metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(2,2′-bi­pyridine-κ2N,N′)cobalt(III) bis­­[bis­­(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)cobaltate(III)] perchlorate di­methyl­formamide hemisolvate 1.3-hydrate

aDepartment of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kiev, Ukraine, and bDepartment of Chemistry, University of Joensuu, PO Box 111, FI-80101 Joensuu, Finland
*Correspondence e-mail: a.boyko@univ.kiev.ua

(Received 19 August 2012; accepted 28 August 2012; online 1 September 2012)

In the title compound, [Co(C10H8N2)3][Co(C7H3NO4)2]2(ClO4)·0.5C3H7NO·1.3H2O, the CoIII atom in the complex cation is pseudoocta­hedrally coordinated by six N atoms of three chelating bipyridine ligands. The CoIII atom in the complex anion is coordinated by two pyridine N atoms and four carboxyl­ate O atoms of two doubly deprotonated pyridine-2,6-dicarboxyl­ate ligands in a distorted octa­hedral geometry. One dimethyl­formamide solvent mol­ecule and two water mol­ecules are half-occupied and one water mol­ecule is 0.3-occupied. O—H⋯O hydrogen bonds link the water mol­ecules, the perchlorate anions and the complex anions. ππ inter­actions between the pyridine rings of the complex anions are also observed [centroid–centroid distance = 3.804 (3) Å].

Related literature

For properties of polynuclear complexes, see: Fritsky et al. (2001[Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2001). Chem. Eur. J. 7, 1221-1231.], 2004[Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Yu. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746-3752.]); Krämer & Fritsky (2000[Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505-3510.]); Moroz et al. (2010[Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750-4752.]); Thompson (2002[Thompson, L. K. (2002). Coord. Chem. Rev. 233-234, 193-206.]). For the use of hydroxamic acids in the synthesis of oligonuclear complexes and coordination polymers, see: Golenya et al. (2012a[Golenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012a). Dalton Trans. 41, 9427-9430.],b[Golenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012b). Inorg. Chem. 51, 6221-6227.]); Gumienna-Kontecka et al. (2007[Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798-1805.]); Mezei et al. (2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]); Pavlishchuk et al. (2011[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826-4836.]); Strotmeyer et al. (2004[Strotmeyer, K. P., Fritsky, I. O., Pritzkow, H. & Krämer, R. (2004). Chem. Commun. pp. 28-29.]). For hydrolytic decomposition of hydroxamate ligands on complex formation, see: Dobosz et al. (1998[Dobosz, A., Fritsky, I. O., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1998). J. Chem. Soc. Dalton Trans. pp. 1089-1090.], 1999[Dobosz, A., Dudarenko, N. M., Fritsky, I. O., Głowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743-749.]); Świątek-Kozłowska et al. (2000[Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064-4068.]). For the preparation of the ligand, see: Świątek-Kozłowska et al. (2002[Świątek-Kozłowska, J., Gumienna-Kontecka, E., Dobosz, A., Golenya, I. A. & Fritsky, I. O. (2002). J. Chem. Soc. Dalton Trans. pp. 4639-4643.]). For related structures, see: Fritsky et al. (2003[Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Inorg. Chim. Acta, 346, 111-118.]); Mokhir et al. (2002[Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.]); Moroz et al. (2008[Moroz, Y. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem. 47, 5656-5665.]); Penkova et al. (2009[Penkova, L. V., Maciag, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960-6971.]); Sachse et al. (2008[Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800-806.]); Wörl et al. (2005a[Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005a). Eur. J. Inorg. Chem. pp. 759-765.],b[Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005b). Dalton Trans. pp. 27-29.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H8N2)3][Co(C7H3NO4)2]2(ClO4)·0.5C3H7NO·1.3H2O

  • Mr = 1465.18

  • Triclinic, [P \overline 1]

  • a = 14.1988 (4) Å

  • b = 14.7317 (6) Å

  • c = 16.6016 (8) Å

  • α = 113.286 (2)°

  • β = 107.128 (3)°

  • γ = 90.190 (3)°

  • V = 3019.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 100 K

  • 0.32 × 0.18 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.753, Tmax = 0.929

  • 50715 measured reflections

  • 13787 independent reflections

  • 9788 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.181

  • S = 1.03

  • 13787 reflections

  • 871 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.34 e Å−3

  • Δρmin = −1.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O14A—H14E⋯O12 0.94 2.11 3.017 (9) 164
O14A—H14F⋯O3Ai 0.94 1.97 2.861 (9) 156
O15—H115⋯O7Aii 0.85 2.20 3.029 (13) 164
O15—H215⋯O2B 0.85 2.07 2.842 (13) 152
Symmetry codes: (i) x, y+1, z; (ii) -x, -y, -z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polynuclear complexes and supramolecular assemblies containing both cationic and anionic modules are widely used in molecular magnetism, crystal engineering, bioinorganic modeling and catalysis (Fritsky et al., 2001, 2004; Krämer & Fritsky, 2000; Moroz et al., 2010; Thompson, 2002). Hydroxamic acids are extensively used in synthesis of discrete oligonuclear compounds (e.g. metallacrowns) (Golenya et al., 2012a,b; Mezei et al., 2007; Strotmeyer et al., 2004) and coordination polymers (Gumienna-Kontecka et al., 2007; Pavlishchuk et al., 2011). However, the synthesis of such compounds in aqueous solution under alkaline conditions is sometimes complicated by hydrolytic decomposition of the hydroxamate function resulting in the formation of carboxylic groups (Dobosz et al., 1998, 1999; Świątek-Kozłowska et al., 2000). Herein we report the crystal and molecular structure of the title compound obtained in the course of our attempt to obtain a mixed ligand binuclear cobalt complex as a result of hydrolytic decomposition of pyridine-2,6-dihydroxamic acid.

The title compound is ionic and contains discrete tris(2,2'-bipyridine)cobalt(III) cations, bis(pyridine-2,6-dicarboxylato)cobalt(III) complex anions, perchlorate anions and solvent DMF and water molecules (Fig. 1). The CoIII atom in the complex cation is pseudooctahedrally coordinated by six N atoms of three chelating bipyridine ligands. The CoIII atoms in the complex anions are coordinated by two pyridine N atoms and four carboxylate O atoms of two doubly deprotonated pyridine-2,6-dicarboxylate ligands in a distorted octahedral geometry. The values of Co—O and Co—N bond distances in the complex anions are in a range of 1.834 (3)–1.838 (3) Å and 1.904 (3)–1.938 (3) Å, respectively. The Co—N distances range in the complex cation is 1.930 (3)–1.955 (3) Å. The observed values of Co—O and Co—N bond lengths are typical for realted cobalt(III) complexes (Fritsky et al., 2003; Mokhir et al., 2002; Świątek-Kozłowska et al., 2000). This clearly indicates that the metal ions in both complex cation and anions are in trivalent state. The C—O bond lengths in the deprotonated carboxylate groups differ significantly [1.239 (2) and 1.292 (2) Å], which is typical for monodentately coordinated carboxylates (Wörl et al., 2005a, b). The C—N and C—C bond lengths in the 2,2'-bipyridine ligands and in the pyridine-2,6-dicarboxylate ligands are normal for 2-substituted pyridine derivatives (Moroz et al., 2008; Penkova et al., 2009; Sachse et al., 2008).

The crystal packing of the title compound is presented in Fig. 2. O—H···O hydrogen bonds link the water molecules, the perchlorate anions and the complex anions. ππ interactions between the pyridine rings of the complex anions are observed [centroid–centroid distance = 3.804 (3) Å].

Related literature top

For properties of polynuclear complexes, see: Fritsky et al. (2001, 2004); Krämer & Fritsky (2000); Moroz et al. (2010); Thompson (2002). For the use of hydroxamic acids in the synthesis of oligonuclear complexes and coordination polymers, see: Golenya et al. (2012a,b); Gumienna-Kontecka et al. (2007); Mezei et al. (2007); Pavlishchuk et al. (2011); Strotmeyer et al. (2004). For hydrolytic decomposition of hydroxamate ligands on complex formation, see: Dobosz et al. (1998, 1999); Świątek-Kozłowska et al. (2000). For the preparation of the ligand, see: Świątek-Kozłowska et al. (2002). For related structures, see: Fritsky et al. (2003); Mokhir et al. (2002); Moroz et al. (2008); Penkova et al. (2009); Sachse et al. (2008); Wörl et al. (2005a,b).

Experimental top

Cobalt(II) perchlorate hexahydrate (0.037 g, 0.1 mmol) was dissolved in methanol (5 ml) and mixed with a solution of pyridine-2,6-dihydroxamic acid (0.039 g, 0.2 mmol) synthesized according to Świątek-Kozłowska et al. (2002) in dimethylformamide (5 ml), then to the obtained mixture a solution of sodium hydroxide (0.1 M, 4 ml) was added. In a separate vessel, cobalt(II) perchlorate hexahydrate (0.037 g, 0.1 mmol) was dissolved in methanol (5 ml) and mixed with a solution of 2,2'-bipyridine (0.312 g, 2 mmol) in methanol (5 ml). Then the two obtained solutions were mixed, and the obtained mixture was stirred at 60 C° for 30 min and filtered. Dark red crystals suitable for X-ray analysis were obtained by slow diffusion of diethyl ether into the resulting solution at room temperature within 72 h. They were filtered off and washed with diethyl ether (yield: 62%).

Refinement top

The DMF molecule was partially lost and therefore it was refined with occupancy of 0.5. The N13—C45 and N13—C46 distances in the DMF molecule were set to be equal. Also, C, N and O in DMF were refined with equal anisotropic displacement parameters. One of the water molecules was disordered over two sites with equal occupancies. Another water molecule was refined with occupancy factor of 0.3. The water H atoms were located from a difference Fourier map and constrained to ride on the parent atoms, with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (CH) and 0.98 (CH3) Å and Uiso(H) = 1.2(1.5 for methyl)Ueq(C). The highest residual electron density was found at 1.06 Å from H46C atom and the deepest hole at 0.69 Å from Cl1 atom.

Structure description top

Polynuclear complexes and supramolecular assemblies containing both cationic and anionic modules are widely used in molecular magnetism, crystal engineering, bioinorganic modeling and catalysis (Fritsky et al., 2001, 2004; Krämer & Fritsky, 2000; Moroz et al., 2010; Thompson, 2002). Hydroxamic acids are extensively used in synthesis of discrete oligonuclear compounds (e.g. metallacrowns) (Golenya et al., 2012a,b; Mezei et al., 2007; Strotmeyer et al., 2004) and coordination polymers (Gumienna-Kontecka et al., 2007; Pavlishchuk et al., 2011). However, the synthesis of such compounds in aqueous solution under alkaline conditions is sometimes complicated by hydrolytic decomposition of the hydroxamate function resulting in the formation of carboxylic groups (Dobosz et al., 1998, 1999; Świątek-Kozłowska et al., 2000). Herein we report the crystal and molecular structure of the title compound obtained in the course of our attempt to obtain a mixed ligand binuclear cobalt complex as a result of hydrolytic decomposition of pyridine-2,6-dihydroxamic acid.

The title compound is ionic and contains discrete tris(2,2'-bipyridine)cobalt(III) cations, bis(pyridine-2,6-dicarboxylato)cobalt(III) complex anions, perchlorate anions and solvent DMF and water molecules (Fig. 1). The CoIII atom in the complex cation is pseudooctahedrally coordinated by six N atoms of three chelating bipyridine ligands. The CoIII atoms in the complex anions are coordinated by two pyridine N atoms and four carboxylate O atoms of two doubly deprotonated pyridine-2,6-dicarboxylate ligands in a distorted octahedral geometry. The values of Co—O and Co—N bond distances in the complex anions are in a range of 1.834 (3)–1.838 (3) Å and 1.904 (3)–1.938 (3) Å, respectively. The Co—N distances range in the complex cation is 1.930 (3)–1.955 (3) Å. The observed values of Co—O and Co—N bond lengths are typical for realted cobalt(III) complexes (Fritsky et al., 2003; Mokhir et al., 2002; Świątek-Kozłowska et al., 2000). This clearly indicates that the metal ions in both complex cation and anions are in trivalent state. The C—O bond lengths in the deprotonated carboxylate groups differ significantly [1.239 (2) and 1.292 (2) Å], which is typical for monodentately coordinated carboxylates (Wörl et al., 2005a, b). The C—N and C—C bond lengths in the 2,2'-bipyridine ligands and in the pyridine-2,6-dicarboxylate ligands are normal for 2-substituted pyridine derivatives (Moroz et al., 2008; Penkova et al., 2009; Sachse et al., 2008).

The crystal packing of the title compound is presented in Fig. 2. O—H···O hydrogen bonds link the water molecules, the perchlorate anions and the complex anions. ππ interactions between the pyridine rings of the complex anions are observed [centroid–centroid distance = 3.804 (3) Å].

For properties of polynuclear complexes, see: Fritsky et al. (2001, 2004); Krämer & Fritsky (2000); Moroz et al. (2010); Thompson (2002). For the use of hydroxamic acids in the synthesis of oligonuclear complexes and coordination polymers, see: Golenya et al. (2012a,b); Gumienna-Kontecka et al. (2007); Mezei et al. (2007); Pavlishchuk et al. (2011); Strotmeyer et al. (2004). For hydrolytic decomposition of hydroxamate ligands on complex formation, see: Dobosz et al. (1998, 1999); Świątek-Kozłowska et al. (2000). For the preparation of the ligand, see: Świątek-Kozłowska et al. (2002). For related structures, see: Fritsky et al. (2003); Mokhir et al. (2002); Moroz et al. (2008); Penkova et al. (2009); Sachse et al. (2008); Wörl et al. (2005a,b).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with displacement ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. H atoms have been omitted for clarity.
Tris(2,2'-bipyridine-κ2N,N')cobalt(III) bis[bis(pyridine-2,6-dicarboxylato- κ3O2,N,O6)cobaltate(III)] perchlorate dimethylformamide hemisolvate 1.3-hydrate top
Crystal data top
[Co(C10H8N2)3][Co(C7H3NO4)2]2(ClO4)·0.5C3H7NO·1.3H2OZ = 2
Mr = 1465.18F(000) = 1490
Triclinic, P1Dx = 1.611 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 14.1988 (4) ÅCell parameters from 50715 reflections
b = 14.7317 (6) Åθ = 2.3–27.5°
c = 16.6016 (8) ŵ = 0.95 mm1
α = 113.286 (2)°T = 100 K
β = 107.128 (3)°Plate, dark-red
γ = 90.190 (3)°0.32 × 0.18 × 0.08 mm
V = 3019.8 (2) Å3
Data collection top
Nonius KappaCCD
diffractometer
13787 independent reflections
Radiation source: fine-focus sealed tube9788 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.044
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.3°
φ and ω scansh = 1818
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1919
Tmin = 0.753, Tmax = 0.929l = 2121
50715 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: mixed
wR(F2) = 0.181H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0882P)2 + 6.788P]
where P = (Fo2 + 2Fc2)/3
13787 reflections(Δ/σ)max < 0.001
871 parametersΔρmax = 1.34 e Å3
1 restraintΔρmin = 1.11 e Å3
Crystal data top
[Co(C10H8N2)3][Co(C7H3NO4)2]2(ClO4)·0.5C3H7NO·1.3H2Oγ = 90.190 (3)°
Mr = 1465.18V = 3019.8 (2) Å3
Triclinic, P1Z = 2
a = 14.1988 (4) ÅMo Kα radiation
b = 14.7317 (6) ŵ = 0.95 mm1
c = 16.6016 (8) ÅT = 100 K
α = 113.286 (2)°0.32 × 0.18 × 0.08 mm
β = 107.128 (3)°
Data collection top
Nonius KappaCCD
diffractometer
13787 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
9788 reflections with I > 2σ(I)
Tmin = 0.753, Tmax = 0.929Rint = 0.044
50715 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0601 restraint
wR(F2) = 0.181H-atom parameters constrained
S = 1.03Δρmax = 1.34 e Å3
13787 reflectionsΔρmin = 1.11 e Å3
871 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co1A0.00824 (4)0.01102 (4)0.78276 (4)0.02594 (14)
Co1B0.47004 (4)0.00821 (4)0.71679 (4)0.02581 (14)
Co20.24444 (4)0.50151 (4)0.24937 (4)0.02425 (14)
Cl10.20408 (8)0.57673 (9)0.61001 (9)0.0464 (3)
O1A0.09182 (19)0.1091 (2)0.76943 (19)0.0287 (6)
O2A0.2162 (2)0.1836 (2)0.8138 (2)0.0337 (6)
O3A0.0468 (2)0.1927 (2)0.8807 (2)0.0363 (7)
O4A0.0565 (2)0.0920 (2)0.8104 (2)0.0309 (6)
O5A0.0858 (2)0.1126 (2)0.88970 (19)0.0321 (6)
O6A0.2252 (2)0.2139 (3)0.9317 (2)0.0451 (8)
O7A0.0809 (2)0.1502 (2)0.5150 (2)0.0361 (7)
O8A0.08256 (19)0.0857 (2)0.66155 (19)0.0274 (6)
O1B0.4178 (2)0.1164 (2)0.6868 (2)0.0311 (6)
O2B0.4444 (2)0.2120 (2)0.6165 (2)0.0397 (7)
O3B0.6721 (2)0.1733 (2)0.7022 (2)0.0352 (7)
O4B0.54342 (19)0.0949 (2)0.73398 (19)0.0293 (6)
O5B0.5412 (2)0.1005 (2)0.84153 (19)0.0310 (6)
O6B0.5385 (2)0.1466 (2)0.9873 (2)0.0432 (8)
O7B0.2357 (2)0.1898 (2)0.5513 (2)0.0373 (7)
O8B0.37790 (19)0.0869 (2)0.60488 (19)0.0286 (6)
O90.1282 (2)0.6308 (3)0.5794 (3)0.0584 (10)
O100.2684 (2)0.5537 (3)0.5536 (3)0.0562 (10)
O110.1580 (3)0.4859 (3)0.6027 (3)0.0550 (9)
O120.2630 (3)0.6361 (3)0.7060 (3)0.0688 (12)
O130.1629 (6)0.3704 (7)0.8102 (6)0.0662 (13)0.50
O14A0.1748 (6)0.6559 (7)0.8558 (5)0.0680 (16)0.50
H14E0.19350.63800.80240.102*0.50
H14F0.14990.71770.87300.102*0.50
O14B0.0973 (6)0.4973 (7)0.8239 (5)0.0680 (16)0.50
H14G0.10700.49380.77170.102*0.50
H14H0.03840.51610.83560.102*0.50
O150.2704 (8)0.2910 (11)0.5509 (11)0.071 (4)0.30
H1150.21820.25630.54370.107*0.30
H2150.31670.25460.55020.107*0.30
N1A0.0896 (2)0.0084 (2)0.8440 (2)0.0257 (7)
N2A0.0728 (2)0.0334 (2)0.7226 (2)0.0248 (7)
N1B0.5602 (2)0.0223 (2)0.6615 (2)0.0271 (7)
N2B0.3829 (2)0.0185 (2)0.7699 (2)0.0257 (7)
N30.1579 (2)0.5970 (2)0.2940 (2)0.0259 (7)
N40.1906 (2)0.4303 (2)0.3052 (2)0.0259 (7)
N50.2875 (2)0.5710 (2)0.1848 (2)0.0271 (7)
N60.1394 (2)0.4356 (2)0.1312 (2)0.0258 (7)
N70.3557 (2)0.5647 (2)0.3636 (2)0.0271 (7)
N80.3362 (2)0.4074 (2)0.2137 (2)0.0282 (7)
N90.3161 (7)0.4078 (8)0.8183 (7)0.0662 (13)0.50
C1A0.1600 (3)0.1209 (3)0.8104 (3)0.0276 (8)
C2A0.1612 (3)0.0488 (3)0.8545 (3)0.0279 (8)
C3A0.2224 (3)0.0372 (3)0.9016 (3)0.0308 (9)
H3A0.27390.07730.91040.037*
C4A0.2058 (3)0.0361 (3)0.9361 (3)0.0331 (9)
H4A0.24720.04620.96840.040*
C5A0.1300 (3)0.0944 (3)0.9241 (3)0.0308 (9)
H5A0.11890.14390.94780.037*
C6A0.0713 (3)0.0781 (3)0.8769 (3)0.0283 (8)
C7A0.0173 (3)0.1271 (3)0.8555 (3)0.0294 (9)
C8A0.1575 (3)0.1501 (3)0.8729 (3)0.0325 (9)
C9A0.1505 (3)0.1049 (3)0.7724 (3)0.0268 (8)
C10A0.2110 (3)0.1266 (3)0.7287 (3)0.0310 (9)
H10A0.26670.17730.76270.037*
C11A0.1882 (3)0.0725 (3)0.6340 (3)0.0326 (9)
H11A0.22850.08680.60270.039*
C12A0.1065 (3)0.0031 (3)0.5836 (3)0.0308 (9)
H12A0.09130.04110.51880.037*
C13A0.0486 (3)0.0202 (3)0.6318 (3)0.0270 (8)
C14A0.0448 (3)0.0928 (3)0.5966 (3)0.0273 (8)
C1B0.4648 (3)0.1453 (3)0.6423 (3)0.0322 (9)
C2B0.5510 (3)0.0889 (3)0.6260 (3)0.0296 (9)
C3B0.6147 (3)0.0978 (3)0.5797 (3)0.0329 (9)
H3B0.60970.14600.55440.040*
C4B0.6863 (3)0.0337 (3)0.5716 (3)0.0363 (10)
H4B0.73140.03850.54060.044*
C5B0.6934 (3)0.0372 (3)0.6079 (3)0.0343 (10)
H5B0.74160.08180.60110.041*
C6B0.6272 (3)0.0406 (3)0.6545 (3)0.0283 (9)
C7B0.6166 (3)0.1097 (3)0.6996 (3)0.0304 (9)
C8B0.5037 (3)0.0971 (3)0.9037 (3)0.0316 (9)
C9B0.4105 (3)0.0214 (3)0.8618 (3)0.0287 (8)
C10B0.3597 (3)0.0137 (3)0.9052 (3)0.0328 (9)
H10B0.37900.01330.97090.039*
C11B0.2805 (3)0.0886 (3)0.8515 (3)0.0369 (10)
H11B0.24440.11280.88050.044*
C12B0.2526 (3)0.1291 (3)0.7549 (3)0.0318 (9)
H12B0.19750.18010.71760.038*
C13B0.3078 (3)0.0925 (3)0.7155 (3)0.0283 (8)
C14B0.3028 (3)0.1280 (3)0.6151 (3)0.0287 (8)
C150.1501 (3)0.6856 (3)0.2884 (3)0.0285 (8)
H150.18790.70470.25760.034*
C160.0887 (3)0.7492 (3)0.3261 (3)0.0330 (9)
H160.08460.81150.32160.040*
C170.0329 (3)0.7218 (3)0.3709 (3)0.0370 (10)
H170.00970.76490.39760.044*
C180.0403 (3)0.6306 (3)0.3758 (3)0.0353 (10)
H180.00260.61000.40590.042*
C190.1027 (3)0.5701 (3)0.3369 (3)0.0285 (8)
C200.1182 (3)0.4729 (3)0.3400 (3)0.0283 (8)
C210.0650 (3)0.4264 (3)0.3739 (3)0.0354 (10)
H210.01360.45670.39640.042*
C220.0871 (3)0.3358 (3)0.3749 (3)0.0379 (10)
H220.05090.30290.39780.045*
C230.1631 (3)0.2931 (3)0.3419 (3)0.0333 (9)
H230.18050.23140.34330.040*
C240.2128 (3)0.3419 (3)0.3072 (3)0.0277 (8)
H240.26410.31230.28400.033*
C250.3678 (3)0.6408 (3)0.2189 (3)0.0334 (9)
H250.40960.66060.28100.040*
C260.3904 (3)0.6844 (3)0.1651 (3)0.0366 (10)
H260.44760.73280.19040.044*
C270.3303 (3)0.6575 (3)0.0755 (3)0.0388 (10)
H270.34380.68830.03880.047*
C280.2491 (3)0.5839 (3)0.0398 (3)0.0350 (10)
H280.20690.56290.02240.042*
C290.2304 (3)0.5420 (3)0.0951 (3)0.0280 (8)
C300.1471 (3)0.4627 (3)0.0636 (3)0.0285 (8)
C310.0823 (3)0.4182 (3)0.0262 (3)0.0322 (9)
H310.08960.43780.07250.039*
C320.0066 (3)0.3445 (3)0.0475 (3)0.0336 (9)
H320.03800.31170.10890.040*
C330.0031 (3)0.3197 (3)0.0210 (3)0.0339 (9)
H330.05560.27060.00790.041*
C340.0638 (3)0.3664 (3)0.1094 (3)0.0305 (9)
H340.05590.34870.15650.037*
C350.3568 (3)0.6453 (3)0.4396 (3)0.0291 (9)
H350.29740.67450.44150.035*
C360.4426 (3)0.6868 (3)0.5152 (3)0.0354 (10)
H360.44180.74380.56830.042*
C370.5292 (3)0.6450 (3)0.5129 (3)0.0425 (11)
H370.58910.67430.56330.051*
C380.5275 (3)0.5599 (3)0.4363 (3)0.0421 (11)
H380.58580.52900.43390.051*
C390.4392 (3)0.5200 (3)0.3627 (3)0.0317 (9)
C400.4282 (3)0.4297 (3)0.2788 (3)0.0323 (9)
C410.5023 (3)0.3707 (3)0.2644 (3)0.0400 (11)
H410.56500.38630.31160.048*
C420.4849 (3)0.2891 (3)0.1813 (3)0.0428 (11)
H420.53520.24810.17020.051*
C430.3930 (3)0.2681 (3)0.1145 (3)0.0375 (10)
H430.37990.21320.05600.045*
C440.3199 (3)0.3280 (3)0.1334 (3)0.0316 (9)
H440.25620.31180.08760.038*
C450.3650 (8)0.3793 (10)0.8971 (9)0.0662 (13)0.50
H45A0.43740.39500.91570.099*0.50
H45B0.34730.30760.87710.099*0.50
H45C0.34220.41660.94980.099*0.50
C460.3758 (8)0.4354 (10)0.7676 (9)0.0662 (13)0.50
H46A0.44690.44420.80160.099*0.50
H46B0.35780.49780.76300.099*0.50
H46C0.36140.38210.70520.099*0.50
C470.2156 (9)0.3929 (10)0.7803 (10)0.0662 (13)0.50
H47A0.18810.40210.72500.079*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co1A0.0259 (3)0.0289 (3)0.0281 (3)0.0028 (2)0.0145 (2)0.0127 (2)
Co1B0.0234 (3)0.0259 (3)0.0276 (3)0.0002 (2)0.0114 (2)0.0083 (2)
Co20.0228 (3)0.0198 (3)0.0249 (3)0.00180 (19)0.0081 (2)0.0037 (2)
Cl10.0279 (5)0.0419 (6)0.0645 (8)0.0021 (4)0.0146 (5)0.0173 (6)
O1A0.0286 (14)0.0292 (14)0.0308 (15)0.0046 (11)0.0126 (12)0.0126 (12)
O2A0.0334 (15)0.0297 (15)0.0377 (17)0.0073 (12)0.0152 (13)0.0111 (13)
O3A0.0381 (16)0.0347 (16)0.0400 (17)0.0039 (13)0.0123 (14)0.0195 (14)
O4A0.0268 (14)0.0343 (15)0.0384 (16)0.0052 (11)0.0155 (12)0.0183 (13)
O5A0.0299 (14)0.0394 (16)0.0274 (15)0.0016 (12)0.0132 (12)0.0114 (13)
O6A0.0347 (16)0.053 (2)0.0334 (17)0.0078 (14)0.0098 (14)0.0050 (15)
O7A0.0328 (15)0.0391 (17)0.0304 (16)0.0011 (13)0.0117 (13)0.0074 (14)
O8A0.0272 (13)0.0289 (14)0.0290 (15)0.0006 (11)0.0136 (11)0.0117 (12)
O1B0.0274 (14)0.0293 (15)0.0365 (16)0.0001 (11)0.0117 (12)0.0127 (13)
O2B0.0400 (17)0.0337 (16)0.0456 (19)0.0005 (13)0.0092 (14)0.0198 (15)
O3B0.0283 (14)0.0316 (15)0.0372 (17)0.0057 (12)0.0101 (12)0.0061 (13)
O4B0.0266 (13)0.0279 (14)0.0339 (16)0.0044 (11)0.0121 (12)0.0114 (12)
O5B0.0282 (14)0.0299 (15)0.0312 (15)0.0005 (11)0.0100 (12)0.0088 (12)
O6B0.0381 (17)0.0498 (19)0.0304 (17)0.0017 (14)0.0083 (14)0.0073 (15)
O7B0.0318 (15)0.0335 (16)0.0364 (17)0.0034 (12)0.0115 (13)0.0040 (13)
O8B0.0265 (13)0.0303 (14)0.0275 (14)0.0000 (11)0.0116 (11)0.0084 (12)
O90.0290 (17)0.064 (2)0.093 (3)0.0103 (16)0.0218 (18)0.042 (2)
O100.0348 (18)0.065 (2)0.080 (3)0.0096 (16)0.0272 (18)0.035 (2)
O110.052 (2)0.052 (2)0.064 (2)0.0035 (16)0.0189 (18)0.0266 (19)
O120.039 (2)0.062 (2)0.071 (3)0.0018 (17)0.0099 (19)0.000 (2)
O130.050 (2)0.088 (3)0.080 (3)0.010 (2)0.032 (2)0.046 (3)
O14A0.076 (4)0.093 (4)0.041 (3)0.028 (3)0.028 (3)0.027 (3)
O14B0.076 (4)0.093 (4)0.041 (3)0.028 (3)0.028 (3)0.027 (3)
O150.026 (6)0.077 (9)0.098 (11)0.006 (6)0.002 (6)0.037 (8)
N1A0.0234 (15)0.0284 (17)0.0246 (17)0.0010 (13)0.0101 (13)0.0088 (14)
N2A0.0238 (15)0.0275 (16)0.0284 (17)0.0039 (12)0.0131 (13)0.0136 (14)
N1B0.0219 (15)0.0288 (17)0.0263 (17)0.0034 (13)0.0081 (13)0.0071 (14)
N2B0.0227 (15)0.0254 (16)0.0286 (18)0.0031 (12)0.0107 (13)0.0091 (14)
N30.0234 (15)0.0254 (16)0.0247 (17)0.0000 (12)0.0073 (13)0.0064 (14)
N40.0252 (16)0.0217 (16)0.0253 (17)0.0014 (12)0.0068 (13)0.0054 (13)
N50.0259 (16)0.0211 (15)0.0303 (18)0.0003 (12)0.0129 (14)0.0040 (14)
N60.0243 (15)0.0215 (15)0.0270 (17)0.0000 (12)0.0079 (13)0.0056 (13)
N70.0255 (16)0.0221 (16)0.0309 (18)0.0004 (12)0.0098 (14)0.0076 (14)
N80.0242 (16)0.0243 (16)0.0328 (18)0.0002 (13)0.0101 (14)0.0080 (14)
N90.050 (2)0.088 (3)0.080 (3)0.010 (2)0.032 (2)0.046 (3)
C1A0.0258 (18)0.028 (2)0.0228 (19)0.0015 (16)0.0090 (15)0.0030 (16)
C2A0.0269 (19)0.027 (2)0.0220 (19)0.0030 (15)0.0066 (15)0.0040 (16)
C3A0.0246 (19)0.034 (2)0.024 (2)0.0025 (16)0.0099 (16)0.0014 (17)
C4A0.033 (2)0.037 (2)0.026 (2)0.0082 (17)0.0151 (17)0.0062 (18)
C5A0.035 (2)0.029 (2)0.025 (2)0.0068 (16)0.0109 (17)0.0073 (17)
C6A0.030 (2)0.030 (2)0.0218 (19)0.0046 (16)0.0088 (16)0.0077 (16)
C7A0.0276 (19)0.032 (2)0.030 (2)0.0009 (16)0.0103 (16)0.0133 (18)
C8A0.029 (2)0.040 (2)0.029 (2)0.0052 (17)0.0117 (17)0.0134 (19)
C9A0.0252 (18)0.030 (2)0.028 (2)0.0056 (15)0.0110 (16)0.0121 (17)
C10A0.0247 (19)0.037 (2)0.036 (2)0.0017 (16)0.0134 (17)0.0168 (19)
C11A0.0271 (19)0.044 (2)0.037 (2)0.0054 (17)0.0175 (18)0.022 (2)
C12A0.0270 (19)0.040 (2)0.030 (2)0.0053 (17)0.0141 (17)0.0158 (18)
C13A0.0261 (18)0.030 (2)0.030 (2)0.0063 (15)0.0135 (16)0.0140 (17)
C14A0.0244 (18)0.030 (2)0.033 (2)0.0074 (15)0.0129 (16)0.0149 (18)
C1B0.028 (2)0.031 (2)0.030 (2)0.0066 (16)0.0038 (17)0.0095 (18)
C2B0.0283 (19)0.029 (2)0.024 (2)0.0081 (16)0.0063 (16)0.0052 (17)
C3B0.034 (2)0.033 (2)0.025 (2)0.0083 (17)0.0092 (17)0.0056 (17)
C4B0.031 (2)0.047 (3)0.026 (2)0.0098 (18)0.0123 (17)0.0087 (19)
C5B0.0243 (19)0.044 (2)0.025 (2)0.0020 (17)0.0104 (16)0.0028 (18)
C6B0.0220 (18)0.030 (2)0.0221 (19)0.0031 (15)0.0063 (15)0.0011 (16)
C7B0.0228 (18)0.030 (2)0.028 (2)0.0023 (16)0.0062 (16)0.0026 (17)
C8B0.0245 (19)0.033 (2)0.035 (2)0.0041 (16)0.0100 (17)0.0108 (18)
C9B0.0283 (19)0.030 (2)0.028 (2)0.0069 (16)0.0131 (16)0.0090 (17)
C10B0.030 (2)0.041 (2)0.030 (2)0.0099 (17)0.0152 (17)0.0127 (19)
C11B0.031 (2)0.047 (3)0.042 (3)0.0077 (18)0.0212 (19)0.021 (2)
C12B0.0231 (18)0.031 (2)0.040 (2)0.0013 (15)0.0142 (17)0.0108 (19)
C13B0.0263 (19)0.0243 (19)0.036 (2)0.0058 (15)0.0157 (17)0.0100 (17)
C14B0.0260 (19)0.027 (2)0.032 (2)0.0039 (15)0.0117 (17)0.0090 (17)
C150.031 (2)0.026 (2)0.023 (2)0.0005 (15)0.0053 (16)0.0080 (16)
C160.040 (2)0.027 (2)0.031 (2)0.0051 (17)0.0116 (18)0.0103 (18)
C170.041 (2)0.035 (2)0.040 (3)0.0130 (18)0.021 (2)0.014 (2)
C180.037 (2)0.032 (2)0.045 (3)0.0073 (17)0.024 (2)0.016 (2)
C190.0266 (19)0.027 (2)0.033 (2)0.0022 (15)0.0117 (16)0.0117 (17)
C200.0241 (18)0.0233 (19)0.034 (2)0.0011 (15)0.0098 (16)0.0079 (17)
C210.031 (2)0.032 (2)0.046 (3)0.0052 (17)0.0191 (19)0.015 (2)
C220.037 (2)0.031 (2)0.054 (3)0.0022 (17)0.022 (2)0.020 (2)
C230.035 (2)0.0230 (19)0.040 (2)0.0033 (16)0.0122 (18)0.0112 (18)
C240.0257 (18)0.0220 (19)0.032 (2)0.0013 (15)0.0090 (16)0.0080 (16)
C250.029 (2)0.027 (2)0.035 (2)0.0038 (16)0.0120 (17)0.0019 (17)
C260.037 (2)0.028 (2)0.043 (3)0.0040 (17)0.024 (2)0.0054 (19)
C270.043 (2)0.035 (2)0.041 (3)0.0008 (19)0.024 (2)0.011 (2)
C280.036 (2)0.033 (2)0.034 (2)0.0013 (17)0.0156 (18)0.0085 (19)
C290.0258 (19)0.0240 (19)0.030 (2)0.0013 (15)0.0142 (16)0.0039 (16)
C300.0258 (19)0.026 (2)0.033 (2)0.0041 (15)0.0135 (16)0.0093 (17)
C310.035 (2)0.030 (2)0.028 (2)0.0009 (17)0.0085 (17)0.0091 (17)
C320.030 (2)0.031 (2)0.029 (2)0.0005 (16)0.0013 (17)0.0080 (18)
C330.031 (2)0.027 (2)0.037 (2)0.0050 (16)0.0051 (18)0.0109 (18)
C340.029 (2)0.0236 (19)0.034 (2)0.0027 (15)0.0079 (17)0.0092 (17)
C350.0282 (19)0.0224 (19)0.030 (2)0.0018 (15)0.0098 (16)0.0040 (16)
C360.035 (2)0.029 (2)0.030 (2)0.0023 (17)0.0064 (18)0.0022 (18)
C370.029 (2)0.038 (2)0.038 (3)0.0001 (18)0.0004 (19)0.001 (2)
C380.026 (2)0.038 (2)0.043 (3)0.0054 (18)0.0036 (19)0.004 (2)
C390.0264 (19)0.027 (2)0.033 (2)0.0014 (15)0.0095 (17)0.0032 (17)
C400.0252 (19)0.030 (2)0.032 (2)0.0013 (16)0.0091 (17)0.0031 (18)
C410.026 (2)0.036 (2)0.042 (3)0.0064 (17)0.0061 (18)0.004 (2)
C420.032 (2)0.041 (3)0.043 (3)0.0088 (19)0.015 (2)0.003 (2)
C430.036 (2)0.030 (2)0.033 (2)0.0026 (17)0.0134 (19)0.0022 (18)
C440.028 (2)0.027 (2)0.030 (2)0.0013 (16)0.0072 (17)0.0036 (17)
C450.050 (2)0.088 (3)0.080 (3)0.010 (2)0.032 (2)0.046 (3)
C460.050 (2)0.088 (3)0.080 (3)0.010 (2)0.032 (2)0.046 (3)
C470.050 (2)0.088 (3)0.080 (3)0.010 (2)0.032 (2)0.046 (3)
Geometric parameters (Å, º) top
Co1A—N2A1.834 (3)C11A—C12A1.403 (6)
Co1A—N1A1.836 (3)C11A—H11A0.9500
Co1A—O1A1.912 (3)C12A—C13A1.388 (5)
Co1A—O5A1.914 (3)C12A—H12A0.9500
Co1A—O8A1.915 (3)C13A—C14A1.512 (5)
Co1A—O4A1.916 (3)C1B—C2B1.511 (6)
Co1B—N1B1.835 (3)C2B—C3B1.384 (6)
Co1B—N2B1.838 (3)C3B—C4B1.390 (6)
Co1B—O8B1.904 (3)C3B—H3B0.9500
Co1B—O4B1.912 (3)C4B—C5B1.388 (7)
Co1B—O5B1.921 (3)C4B—H4B0.9500
Co1B—O1B1.938 (3)C5B—C6B1.395 (5)
Co2—N41.930 (3)C5B—H5B0.9500
Co2—N31.939 (3)C6B—C7B1.512 (6)
Co2—N61.943 (3)C8B—C9B1.521 (5)
Co2—N81.945 (3)C9B—C10B1.380 (6)
Co2—N71.946 (3)C10B—C11B1.379 (6)
Co2—N51.955 (3)C10B—H10B0.9500
Cl1—O111.432 (4)C11B—C12B1.397 (6)
Cl1—O91.434 (4)C11B—H11B0.9500
Cl1—O101.443 (4)C12B—C13B1.383 (6)
Cl1—O121.454 (4)C12B—H12B0.9500
O1A—C1A1.314 (5)C13B—C14B1.516 (6)
O2A—C1A1.218 (5)C15—C161.375 (6)
O3A—C7A1.226 (5)C15—H150.9500
O4A—C7A1.300 (5)C16—C171.388 (6)
O5A—C8A1.306 (5)C16—H160.9500
O6A—C8A1.215 (5)C17—C181.380 (6)
O7A—C14A1.223 (5)C17—H170.9500
O8A—C14A1.309 (5)C18—C191.373 (6)
O1B—C1B1.308 (5)C18—H180.9500
O2B—C1B1.223 (5)C19—C201.467 (6)
O3B—C7B1.232 (5)C20—C211.382 (6)
O4B—C7B1.306 (5)C21—C221.377 (6)
O5B—C8B1.309 (5)C21—H210.9500
O6B—C8B1.223 (5)C22—C231.393 (6)
O7B—C14B1.223 (5)C22—H220.9500
O8B—C14B1.310 (5)C23—C241.382 (6)
O13—C471.124 (13)C23—H230.9500
O14A—H14E0.9378C24—H240.9500
O14A—H14F0.9441C25—C261.390 (6)
O14B—H14G0.8982C25—H250.9500
O14B—H14H0.9309C26—C271.371 (7)
O15—H1150.8500C26—H260.9500
O15—H2150.8500C27—C281.392 (6)
N1A—C2A1.330 (5)C27—H270.9500
N1A—C6A1.334 (5)C28—C291.372 (6)
N2A—C13A1.329 (5)C28—H280.9500
N2A—C9A1.332 (5)C29—C301.476 (5)
N1B—C2B1.319 (5)C30—C311.384 (6)
N1B—C6B1.328 (5)C31—C321.388 (6)
N2B—C9B1.328 (5)C31—H310.9500
N2B—C13B1.336 (5)C32—C331.366 (6)
N3—C151.348 (5)C32—H320.9500
N3—C191.354 (5)C33—C341.380 (6)
N4—C241.352 (5)C33—H330.9500
N4—C201.361 (5)C34—H340.9500
N5—C251.353 (5)C35—C361.386 (6)
N5—C291.356 (5)C35—H350.9500
N6—C341.341 (5)C36—C371.381 (6)
N6—C301.362 (5)C36—H360.9500
N7—C351.344 (5)C37—C381.383 (6)
N7—C391.360 (5)C37—H370.9500
N8—C441.336 (5)C38—C391.391 (6)
N8—C401.367 (5)C38—H380.9500
N9—C471.357 (15)C39—C401.462 (6)
N9—C451.508 (13)C40—C411.382 (6)
N9—C461.510 (12)C41—C421.376 (6)
C1A—C2A1.512 (6)C41—H410.9500
C2A—C3A1.380 (5)C42—C431.378 (6)
C3A—C4A1.399 (6)C42—H420.9500
C3A—H3A0.9500C43—C441.391 (6)
C4A—C5A1.391 (6)C43—H430.9500
C4A—H4A0.9500C44—H440.9500
C5A—C6A1.378 (5)C45—H45A0.9800
C5A—H5A0.9500C45—H45B0.9800
C6A—C7A1.515 (6)C45—H45C0.9800
C8A—C9A1.504 (6)C46—H46A0.9800
C9A—C10A1.385 (5)C46—H46B0.9800
C10A—C11A1.385 (6)C46—H46C0.9800
C10A—H10A0.9500C47—H47A0.9500
N2A—Co1A—N1A178.75 (15)C3B—C2B—C1B129.0 (4)
N2A—Co1A—O1A95.68 (13)C2B—C3B—C4B117.5 (4)
N1A—Co1A—O1A83.30 (13)C2B—C3B—H3B121.3
N2A—Co1A—O5A83.46 (13)C4B—C3B—H3B121.3
N1A—Co1A—O5A95.80 (13)C5B—C4B—C3B121.4 (4)
O1A—Co1A—O5A89.85 (12)C5B—C4B—H4B119.3
N2A—Co1A—O8A83.41 (13)C3B—C4B—H4B119.3
N1A—Co1A—O8A97.34 (13)C4B—C5B—C6B117.6 (4)
O1A—Co1A—O8A91.72 (12)C4B—C5B—H5B121.2
O5A—Co1A—O8A166.86 (11)C6B—C5B—H5B121.2
N2A—Co1A—O4A97.20 (13)N1B—C6B—C5B119.4 (4)
N1A—Co1A—O4A83.82 (13)N1B—C6B—C7B111.2 (3)
O1A—Co1A—O4A167.12 (12)C5B—C6B—C7B129.4 (4)
O5A—Co1A—O4A91.49 (13)O3B—C7B—O4B124.6 (4)
O8A—Co1A—O4A89.88 (12)O3B—C7B—C6B122.1 (4)
N1B—Co1B—N2B174.28 (15)O4B—C7B—C6B113.3 (3)
N1B—Co1B—O8B94.32 (13)O6B—C8B—O5B125.5 (4)
N2B—Co1B—O8B83.66 (13)O6B—C8B—C9B121.6 (4)
N1B—Co1B—O4B84.06 (13)O5B—C8B—C9B112.8 (3)
N2B—Co1B—O4B90.60 (13)N2B—C9B—C10B119.4 (4)
O8B—Co1B—O4B90.71 (12)N2B—C9B—C8B111.0 (3)
N1B—Co1B—O5B98.43 (13)C10B—C9B—C8B129.4 (4)
N2B—Co1B—O5B83.68 (13)C11B—C10B—C9B118.7 (4)
O8B—Co1B—O5B167.26 (12)C11B—C10B—H10B120.6
O4B—Co1B—O5B90.80 (12)C9B—C10B—H10B120.6
N1B—Co1B—O1B82.94 (14)C10B—C11B—C12B120.8 (4)
N2B—Co1B—O1B102.40 (13)C10B—C11B—H11B119.6
O8B—Co1B—O1B90.57 (12)C12B—C11B—H11B119.6
O4B—Co1B—O1B167.00 (12)C13B—C12B—C11B117.8 (4)
O5B—Co1B—O1B90.80 (12)C13B—C12B—H12B121.1
N4—Co2—N383.20 (14)C11B—C12B—H12B121.1
N4—Co2—N692.47 (13)N2B—C13B—C12B119.6 (4)
N3—Co2—N689.89 (13)N2B—C13B—C14B110.3 (3)
N4—Co2—N894.83 (14)C12B—C13B—C14B129.9 (4)
N3—Co2—N8175.94 (14)O7B—C14B—O8B124.4 (4)
N6—Co2—N893.75 (13)O7B—C14B—C13B122.6 (4)
N4—Co2—N789.64 (13)O8B—C14B—C13B113.0 (3)
N3—Co2—N793.27 (13)N3—C15—C16121.7 (4)
N6—Co2—N7176.39 (14)N3—C15—H15119.2
N8—Co2—N783.15 (14)C16—C15—H15119.2
N4—Co2—N5175.01 (13)C15—C16—C17119.5 (4)
N3—Co2—N594.97 (14)C15—C16—H16120.2
N6—Co2—N582.87 (14)C17—C16—H16120.2
N8—Co2—N587.28 (14)C18—C17—C16118.7 (4)
N7—Co2—N595.10 (14)C18—C17—H17120.6
O11—Cl1—O9109.0 (2)C16—C17—H17120.6
O11—Cl1—O10109.4 (2)C19—C18—C17119.3 (4)
O9—Cl1—O10110.2 (2)C19—C18—H18120.4
O11—Cl1—O12109.2 (3)C17—C18—H18120.4
O9—Cl1—O12109.9 (2)N3—C19—C18122.1 (4)
O10—Cl1—O12109.1 (2)N3—C19—C20113.9 (3)
C1A—O1A—Co1A114.9 (3)C18—C19—C20124.0 (4)
C7A—O4A—Co1A114.5 (2)N4—C20—C21121.7 (4)
C8A—O5A—Co1A114.5 (3)N4—C20—C19113.9 (3)
C14A—O8A—Co1A114.7 (2)C21—C20—C19124.4 (4)
C1B—O1B—Co1B114.1 (3)C22—C21—C20119.5 (4)
C7B—O4B—Co1B114.2 (3)C22—C21—H21120.2
C8B—O5B—Co1B114.4 (2)C20—C21—H21120.2
C14B—O8B—Co1B115.0 (2)C21—C22—C23119.2 (4)
H14E—O14A—H14F113.6C21—C22—H22120.4
H14G—O14B—H14H120.2C23—C22—H22120.4
H115—O15—H215107.7C24—C23—C22119.0 (4)
C2A—N1A—C6A124.3 (3)C24—C23—H23120.5
C2A—N1A—Co1A118.3 (3)C22—C23—H23120.5
C6A—N1A—Co1A117.4 (3)N4—C24—C23122.0 (4)
C13A—N2A—C9A124.1 (3)N4—C24—H24119.0
C13A—N2A—Co1A118.1 (3)C23—C24—H24119.0
C9A—N2A—Co1A117.8 (3)N5—C25—C26121.5 (4)
C2B—N1B—C6B124.0 (3)N5—C25—H25119.2
C2B—N1B—Co1B118.7 (3)C26—C25—H25119.2
C6B—N1B—Co1B117.1 (3)C27—C26—C25120.1 (4)
C9B—N2B—C13B123.6 (3)C27—C26—H26120.0
C9B—N2B—Co1B117.3 (3)C25—C26—H26120.0
C13B—N2B—Co1B117.5 (3)C26—C27—C28118.4 (4)
C15—N3—C19118.6 (3)C26—C27—H27120.8
C15—N3—Co2126.9 (3)C28—C27—H27120.8
C19—N3—Co2114.4 (3)C29—C28—C27119.5 (4)
C24—N4—C20118.6 (3)C29—C28—H28120.2
C24—N4—Co2126.9 (3)C27—C28—H28120.2
C20—N4—Co2114.3 (3)N5—C29—C28122.3 (4)
C25—N5—C29118.1 (4)N5—C29—C30113.9 (4)
C25—N5—Co2127.3 (3)C28—C29—C30123.8 (4)
C29—N5—Co2114.6 (2)N6—C30—C31122.1 (4)
C34—N6—C30117.9 (3)N6—C30—C29114.0 (3)
C34—N6—Co2127.4 (3)C31—C30—C29123.9 (4)
C30—N6—Co2114.6 (2)C30—C31—C32118.7 (4)
C35—N7—C39119.3 (3)C30—C31—H31120.7
C35—N7—Co2126.8 (3)C32—C31—H31120.7
C39—N7—Co2114.0 (3)C33—C32—C31119.2 (4)
C44—N8—C40118.2 (3)C33—C32—H32120.4
C44—N8—Co2127.5 (3)C31—C32—H32120.4
C40—N8—Co2114.3 (3)C32—C33—C34119.6 (4)
C47—N9—C45120.5 (9)C32—C33—H33120.2
C47—N9—C46117.1 (10)C34—C33—H33120.2
C45—N9—C46121.5 (9)N6—C34—C33122.4 (4)
O2A—C1A—O1A124.1 (4)N6—C34—H34118.8
O2A—C1A—C2A122.9 (4)C33—C34—H34118.8
O1A—C1A—C2A112.9 (3)N7—C35—C36121.4 (4)
N1A—C2A—C3A119.6 (4)N7—C35—H35119.3
N1A—C2A—C1A110.5 (3)C36—C35—H35119.3
C3A—C2A—C1A129.8 (4)C37—C36—C35119.7 (4)
C2A—C3A—C4A117.4 (4)C37—C36—H36120.2
C2A—C3A—H3A121.3C35—C36—H36120.2
C4A—C3A—H3A121.3C36—C37—C38119.1 (4)
C5A—C4A—C3A121.3 (4)C36—C37—H37120.5
C5A—C4A—H4A119.3C38—C37—H37120.5
C3A—C4A—H4A119.3C37—C38—C39119.2 (4)
C6A—C5A—C4A118.0 (4)C37—C38—H38120.4
C6A—C5A—H5A121.0C39—C38—H38120.4
C4A—C5A—H5A121.0N7—C39—C38121.3 (4)
N1A—C6A—C5A119.3 (4)N7—C39—C40114.8 (3)
N1A—C6A—C7A110.7 (3)C38—C39—C40124.0 (4)
C5A—C6A—C7A129.9 (4)N8—C40—C41121.7 (4)
O3A—C7A—O4A125.5 (4)N8—C40—C39113.7 (3)
O3A—C7A—C6A121.0 (4)C41—C40—C39124.5 (4)
O4A—C7A—C6A113.5 (3)C42—C41—C40119.6 (4)
O6A—C8A—O5A124.5 (4)C42—C41—H41120.2
O6A—C8A—C9A122.1 (4)C40—C41—H41120.2
O5A—C8A—C9A113.5 (3)C41—C42—C43118.8 (4)
N2A—C9A—C10A119.4 (4)C41—C42—H42120.6
N2A—C9A—C8A110.7 (3)C43—C42—H42120.6
C10A—C9A—C8A129.9 (4)C42—C43—C44119.4 (4)
C9A—C10A—C11A118.3 (4)C42—C43—H43120.3
C9A—C10A—H10A120.9C44—C43—H43120.3
C11A—C10A—H10A120.9N8—C44—C43122.2 (4)
C10A—C11A—C12A121.0 (4)N8—C44—H44118.9
C10A—C11A—H11A119.5C43—C44—H44118.9
C12A—C11A—H11A119.5N9—C45—H45A109.5
C13A—C12A—C11A117.5 (4)N9—C45—H45B109.5
C13A—C12A—H12A121.2H45A—C45—H45B109.5
C11A—C12A—H12A121.2N9—C45—H45C109.5
N2A—C13A—C12A119.7 (4)H45A—C45—H45C109.5
N2A—C13A—C14A110.6 (3)H45B—C45—H45C109.5
C12A—C13A—C14A129.7 (4)N9—C46—H46A109.5
O7A—C14A—O8A124.7 (4)N9—C46—H46B109.5
O7A—C14A—C13A122.2 (4)H46A—C46—H46B109.5
O8A—C14A—C13A113.1 (3)N9—C46—H46C109.5
O2B—C1B—O1B125.1 (4)H46A—C46—H46C109.5
O2B—C1B—C2B121.5 (4)H46B—C46—H46C109.5
O1B—C1B—C2B113.4 (4)O13—C47—N9124.2 (13)
N1B—C2B—C3B120.1 (4)O13—C47—H47A117.9
N1B—C2B—C1B110.8 (3)N9—C47—H47A117.9
N2A—Co1A—O1A—C1A176.2 (3)O6A—C8A—C9A—N2A176.8 (4)
N1A—Co1A—O1A—C1A3.1 (3)O5A—C8A—C9A—N2A1.8 (5)
O5A—Co1A—O1A—C1A92.8 (3)O6A—C8A—C9A—C10A2.8 (7)
O8A—Co1A—O1A—C1A100.3 (3)O5A—C8A—C9A—C10A178.6 (4)
O4A—Co1A—O1A—C1A3.3 (7)N2A—C9A—C10A—C11A0.1 (6)
N2A—Co1A—O4A—C7A179.6 (3)C8A—C9A—C10A—C11A179.5 (4)
N1A—Co1A—O4A—C7A0.4 (3)C9A—C10A—C11A—C12A0.6 (6)
O1A—Co1A—O4A—C7A0.1 (7)C10A—C11A—C12A—C13A1.1 (6)
O5A—Co1A—O4A—C7A96.0 (3)C9A—N2A—C13A—C12A0.3 (6)
O8A—Co1A—O4A—C7A97.0 (3)Co1A—N2A—C13A—C12A178.0 (3)
N2A—Co1A—O5A—C8A1.3 (3)C9A—N2A—C13A—C14A178.5 (3)
N1A—Co1A—O5A—C8A177.7 (3)Co1A—N2A—C13A—C14A0.8 (4)
O1A—Co1A—O5A—C8A94.4 (3)C11A—C12A—C13A—N2A0.9 (6)
O8A—Co1A—O5A—C8A2.5 (7)C11A—C12A—C13A—C14A177.6 (4)
O4A—Co1A—O5A—C8A98.4 (3)Co1A—O8A—C14A—O7A179.8 (3)
N2A—Co1A—O8A—C14A1.0 (3)Co1A—O8A—C14A—C13A1.6 (4)
N1A—Co1A—O8A—C14A179.9 (3)N2A—C13A—C14A—O7A179.8 (4)
O1A—Co1A—O8A—C14A96.5 (3)C12A—C13A—C14A—O7A1.6 (7)
O5A—Co1A—O8A—C14A0.3 (7)N2A—C13A—C14A—O8A1.6 (5)
O4A—Co1A—O8A—C14A96.3 (3)C12A—C13A—C14A—O8A177.1 (4)
N1B—Co1B—O1B—C1B1.8 (3)Co1B—O1B—C1B—O2B179.8 (3)
N2B—Co1B—O1B—C1B176.1 (3)Co1B—O1B—C1B—C2B1.2 (4)
O8B—Co1B—O1B—C1B92.4 (3)C6B—N1B—C2B—C3B1.4 (6)
O4B—Co1B—O1B—C1B3.2 (7)Co1B—N1B—C2B—C3B176.7 (3)
O5B—Co1B—O1B—C1B100.2 (3)C6B—N1B—C2B—C1B177.3 (3)
N1B—Co1B—O4B—C7B1.6 (3)Co1B—N1B—C2B—C1B2.0 (4)
N2B—Co1B—O4B—C7B176.3 (3)O2B—C1B—C2B—N1B178.6 (4)
O8B—Co1B—O4B—C7B92.7 (3)O1B—C1B—C2B—N1B0.4 (5)
O5B—Co1B—O4B—C7B100.0 (3)O2B—C1B—C2B—C3B2.9 (6)
O1B—Co1B—O4B—C7B2.9 (7)O1B—C1B—C2B—C3B178.2 (4)
N1B—Co1B—O5B—C8B169.6 (3)N1B—C2B—C3B—C4B0.8 (6)
N2B—Co1B—O5B—C8B5.0 (3)C1B—C2B—C3B—C4B177.6 (4)
O8B—Co1B—O5B—C8B11.3 (7)C2B—C3B—C4B—C5B0.5 (6)
O4B—Co1B—O5B—C8B85.5 (3)C3B—C4B—C5B—C6B1.3 (6)
O1B—Co1B—O5B—C8B107.4 (3)C2B—N1B—C6B—C5B0.6 (6)
N1B—Co1B—O8B—C14B172.2 (3)Co1B—N1B—C6B—C5B176.0 (3)
N2B—Co1B—O8B—C14B2.5 (3)C2B—N1B—C6B—C7B178.1 (3)
O4B—Co1B—O8B—C14B88.1 (3)Co1B—N1B—C6B—C7B2.8 (4)
O5B—Co1B—O8B—C14B8.7 (7)C4B—C5B—C6B—N1B0.7 (6)
O1B—Co1B—O8B—C14B104.9 (3)C4B—C5B—C6B—C7B179.2 (4)
O1A—Co1A—N1A—C2A1.9 (3)Co1B—O4B—C7B—O3B179.0 (3)
O5A—Co1A—N1A—C2A87.3 (3)Co1B—O4B—C7B—C6B0.5 (4)
O8A—Co1A—N1A—C2A92.7 (3)N1B—C6B—C7B—O3B179.1 (4)
O4A—Co1A—N1A—C2A178.2 (3)C5B—C6B—C7B—O3B2.3 (6)
O1A—Co1A—N1A—C6A179.5 (3)N1B—C6B—C7B—O4B1.4 (5)
O5A—Co1A—N1A—C6A91.3 (3)C5B—C6B—C7B—O4B177.2 (4)
O8A—Co1A—N1A—C6A88.6 (3)Co1B—O5B—C8B—O6B177.5 (4)
O4A—Co1A—N1A—C6A0.4 (3)Co1B—O5B—C8B—C9B1.0 (4)
O1A—Co1A—N2A—C13A91.1 (3)C13B—N2B—C9B—C10B0.4 (6)
O5A—Co1A—N2A—C13A179.7 (3)Co1B—N2B—C9B—C10B165.3 (3)
O8A—Co1A—N2A—C13A0.0 (3)C13B—N2B—C9B—C8B174.8 (3)
O4A—Co1A—N2A—C13A89.1 (3)Co1B—N2B—C9B—C8B9.9 (4)
O1A—Co1A—N2A—C9A86.7 (3)O6B—C8B—C9B—N2B175.9 (4)
O5A—Co1A—N2A—C9A2.5 (3)O5B—C8B—C9B—N2B5.5 (5)
O8A—Co1A—N2A—C9A177.8 (3)O6B—C8B—C9B—C10B9.4 (7)
O4A—Co1A—N2A—C9A93.1 (3)O5B—C8B—C9B—C10B169.2 (4)
O8B—Co1B—N1B—C2B87.9 (3)N2B—C9B—C10B—C11B1.0 (6)
O4B—Co1B—N1B—C2B178.1 (3)C8B—C9B—C10B—C11B175.2 (4)
O5B—Co1B—N1B—C2B92.0 (3)C9B—C10B—C11B—C12B0.7 (6)
O1B—Co1B—N1B—C2B2.2 (3)C10B—C11B—C12B—C13B0.8 (6)
O8B—Co1B—N1B—C6B87.7 (3)C9B—N2B—C13B—C12B2.0 (6)
O4B—Co1B—N1B—C6B2.5 (3)Co1B—N2B—C13B—C12B166.9 (3)
O5B—Co1B—N1B—C6B92.5 (3)C9B—N2B—C13B—C14B174.0 (3)
O1B—Co1B—N1B—C6B177.8 (3)Co1B—N2B—C13B—C14B9.1 (4)
O8B—Co1B—N2B—C9B172.7 (3)C11B—C12B—C13B—N2B2.1 (6)
O4B—Co1B—N2B—C9B82.1 (3)C11B—C12B—C13B—C14B173.0 (4)
O5B—Co1B—N2B—C9B8.7 (3)Co1B—O8B—C14B—O7B179.2 (3)
O1B—Co1B—N2B—C9B98.1 (3)Co1B—O8B—C14B—C13B1.8 (4)
O8B—Co1B—N2B—C13B6.9 (3)N2B—C13B—C14B—O7B174.1 (4)
O4B—Co1B—N2B—C13B83.8 (3)C12B—C13B—C14B—O7B10.4 (7)
O5B—Co1B—N2B—C13B174.5 (3)N2B—C13B—C14B—O8B6.8 (5)
O1B—Co1B—N2B—C13B96.1 (3)C12B—C13B—C14B—O8B168.7 (4)
N4—Co2—N3—C15176.3 (3)C19—N3—C15—C160.9 (6)
N6—Co2—N3—C1591.2 (3)Co2—N3—C15—C16177.2 (3)
N7—Co2—N3—C1587.0 (3)N3—C15—C16—C170.3 (6)
N5—Co2—N3—C158.4 (3)C15—C16—C17—C180.3 (7)
N4—Co2—N3—C191.9 (3)C16—C17—C18—C190.3 (7)
N6—Co2—N3—C1990.6 (3)C15—N3—C19—C180.9 (6)
N7—Co2—N3—C1991.2 (3)Co2—N3—C19—C18177.5 (3)
N5—Co2—N3—C19173.4 (3)C15—N3—C19—C20179.2 (3)
N3—Co2—N4—C24179.8 (3)Co2—N3—C19—C200.8 (4)
N6—Co2—N4—C2490.2 (3)C17—C18—C19—N30.3 (7)
N8—Co2—N4—C243.8 (3)C17—C18—C19—C20178.5 (4)
N7—Co2—N4—C2486.9 (3)C24—N4—C20—C212.3 (6)
N3—Co2—N4—C204.5 (3)Co2—N4—C20—C21173.4 (3)
N6—Co2—N4—C2085.1 (3)C24—N4—C20—C19178.2 (3)
N8—Co2—N4—C20179.1 (3)Co2—N4—C20—C196.1 (4)
N7—Co2—N4—C2097.8 (3)N3—C19—C20—N44.5 (5)
N3—Co2—N5—C2591.6 (3)C18—C19—C20—N4173.7 (4)
N6—Co2—N5—C25179.2 (3)N3—C19—C20—C21175.0 (4)
N8—Co2—N5—C2585.0 (3)C18—C19—C20—C216.8 (7)
N7—Co2—N5—C252.2 (3)N4—C20—C21—C221.6 (7)
N3—Co2—N5—C2990.5 (3)C19—C20—C21—C22178.9 (4)
N6—Co2—N5—C291.3 (3)C20—C21—C22—C230.3 (7)
N8—Co2—N5—C2992.9 (3)C21—C22—C23—C241.4 (7)
N7—Co2—N5—C29175.7 (3)C20—N4—C24—C231.1 (6)
N4—Co2—N6—C340.8 (3)Co2—N4—C24—C23174.0 (3)
N3—Co2—N6—C3484.0 (3)C22—C23—C24—N40.8 (6)
N8—Co2—N6—C3494.2 (3)C29—N5—C25—C261.8 (6)
N5—Co2—N6—C34179.0 (3)Co2—N5—C25—C26179.7 (3)
N4—Co2—N6—C30179.0 (3)N5—C25—C26—C270.6 (6)
N3—Co2—N6—C3097.8 (3)C25—C26—C27—C282.1 (7)
N8—Co2—N6—C3084.0 (3)C26—C27—C28—C291.2 (6)
N5—Co2—N6—C302.8 (3)C25—N5—C29—C282.8 (6)
N4—Co2—N7—C3582.4 (3)Co2—N5—C29—C28179.1 (3)
N3—Co2—N7—C350.7 (3)C25—N5—C29—C30177.7 (3)
N8—Co2—N7—C35177.3 (4)Co2—N5—C29—C300.4 (4)
N5—Co2—N7—C3596.0 (3)C27—C28—C29—N51.4 (6)
N4—Co2—N7—C3997.9 (3)C27—C28—C29—C30179.2 (4)
N3—Co2—N7—C39179.0 (3)C34—N6—C30—C312.7 (6)
N8—Co2—N7—C392.9 (3)Co2—N6—C30—C31175.7 (3)
N5—Co2—N7—C3983.7 (3)C34—N6—C30—C29177.9 (3)
N4—Co2—N8—C4491.8 (4)Co2—N6—C30—C293.7 (4)
N6—Co2—N8—C441.0 (4)N5—C29—C30—N62.7 (5)
N7—Co2—N8—C44179.1 (4)C28—C29—C30—N6176.7 (4)
N5—Co2—N8—C4483.7 (4)N5—C29—C30—C31176.7 (4)
N4—Co2—N8—C4090.7 (3)C28—C29—C30—C313.9 (6)
N6—Co2—N8—C40176.5 (3)N6—C30—C31—C320.8 (6)
N7—Co2—N8—C401.6 (3)C29—C30—C31—C32179.9 (4)
N5—Co2—N8—C4093.9 (3)C30—C31—C32—C331.4 (6)
Co1A—O1A—C1A—O2A175.7 (3)C31—C32—C33—C341.6 (6)
Co1A—O1A—C1A—C2A3.6 (4)C30—N6—C34—C332.6 (6)
C6A—N1A—C2A—C3A0.3 (6)Co2—N6—C34—C33175.6 (3)
Co1A—N1A—C2A—C3A178.9 (3)C32—C33—C34—N60.4 (6)
C6A—N1A—C2A—C1A178.9 (3)C39—N7—C35—C363.3 (6)
Co1A—N1A—C2A—C1A0.4 (4)Co2—N7—C35—C36176.4 (3)
O2A—C1A—C2A—N1A177.2 (4)N7—C35—C36—C370.1 (7)
O1A—C1A—C2A—N1A2.1 (4)C35—C36—C37—C382.4 (7)
O2A—C1A—C2A—C3A2.0 (6)C36—C37—C38—C391.5 (8)
O1A—C1A—C2A—C3A178.7 (4)C35—N7—C39—C384.2 (6)
N1A—C2A—C3A—C4A0.4 (5)Co2—N7—C39—C38175.5 (4)
C1A—C2A—C3A—C4A179.5 (4)C35—N7—C39—C40176.6 (4)
C2A—C3A—C4A—C5A0.6 (6)Co2—N7—C39—C403.7 (5)
C3A—C4A—C5A—C6A0.1 (6)C37—C38—C39—N71.9 (7)
C2A—N1A—C6A—C5A0.8 (6)C37—C38—C39—C40179.0 (5)
Co1A—N1A—C6A—C5A179.3 (3)C44—N8—C40—C412.0 (6)
C2A—N1A—C6A—C7A178.1 (3)Co2—N8—C40—C41179.8 (4)
Co1A—N1A—C6A—C7A0.4 (4)C44—N8—C40—C39177.8 (4)
C4A—C5A—C6A—N1A0.5 (6)Co2—N8—C40—C390.1 (5)
C4A—C5A—C6A—C7A178.2 (4)N7—C39—C40—N82.4 (6)
Co1A—O4A—C7A—O3A179.6 (3)C38—C39—C40—N8176.8 (4)
Co1A—O4A—C7A—C6A0.2 (4)N7—C39—C40—C41177.8 (4)
N1A—C6A—C7A—O3A179.3 (4)C38—C39—C40—C413.1 (8)
C5A—C6A—C7A—O3A0.5 (7)N8—C40—C41—C422.2 (7)
N1A—C6A—C7A—O4A0.1 (5)C39—C40—C41—C42177.6 (5)
C5A—C6A—C7A—O4A178.9 (4)C40—C41—C42—C430.4 (8)
Co1A—O5A—C8A—O6A178.6 (4)C41—C42—C43—C441.6 (7)
Co1A—O5A—C8A—C9A0.1 (4)C40—N8—C44—C430.0 (6)
C13A—N2A—C9A—C10A0.2 (6)Co2—N8—C44—C43177.4 (3)
Co1A—N2A—C9A—C10A177.4 (3)C42—C43—C44—N81.8 (7)
C13A—N2A—C9A—C8A179.4 (3)C45—N9—C47—O139 (2)
Co1A—N2A—C9A—C8A2.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14A—H14E···O120.942.113.017 (9)164
O14A—H14F···O3Ai0.941.972.861 (9)156
O15—H115···O7Aii0.852.203.029 (13)164
O15—H215···O2B0.852.072.842 (13)152
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(C10H8N2)3][Co(C7H3NO4)2]2(ClO4)·0.5C3H7NO·1.3H2O
Mr1465.18
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)14.1988 (4), 14.7317 (6), 16.6016 (8)
α, β, γ (°)113.286 (2), 107.128 (3), 90.190 (3)
V3)3019.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.32 × 0.18 × 0.08
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.753, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
50715, 13787, 9788
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.181, 1.03
No. of reflections13787
No. of parameters871
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.34, 1.11

Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14A—H14E···O120.942.113.017 (9)164
O14A—H14F···O3Ai0.941.972.861 (9)156
O15—H115···O7Aii0.852.203.029 (13)164
O15—H215···O2B0.852.072.842 (13)152
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1.
 

Acknowledgements

Financial support by the State Fund for Fundamental Researches of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDobosz, A., Dudarenko, N. M., Fritsky, I. O., Głowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743–749.  Web of Science CSD CrossRef Google Scholar
First citationDobosz, A., Fritsky, I. O., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1998). J. Chem. Soc. Dalton Trans. pp. 1089–1090.  Web of Science CrossRef Google Scholar
First citationFritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2001). Chem. Eur. J. 7, 1221–1231.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Inorg. Chim. Acta, 346, 111–118.  Web of Science CSD CrossRef CAS Google Scholar
First citationFritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Yu. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752.  Web of Science CSD CrossRef CAS Google Scholar
First citationGolenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012a). Dalton Trans. 41, 9427–9430.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGolenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012b). Inorg. Chem. 51, 6221–6227.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.  Google Scholar
First citationMezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, Y. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem. 47, 5656–5665.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836.  Web of Science CSD CrossRef Google Scholar
First citationPenkova, L. V., Maciag, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrotmeyer, K. P., Fritsky, I. O., Pritzkow, H. & Krämer, R. (2004). Chem. Commun. pp. 28–29.  Web of Science CSD CrossRef Google Scholar
First citationŚwiątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.  Google Scholar
First citationŚwiątek-Kozłowska, J., Gumienna-Kontecka, E., Dobosz, A., Golenya, I. A. & Fritsky, I. O. (2002). J. Chem. Soc. Dalton Trans. pp. 4639–4643.  Google Scholar
First citationThompson, L. K. (2002). Coord. Chem. Rev. 233-234, 193–206.  Web of Science CrossRef CAS Google Scholar
First citationWörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005a). Eur. J. Inorg. Chem. pp. 759–765.  Google Scholar
First citationWörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005b). Dalton Trans. pp. 27–29.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds