N3 | 0.1956 (2) | 0.2296 (2) | 1.16254 (18) | 0.0165 (5) | |
H3A | 0.2423 | 0.2452 | 1.2454 | 0.020* | |
H3B | 0.0982 | 0.2636 | 1.1274 | 0.020* | |
N4 | 0.0410 (2) | 0.1635 (2) | 0.89006 (17) | 0.0163 (5) | |
H4A | 0.0011 | 0.1485 | 0.8067 | 0.020* | |
H4B | −0.0236 | 0.2010 | 0.9353 | 0.020* | |
N5 | 0.1797 (2) | 1.0348 (2) | 0.41876 (16) | 0.0100 (4) | |
N6 | 0.0166 (3) | 0.7998 (2) | 0.48310 (18) | 0.0168 (5) | |
H6A | 0.0792 | 0.7436 | 0.4517 | 0.020* | |
H6B | −0.0710 | 0.7546 | 0.5214 | 0.020* | |
N7 | 0.7401 (2) | 0.5552 (2) | 0.58021 (17) | 0.0118 (4) | |
N8 | 0.5201 (2) | 0.3067 (2) | 0.53953 (18) | 0.0172 (5) | |
H8A | 0.6030 | 0.2596 | 0.5788 | 0.021* | |
H8B | 0.4030 | 0.2519 | 0.5047 | 0.021* | |
O1 | 0.50028 (19) | 0.11732 (19) | 1.25853 (13) | 0.0127 (4) | |
O2 | 0.2404 (2) | 0.0421 (2) | 0.76012 (14) | 0.0200 (4) | |
H2 | 0.3155 | 0.0041 | 0.7315 | 0.030* | |
O3 | 0.86131 (19) | 0.46482 (19) | 0.63897 (15) | 0.0158 (4) | |
H3 | 0.9731 | 0.5217 | 0.6610 | 0.024* | |
O4 | 0.2651 (2) | 0.93020 (19) | 0.36628 (14) | 0.0130 (4) | |
H4 | 0.3493 | 0.9817 | 0.3336 | 0.019* | |
O5 | 0.7699 (2) | 0.3745 (2) | 0.25156 (15) | 0.0168 (4) | |
H5 | 0.688 (3) | 0.305 (3) | 0.267 (2) | 0.025* | |
O6 | 0.7980 (2) | 0.2702 (2) | 1.02027 (16) | 0.0238 (5) | |
H6 | 0.791 (4) | 0.308 (3) | 1.085 (3) | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0102 (11) | 0.0089 (13) | 0.0107 (12) | −0.0007 (10) | 0.0048 (9) | 0.0005 (9) |
C2 | 0.0085 (11) | 0.0089 (13) | 0.0121 (12) | −0.0014 (10) | 0.0041 (9) | 0.0038 (9) |
C3 | 0.0072 (11) | 0.0099 (13) | 0.0082 (11) | 0.0025 (10) | −0.0006 (9) | 0.0002 (9) |
C4 | 0.0116 (11) | 0.0100 (13) | 0.0073 (11) | 0.0026 (10) | 0.0054 (9) | 0.0003 (9) |
C5 | 0.0196 (13) | 0.0204 (16) | 0.0233 (14) | 0.0076 (12) | 0.0047 (11) | 0.0038 (11) |
C6 | 0.0400 (17) | 0.0313 (19) | 0.0320 (17) | 0.0188 (15) | 0.0132 (13) | 0.0151 (14) |
Cu1 | 0.0131 (2) | 0.0178 (3) | 0.0095 (2) | 0.00752 (19) | 0.00211 (16) | 0.00014 (17) |
N1 | 0.0129 (10) | 0.0201 (13) | 0.0062 (10) | 0.0060 (9) | 0.0005 (8) | 0.0006 (8) |
N2 | 0.0082 (9) | 0.0146 (11) | 0.0079 (10) | 0.0026 (8) | 0.0010 (7) | 0.0004 (8) |
N3 | 0.0149 (10) | 0.0232 (13) | 0.0136 (11) | 0.0109 (10) | 0.0019 (8) | −0.0016 (9) |
N4 | 0.0150 (10) | 0.0236 (13) | 0.0110 (10) | 0.0086 (10) | 0.0013 (8) | −0.0006 (9) |
N5 | 0.0102 (9) | 0.0090 (11) | 0.0126 (10) | 0.0047 (8) | 0.0038 (8) | 0.0002 (8) |
N6 | 0.0185 (11) | 0.0108 (12) | 0.0279 (12) | 0.0046 (9) | 0.0177 (9) | 0.0049 (9) |
N7 | 0.0083 (9) | 0.0109 (11) | 0.0171 (10) | 0.0055 (8) | 0.0017 (8) | 0.0025 (8) |
N8 | 0.0085 (9) | 0.0082 (11) | 0.0307 (12) | 0.0021 (9) | −0.0032 (8) | 0.0016 (9) |
O1 | 0.0122 (8) | 0.0186 (10) | 0.0067 (8) | 0.0030 (7) | 0.0025 (6) | 0.0010 (7) |
O2 | 0.0206 (9) | 0.0349 (12) | 0.0080 (8) | 0.0158 (9) | 0.0013 (7) | −0.0009 (8) |
O3 | 0.0085 (8) | 0.0121 (10) | 0.0238 (9) | 0.0039 (7) | −0.0030 (7) | 0.0029 (7) |
O4 | 0.0143 (8) | 0.0118 (9) | 0.0185 (9) | 0.0053 (7) | 0.0131 (7) | 0.0032 (7) |
O5 | 0.0125 (9) | 0.0142 (11) | 0.0210 (10) | −0.0002 (8) | 0.0031 (7) | 0.0030 (8) |
O6 | 0.0330 (10) | 0.0288 (12) | 0.0191 (10) | 0.0202 (9) | 0.0114 (8) | 0.0069 (8) |
C1—N2 | 1.300 (3) | Cu1—N2iii | 1.9349 (18) |
C1—N3 | 1.344 (3) | Cu1—N2 | 1.9349 (18) |
C1—C2 | 1.496 (3) | Cu1—O6 | 2.797 (2) |
C2—N1 | 1.285 (3) | N1—O2 | 1.397 (2) |
C2—N4 | 1.340 (3) | N2—O1 | 1.380 (2) |
C3—N5 | 1.299 (3) | N3—H3A | 0.8800 |
C3—N6 | 1.340 (3) | N3—H3B | 0.8800 |
C3—C3i | 1.494 (4) | N4—H4A | 0.8800 |
C4—N7 | 1.302 (3) | N4—H4B | 0.8800 |
C4—N8 | 1.337 (3) | N5—O4 | 1.430 (2) |
C4—C4ii | 1.493 (4) | N6—H6A | 0.8800 |
C5—O5 | 1.431 (3) | N6—H6B | 0.8800 |
C5—H5A | 0.9800 | N7—O3 | 1.428 (2) |
C5—H5B | 0.9800 | N8—H8A | 0.8800 |
C5—H5C | 0.9800 | N8—H8B | 0.8800 |
C6—O6 | 1.437 (3) | O2—H2 | 0.8400 |
C6—H6C | 0.9800 | O3—H3 | 0.8400 |
C6—H6D | 0.9800 | O4—H4 | 0.8400 |
C6—H6E | 0.9800 | O5—H5 | 0.81 (3) |
Cu1—N1iii | 1.9314 (18) | O6—H6 | 0.79 (2) |
Cu1—N1 | 1.9314 (18) | ||
N2—C1—N3 | 125.9 (2) | N1—Cu1—O6 | 97.31 (8) |
N2—C1—C2 | 112.90 (18) | N2iii—Cu1—O6 | 90.37 (7) |
N3—C1—C2 | 121.17 (19) | N2—Cu1—O6 | 89.63 (7) |
N1—C2—N4 | 125.4 (2) | C2—N1—O2 | 115.67 (16) |
N1—C2—C1 | 112.98 (18) | C2—N1—Cu1 | 116.25 (15) |
N4—C2—C1 | 121.63 (19) | O2—N1—Cu1 | 126.33 (13) |
N5—C3—N6 | 126.10 (19) | C1—N2—O1 | 118.35 (17) |
N5—C3—C3i | 115.4 (3) | C1—N2—Cu1 | 115.95 (15) |
N6—C3—C3i | 118.5 (3) | O1—N2—Cu1 | 125.67 (13) |
N7—C4—N8 | 125.9 (2) | C1—N3—H3A | 120.0 |
N7—C4—C4ii | 115.2 (3) | C1—N3—H3B | 120.0 |
N8—C4—C4ii | 118.8 (2) | H3A—N3—H3B | 120.0 |
O5—C5—H5A | 109.5 | C2—N4—H4A | 120.0 |
O5—C5—H5B | 109.5 | C2—N4—H4B | 120.0 |
H5A—C5—H5B | 109.5 | H4A—N4—H4B | 120.0 |
O5—C5—H5C | 109.5 | C3—N5—O4 | 108.74 (18) |
H5A—C5—H5C | 109.5 | C3—N6—H6A | 120.0 |
H5B—C5—H5C | 109.5 | C3—N6—H6B | 120.0 |
O6—C6—H6C | 109.5 | H6A—N6—H6B | 120.0 |
O6—C6—H6D | 109.5 | C4—N7—O3 | 108.65 (19) |
H6C—C6—H6D | 109.5 | C4—N8—H8A | 120.0 |
O6—C6—H6E | 109.5 | C4—N8—H8B | 120.0 |
H6C—C6—H6E | 109.5 | H8A—N8—H8B | 120.0 |
H6D—C6—H6E | 109.5 | N1—O2—H2 | 109.5 |
N1iii—Cu1—N1 | 179.999 (1) | N7—O3—H3 | 109.5 |
N1iii—Cu1—N2iii | 80.90 (8) | N5—O4—H4 | 109.5 |
N1—Cu1—N2iii | 99.10 (8) | C5—O5—H5 | 101.6 (18) |
N1iii—Cu1—N2 | 99.10 (8) | C6—O6—Cu1 | 108.13 (15) |
N1—Cu1—N2 | 80.90 (8) | C6—O6—H6 | 104 (2) |
N2iii—Cu1—N2 | 179.999 (1) | Cu1—O6—H6 | 97 (2) |
N1iii—Cu1—O6 | 82.69 (8) | ||
N2—C1—C2—N1 | −7.5 (3) | N3—C1—N2—Cu1 | −178.33 (18) |
N3—C1—C2—N1 | 171.1 (2) | C2—C1—N2—Cu1 | 0.2 (3) |
N2—C1—C2—N4 | 172.8 (2) | N1iii—Cu1—N2—C1 | −175.60 (18) |
N3—C1—C2—N4 | −8.6 (4) | N1—Cu1—N2—C1 | 4.40 (18) |
N4—C2—N1—O2 | −3.1 (4) | O6—Cu1—N2—C1 | 101.86 (18) |
C1—C2—N1—O2 | 177.20 (19) | N1iii—Cu1—N2—O1 | 6.43 (18) |
N4—C2—N1—Cu1 | −168.98 (19) | N1—Cu1—N2—O1 | −173.57 (18) |
C1—C2—N1—Cu1 | 11.3 (3) | O6—Cu1—N2—O1 | −76.10 (17) |
N2iii—Cu1—N1—C2 | 171.00 (17) | N6—C3—N5—O4 | 2.8 (3) |
N2—Cu1—N1—C2 | −9.00 (17) | C3i—C3—N5—O4 | −177.3 (2) |
O6—Cu1—N1—C2 | −97.45 (18) | N8—C4—N7—O3 | 1.0 (3) |
N2iii—Cu1—N1—O2 | 6.80 (19) | C4ii—C4—N7—O3 | −179.8 (2) |
N2—Cu1—N1—O2 | −173.20 (19) | N1iii—Cu1—O6—C6 | 169.14 (15) |
O6—Cu1—N1—O2 | 98.35 (17) | N1—Cu1—O6—C6 | −10.87 (15) |
N3—C1—N2—O1 | −0.2 (4) | N2iii—Cu1—O6—C6 | 88.36 (15) |
C2—C1—N2—O1 | 178.31 (17) | N2—Cu1—O6—C6 | −91.64 (15) |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1iii | 0.84 | 1.96 | 2.737 (3) | 154 |
O3—H3···O5iv | 0.84 | 1.92 | 2.744 (3) | 166 |
O4—H4···O1v | 0.84 | 1.79 | 2.621 (3) | 169 |
O5—H5···O1vi | 0.81 (2) | 1.87 (3) | 2.657 (3) | 164 (2) |
O6—H6···O5vii | 0.79 (3) | 1.94 (3) | 2.721 (3) | 173 (3) |
N3—H3A···N7viii | 0.88 | 2.50 | 3.195 (3) | 136 |
N3—H3B···O6ix | 0.88 | 2.32 | 3.167 (3) | 162 |
N4—H4A···O4x | 0.88 | 2.35 | 3.112 (3) | 145 |
N4—H4B···O6ix | 0.88 | 2.00 | 2.878 (3) | 172 |
N6—H6A···O3ii | 0.88 | 2.26 | 3.097 (3) | 159 |
N6—H6B···N7ix | 0.88 | 2.19 | 3.007 (3) | 155 |
N8—H8A···O4ii | 0.88 | 2.20 | 3.043 (3) | 159 |
N8—H8B···N5xi | 0.88 | 2.21 | 3.031 (3) | 154 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+2; (iv) −x+2, −y+1, −z+1; (v) x, y+1, z−1; (vi) x, y, z−1; (vii) x, y, z+1; (viii) −x+1, −y+1, −z+2; (ix) x−1, y, z; (x) −x, −y+1, −z+1; (xi) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C2H5N4O2)2(CH4O)2]·2C2H6N4O2·2CH4O |
Mr | 662.13 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 113 |
a, b, c (Å) | 7.567 (3), 8.874 (4), 10.867 (5) |
α, β, γ (°) | 92.046 (4), 103.327 (9), 104.957 (5) |
V (Å3) | 682.5 (5) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.89 |
Crystal size (mm) | 0.28 × 0.24 × 0.22 |
Data collection | |
Diffractometer | Rigaku Saturn724 CCD |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2009) |
Tmin, Tmax | 0.790, 0.829 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7216, 3212, 2252 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.086, 0.99 |
No. of reflections | 3212 |
No. of parameters | 198 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.39 |
Computer programs: CrystalClear (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.84 | 1.96 | 2.737 (3) | 154 |
O3—H3···O5ii | 0.84 | 1.92 | 2.744 (3) | 166 |
O4—H4···O1iii | 0.84 | 1.79 | 2.621 (3) | 169 |
O5—H5···O1iv | 0.81 (2) | 1.87 (3) | 2.657 (3) | 164 (2) |
O6—H6···O5v | 0.79 (3) | 1.94 (3) | 2.721 (3) | 173 (3) |
N3—H3A···N7vi | 0.88 | 2.50 | 3.195 (3) | 136 |
N3—H3B···O6vii | 0.88 | 2.32 | 3.167 (3) | 162 |
N4—H4A···O4viii | 0.88 | 2.35 | 3.112 (3) | 145 |
N4—H4B···O6vii | 0.88 | 2.00 | 2.878 (3) | 172 |
N6—H6A···O3ix | 0.88 | 2.26 | 3.097 (3) | 159 |
N6—H6B···N7vii | 0.88 | 2.19 | 3.007 (3) | 155 |
N8—H8A···O4ix | 0.88 | 2.20 | 3.043 (3) | 159 |
N8—H8B···N5x | 0.88 | 2.21 | 3.031 (3) | 154 |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+2, −y+1, −z+1; (iii) x, y+1, z−1; (iv) x, y, z−1; (v) x, y, z+1; (vi) −x+1, −y+1, −z+2; (vii) x−1, y, z; (viii) −x, −y+1, −z+1; (ix) −x+1, −y+1, −z+1; (x) x, y−1, z. |
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Nos. 20941004, 21071084 and 90922032) and the MOE (IRT-0927), Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry.
References
Belombe, M. M., Nenwa, J., Bebga, G., Fokwa, B. P. T. & Dronskowski, R. (2007). Acta Cryst. E63, m2037–m2038. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bélombé, M., Nenwa, J., Kammoe, A. L. & Poudeu, P. F. P. (2006). Acta Cryst. E62, m2583–m2585. Web of Science CSD CrossRef IUCr Journals Google Scholar
Egharevba, G. O., Mégnamisi-Bélombé, M., Endres, H. & Rossato, E. (1982). Acta Cryst. B38, 2901–2903. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Endres, H. (1980). Acta Cryst. B36, 57–60. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Endres, H. & Schlicksupp, L. (1980). Acta Cryst. B36, 715–716. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Endres, H., Genc, N. & Nöthe, D. (1983). Acta Cryst. C39, 701–703. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Gunasekaran, A., Jayachandran, T., Boyer, J. H. & Trudell, M. L. (1995). J. Heterocycl. Chem. 32, 1405–1407. CrossRef CAS Google Scholar
Rigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Owing to the variety of structures and unique properties, transition metal complexes of oxamide oxime (diaminoglyoxime, oaoH2) are of great interest. So far, most of the published work concerns 4-coordinated transition metal oxamide oximate complexs (Endres, 1980; Endres & Schlicksupp, 1980; Endres et al., 1983). The 6-coordinated transition metal oxamide oximate complexes have not been reported hitherto (Bélombé et al., 2006; Belombe et al., 2007; Egharevba et al., 1982). We used oxamide oxime as ligands (Gunasekaran et al., 1995) and obtained green crystals of the title compound from a methanol solution.
In the title compound, the CuII atom, lying on an inversion center, is surrounded in an octahedral environment defined by four N atoms from two oaoH ligands and two O atoms from two methanol molecules (Fig. 1). The methanol molecules are weakly coordinated to the Cu atom with a Cu—O distance of 2.797 (2) Å. In the crystal, O—H···O, N—H···O and N—H···N hydrogen bonds (Table 1) link the complex molecules and the oxamide oxime and methanol molecules.