metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iodido[5-methyl-1H-benzimidazole-2(3H)-thione-κS]bis­­(tri­phenyl­phosphane-κP)copper(I) methanol monosolvate

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and bQingdao Hygain Chemical (Group) Co. Ltd, Qingdao 266044, People's Republic of China
*Correspondence e-mail: jinqh204@163.com

(Received 2 September 2012; accepted 13 September 2012; online 26 September 2012)

In the title compound, [CuI(C8H8N2S)(C18H15P)2]·CH3OH, the coordination environment around the CuI atom is distorted tetra­hedral, defined by two P atoms of two triphenyl­phosphane ligands, one S atom of a 5-methyl-1H-benzimidazole-2(3H)-thione ligand and one I atom. The complex mol­ecules and the methanol solvent mol­ecules are connected via N—H⋯O and O—H⋯I hydrogen bonds, forming a chain along [010]. An intra­molecular N—H⋯I hydrogen bond is also observed.

Related literature

For the structures and properties of transition metal complexes with phosphanes, see: Baxter et al. (1994[Baxter, P., Lehn, J. M., Fischer, J. & Youinou, M. T. (1994). Angew. Chem. Int. Ed. Engl. 33, 2284-2287.]); Kitagawa et al. (1995[Kitagawa, S., Kondo, M., Kawata, S., Wada, S., Maekawa, M. & Munakata, M. (1995). Inorg. Chem. 34, 1455-1465.]); Lewis et al. (1996[Lewis, J. S., Zweit, J., Dearling, J. L. J., Rooney, B. C. & Blower, P. J. (1996). Chem. Commun. pp. 1093-1094.]). For complexes with a 2-mercapto-5-methyl­benzimidazole ligand, see: Ozturk et al. (2009[Ozturk, I. I., Hadjikakou, S. K., Hadjiliadis, N., Kourkoumelis, N., Kubicki, M., Tasiopoulos, A. J., Scleiman, H., Barsan, M. M., Butler, I. S. & Balzarini, J. (2009). Inorg. Chem. 48, 2233-2245.]); Schneider et al. (2008[Schneider, J., Lee, Y. A., Perez, J., Brennessel, W. W., Flaschenriem, C. & Eisenberg, R. (2008). Inorg. Chem. 47, 957-968.]). For related structures, see: Aslanidis et al. (1993[Aslanidis, P., Hadjikakou, S. K., Karagiannidis, P., Gdaniec, M. & Kosturkiewicz, Z. (1993). Polyhedron, 12, 2221-2226.]); Li et al. (2004[Li, D., Luo, Y.-F., Wu, T. & Ng, S. W. (2004). Acta Cryst. E60, m726-m727.]); Lobana et al. (2005[Lobana, T. S., Rekha, Sidhu, B.S., Castineiras, A., Bermejo, E. & Nishioka, T. (2005). J. Coord. Chem. 58, 803-809.]).

[Scheme 1]

Experimental

Crystal data
  • [CuI(C8H8N2S)(C18H15P)2]·CH4O

  • Mr = 911.27

  • Monoclinic, P 21 /c

  • a = 15.6081 (11) Å

  • b = 10.5938 (8) Å

  • c = 25.976 (2) Å

  • β = 96.919 (1)°

  • V = 4263.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 298 K

  • 0.43 × 0.38 × 0.35 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.585, Tmax = 0.641

  • 20808 measured reflections

  • 7504 independent reflections

  • 5465 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.088

  • S = 1.09

  • 7504 reflections

  • 478 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.97 2.755 (7) 152
N2—H2⋯I1 0.86 2.80 3.539 (3) 145
O1—H1A⋯I1 0.82 2.67 3.469 (5) 164
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Various transition metal complexes with bridging phosphanes or functionalized phosphanes have drawn much attention in recent years for their special structures, novel reactivity performances, catalytic properties and luminescence (Baxter et al., 1994; Kitagawa et al., 1995; Lewis et al., 1996). The 2-mercapto-5-methylbenzimidazole (MMBI) ligand, with an -SH group and two potential coordination N atoms, is excellent in building supramolecular structures (Ozturk et al., 2009; Schneider et al., 2008). However, to our best knowledge, Cu(I) complexes with the MMBI ligand have not been reported. In this paper, one Cu(I) complex with PPh3 and MMBI is reported.

In the title compound, MMBI acts as a neutral, monodentate ligand with the S atom as a coordination atom. Other sites of the coordination tetrahedron are occupied by two P atoms from two PPh3 ligands and an iodide anion (Fig. 1). The Cu—S, Cu—P and Cu—I bond lengths agree with those in [CuI(H2itsc)(Ph3P)2] (H2itsc = isatin-3-thiosemicarbazones) (Lobana et al., 2005) and [CuI(C4H6N2S)(C18H15P)2] (Li et al., 2004). Similarly, in the title complex, angles around the Cu atom ranging from 102.31 (4) to 122.72 (4)° are close to those in [CuI(PPh3)2(pymtH)] (pymtH = pyrimidine-2-thione) (Aslanidis et al., 1993). The complex molecules and the solvent methanol molecules are connected via N—H···O and O—H···I hydrogen bonds (Table 1), forming a chain along [0 1 0]. An intramolecular N—H···I hydrogen bond is also observed.

Related literature top

For the structures and properties of transition metal complexes with phosphanes, see: Baxter et al. (1994); Kitagawa et al. (1995); Lewis et al. (1996). For complexes with a 2-mercapto-5-methylbenzimidazole ligand, see: Ozturk et al. (2009); Schneider et al. (2008). For related structures, see: Aslanidis et al. (1993); Li et al. (2004); Lobana et al. (2005).

Experimental top

A mixture of CuI (0.2 mmol) and 2-mercapto-5-methylbenzimidazole (0.2 mmol) in MeOH and CH2Cl2 (10 ml, v/v = 1:1) was stirred for 2 h. PPh3 (0.2 mmol) was added to the mixture, which was stirred for another 4 h. The insoluble residues were removed by filtration, and filtrate was evaporated slowly at room temperature for a week to yield colorless crystalline products.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (CH3), N—H = 0.86 and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for methyl and hydroxyl)Ueq(C,N,O).

Structure description top

Various transition metal complexes with bridging phosphanes or functionalized phosphanes have drawn much attention in recent years for their special structures, novel reactivity performances, catalytic properties and luminescence (Baxter et al., 1994; Kitagawa et al., 1995; Lewis et al., 1996). The 2-mercapto-5-methylbenzimidazole (MMBI) ligand, with an -SH group and two potential coordination N atoms, is excellent in building supramolecular structures (Ozturk et al., 2009; Schneider et al., 2008). However, to our best knowledge, Cu(I) complexes with the MMBI ligand have not been reported. In this paper, one Cu(I) complex with PPh3 and MMBI is reported.

In the title compound, MMBI acts as a neutral, monodentate ligand with the S atom as a coordination atom. Other sites of the coordination tetrahedron are occupied by two P atoms from two PPh3 ligands and an iodide anion (Fig. 1). The Cu—S, Cu—P and Cu—I bond lengths agree with those in [CuI(H2itsc)(Ph3P)2] (H2itsc = isatin-3-thiosemicarbazones) (Lobana et al., 2005) and [CuI(C4H6N2S)(C18H15P)2] (Li et al., 2004). Similarly, in the title complex, angles around the Cu atom ranging from 102.31 (4) to 122.72 (4)° are close to those in [CuI(PPh3)2(pymtH)] (pymtH = pyrimidine-2-thione) (Aslanidis et al., 1993). The complex molecules and the solvent methanol molecules are connected via N—H···O and O—H···I hydrogen bonds (Table 1), forming a chain along [0 1 0]. An intramolecular N—H···I hydrogen bond is also observed.

For the structures and properties of transition metal complexes with phosphanes, see: Baxter et al. (1994); Kitagawa et al. (1995); Lewis et al. (1996). For complexes with a 2-mercapto-5-methylbenzimidazole ligand, see: Ozturk et al. (2009); Schneider et al. (2008). For related structures, see: Aslanidis et al. (1993); Li et al. (2004); Lobana et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
Iodido[5-methyl-1H-benzimidazole-2(3H)-thione- κS]bis(triphenylphosphane-κP)copper(I) methanol monosolvate top
Crystal data top
[CuI(C8H8N2S)(C18H15P)2]·CH4OF(000) = 1848
Mr = 911.27Dx = 1.420 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8084 reflections
a = 15.6081 (11) Åθ = 2.3–26.4°
b = 10.5938 (8) ŵ = 1.40 mm1
c = 25.976 (2) ÅT = 298 K
β = 96.919 (1)°Block, colorless
V = 4263.8 (5) Å30.43 × 0.38 × 0.35 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
7504 independent reflections
Radiation source: fine-focus sealed tube5465 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1817
Tmin = 0.585, Tmax = 0.641k = 1211
20808 measured reflectionsl = 2430
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0172P)2 + 5.6518P]
where P = (Fo2 + 2Fc2)/3
7504 reflections(Δ/σ)max = 0.001
478 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[CuI(C8H8N2S)(C18H15P)2]·CH4OV = 4263.8 (5) Å3
Mr = 911.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.6081 (11) ŵ = 1.40 mm1
b = 10.5938 (8) ÅT = 298 K
c = 25.976 (2) Å0.43 × 0.38 × 0.35 mm
β = 96.919 (1)°
Data collection top
Bruker APEX CCD
diffractometer
7504 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5465 reflections with I > 2σ(I)
Tmin = 0.585, Tmax = 0.641Rint = 0.037
20808 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.09Δρmax = 0.75 e Å3
7504 reflectionsΔρmin = 0.54 e Å3
478 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.29356 (3)0.60884 (4)0.391446 (18)0.03756 (13)
I10.426976 (18)0.44881 (3)0.414919 (13)0.05740 (11)
N10.4673 (2)0.9549 (3)0.43122 (14)0.0537 (9)
H10.44051.02450.42330.064*
N20.4928 (2)0.7598 (3)0.45022 (14)0.0538 (10)
H20.48500.68140.45690.065*
O10.3820 (4)0.1429 (4)0.3723 (3)0.134 (2)
H1A0.40180.21330.37940.201*
P10.18454 (6)0.53857 (10)0.43498 (4)0.0349 (2)
P20.27571 (7)0.64671 (10)0.30391 (4)0.0392 (3)
S10.32156 (7)0.81432 (10)0.42639 (5)0.0535 (3)
C10.4289 (3)0.8418 (4)0.43596 (15)0.0453 (10)
C20.5732 (3)0.8173 (4)0.45291 (16)0.0499 (11)
C30.5561 (3)0.9423 (4)0.44091 (16)0.0481 (10)
C40.6229 (3)1.0295 (4)0.44001 (19)0.0647 (14)
H40.61141.11400.43230.078*
C50.7071 (3)0.9861 (5)0.4510 (2)0.0641 (14)
C60.7220 (3)0.8599 (5)0.46243 (19)0.0668 (14)
H60.77860.83220.46980.080*
C70.6563 (3)0.7739 (5)0.46341 (19)0.0663 (14)
H70.66780.68920.47090.080*
C80.7824 (3)1.0764 (5)0.4514 (3)0.100 (2)
H8A0.82281.06120.48170.151*
H8B0.76181.16170.45210.151*
H8C0.81031.06360.42090.151*
C90.1375 (3)0.3813 (4)0.42121 (15)0.0431 (10)
C100.1941 (3)0.2831 (4)0.41679 (17)0.0565 (12)
H100.25300.29910.41870.068*
C110.1638 (4)0.1607 (5)0.4095 (2)0.0775 (16)
H110.20260.09460.40750.093*
C120.0777 (5)0.1367 (6)0.4053 (2)0.0850 (19)
H120.05770.05450.39990.102*
C130.0205 (4)0.2325 (6)0.4090 (2)0.0826 (18)
H130.03840.21540.40620.099*
C140.0498 (3)0.3555 (5)0.41675 (17)0.0596 (13)
H140.01060.42080.41900.072*
C150.0922 (2)0.6456 (4)0.42431 (15)0.0376 (9)
C160.0621 (3)0.7184 (4)0.46264 (17)0.0478 (11)
H160.08690.71030.49690.057*
C170.0048 (3)0.8032 (4)0.4501 (2)0.0631 (13)
H170.02480.85150.47600.076*
C180.0417 (3)0.8166 (5)0.3999 (2)0.0678 (15)
H180.08630.87410.39180.081*
C190.0132 (3)0.7459 (5)0.3618 (2)0.0672 (15)
H190.03880.75450.32770.081*
C200.0537 (3)0.6610 (5)0.37340 (18)0.0578 (12)
H200.07320.61370.34700.069*
C210.2100 (2)0.5320 (3)0.50569 (14)0.0357 (9)
C220.1545 (3)0.4788 (4)0.53712 (16)0.0530 (12)
H220.10250.44450.52230.064*
C230.1752 (3)0.4759 (5)0.59040 (18)0.0652 (14)
H230.13690.44090.61120.078*
C240.2523 (3)0.5247 (5)0.61249 (17)0.0637 (13)
H240.26630.52310.64830.076*
C250.3087 (3)0.5759 (5)0.58182 (17)0.0614 (13)
H250.36150.60760.59680.074*
C260.2874 (3)0.5804 (4)0.52853 (16)0.0468 (11)
H260.32560.61640.50790.056*
C270.2603 (2)0.5071 (4)0.26301 (15)0.0449 (10)
C280.2276 (3)0.4022 (5)0.2840 (2)0.0696 (14)
H280.21570.40350.31820.083*
C290.2119 (4)0.2933 (6)0.2545 (3)0.098 (2)
H290.18820.22300.26880.117*
C300.2309 (4)0.2887 (7)0.2047 (3)0.094 (2)
H300.22100.21540.18530.113*
C310.2642 (4)0.3912 (7)0.1840 (2)0.0859 (19)
H310.27730.38820.15000.103*
C320.2792 (3)0.5009 (5)0.21231 (18)0.0669 (14)
H320.30220.57100.19730.080*
C330.3667 (3)0.7297 (4)0.28087 (16)0.0481 (11)
C340.4472 (3)0.7145 (5)0.30815 (18)0.0585 (13)
H340.45400.66150.33690.070*
C350.5177 (3)0.7767 (6)0.2934 (2)0.0873 (19)
H350.57140.76680.31270.105*
C360.5095 (4)0.8528 (6)0.2506 (2)0.093 (2)
H360.55760.89280.24030.111*
C370.4308 (4)0.8694 (6)0.2234 (2)0.101 (2)
H370.42480.92230.19460.122*
C380.3591 (3)0.8083 (6)0.2381 (2)0.0815 (18)
H380.30540.82030.21900.098*
C390.1847 (3)0.7474 (4)0.27877 (15)0.0443 (10)
C400.1187 (3)0.7103 (5)0.24166 (18)0.0624 (13)
H400.11970.63000.22730.075*
C410.0506 (3)0.7915 (6)0.2253 (2)0.0832 (17)
H410.00640.76500.20050.100*
C420.0491 (4)0.9100 (6)0.2459 (2)0.0891 (19)
H420.00450.96510.23420.107*
C430.1126 (4)0.9482 (5)0.2836 (2)0.0821 (16)
H430.11051.02830.29810.099*
C440.1801 (3)0.8674 (5)0.3002 (2)0.0683 (14)
H440.22290.89360.32610.082*
C450.3990 (8)0.1101 (10)0.3249 (4)0.204 (5)
H45A0.45850.12750.32170.306*
H45B0.36280.15760.29940.306*
H45C0.38800.02160.31970.306*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0345 (3)0.0433 (3)0.0356 (3)0.0078 (2)0.0072 (2)0.0013 (2)
I10.04338 (17)0.04799 (18)0.0800 (2)0.00010 (14)0.00389 (15)0.00189 (16)
N10.063 (2)0.034 (2)0.064 (2)0.0099 (18)0.0073 (19)0.0053 (17)
N20.055 (2)0.043 (2)0.061 (2)0.0163 (19)0.0026 (19)0.0114 (18)
O10.152 (5)0.051 (3)0.198 (6)0.022 (3)0.022 (5)0.008 (3)
P10.0314 (5)0.0405 (6)0.0333 (6)0.0095 (4)0.0057 (4)0.0015 (4)
P20.0362 (6)0.0484 (6)0.0332 (6)0.0073 (5)0.0047 (5)0.0012 (5)
S10.0521 (7)0.0440 (6)0.0647 (8)0.0101 (5)0.0080 (6)0.0121 (5)
C10.055 (3)0.042 (2)0.039 (2)0.013 (2)0.005 (2)0.0073 (19)
C20.057 (3)0.046 (3)0.043 (3)0.017 (2)0.004 (2)0.001 (2)
C30.050 (3)0.047 (3)0.048 (3)0.011 (2)0.008 (2)0.011 (2)
C40.076 (4)0.037 (3)0.083 (4)0.017 (2)0.019 (3)0.013 (2)
C50.054 (3)0.065 (3)0.075 (4)0.018 (3)0.015 (3)0.025 (3)
C60.056 (3)0.070 (4)0.073 (4)0.008 (3)0.001 (3)0.009 (3)
C70.062 (3)0.058 (3)0.076 (4)0.008 (3)0.004 (3)0.009 (3)
C80.069 (4)0.076 (4)0.161 (6)0.029 (3)0.035 (4)0.045 (4)
C90.048 (3)0.046 (3)0.036 (2)0.018 (2)0.0087 (19)0.0029 (19)
C100.061 (3)0.048 (3)0.060 (3)0.013 (2)0.007 (2)0.002 (2)
C110.110 (5)0.045 (3)0.077 (4)0.008 (3)0.011 (3)0.003 (3)
C120.128 (6)0.067 (4)0.062 (4)0.054 (4)0.021 (4)0.011 (3)
C130.083 (4)0.100 (5)0.067 (4)0.058 (4)0.020 (3)0.017 (3)
C140.050 (3)0.071 (3)0.059 (3)0.028 (2)0.012 (2)0.010 (2)
C150.031 (2)0.045 (2)0.037 (2)0.0108 (17)0.0059 (18)0.0059 (18)
C160.042 (2)0.054 (3)0.046 (3)0.003 (2)0.001 (2)0.003 (2)
C170.054 (3)0.053 (3)0.083 (4)0.004 (2)0.009 (3)0.004 (3)
C180.043 (3)0.065 (3)0.094 (4)0.009 (2)0.002 (3)0.026 (3)
C190.044 (3)0.097 (4)0.059 (3)0.002 (3)0.002 (2)0.032 (3)
C200.039 (3)0.086 (4)0.049 (3)0.004 (2)0.009 (2)0.008 (2)
C210.034 (2)0.035 (2)0.038 (2)0.0019 (17)0.0062 (17)0.0004 (17)
C220.046 (3)0.073 (3)0.040 (3)0.015 (2)0.004 (2)0.008 (2)
C230.062 (3)0.089 (4)0.046 (3)0.019 (3)0.013 (2)0.017 (3)
C240.076 (4)0.079 (4)0.035 (3)0.015 (3)0.001 (2)0.008 (2)
C250.054 (3)0.080 (4)0.047 (3)0.018 (3)0.008 (2)0.003 (2)
C260.045 (2)0.056 (3)0.039 (2)0.012 (2)0.0033 (19)0.003 (2)
C270.034 (2)0.063 (3)0.036 (2)0.000 (2)0.0015 (18)0.006 (2)
C280.081 (4)0.062 (3)0.067 (3)0.020 (3)0.016 (3)0.022 (3)
C290.106 (5)0.074 (4)0.112 (6)0.025 (4)0.008 (4)0.032 (4)
C300.074 (4)0.100 (5)0.101 (6)0.014 (4)0.021 (4)0.063 (4)
C310.074 (4)0.123 (6)0.057 (4)0.024 (4)0.006 (3)0.037 (4)
C320.068 (3)0.091 (4)0.042 (3)0.009 (3)0.009 (2)0.007 (3)
C330.041 (3)0.063 (3)0.041 (3)0.011 (2)0.007 (2)0.005 (2)
C340.043 (3)0.077 (3)0.056 (3)0.011 (2)0.010 (2)0.015 (2)
C350.041 (3)0.138 (6)0.084 (4)0.023 (3)0.010 (3)0.029 (4)
C360.058 (4)0.133 (6)0.090 (4)0.038 (4)0.021 (3)0.029 (4)
C370.079 (4)0.144 (6)0.080 (4)0.045 (4)0.009 (3)0.051 (4)
C380.056 (3)0.118 (5)0.068 (4)0.024 (3)0.002 (3)0.041 (3)
C390.040 (2)0.054 (3)0.039 (2)0.006 (2)0.0040 (19)0.005 (2)
C400.057 (3)0.076 (3)0.052 (3)0.005 (3)0.003 (2)0.004 (3)
C410.064 (4)0.118 (5)0.061 (4)0.022 (4)0.017 (3)0.001 (3)
C420.086 (4)0.099 (5)0.081 (4)0.037 (4)0.000 (3)0.029 (4)
C430.089 (4)0.056 (3)0.099 (5)0.011 (3)0.001 (4)0.011 (3)
C440.067 (3)0.054 (3)0.081 (4)0.000 (3)0.007 (3)0.003 (3)
C450.287 (15)0.139 (9)0.187 (12)0.045 (9)0.035 (11)0.054 (8)
Geometric parameters (Å, º) top
Cu1—P12.2786 (10)C19—C201.383 (6)
Cu1—P22.2925 (11)C19—H190.9300
Cu1—S12.3786 (12)C20—H200.9300
Cu1—I12.6974 (6)C21—C261.379 (5)
N1—C11.352 (5)C21—C221.380 (5)
N1—C31.386 (5)C22—C231.383 (6)
N1—H10.8600C22—H220.9300
N2—C11.341 (5)C23—C241.370 (6)
N2—C21.389 (5)C23—H230.9300
N2—H20.8600C24—C251.368 (6)
O1—C451.334 (10)C24—H240.9300
O1—H1A0.8200C25—C261.385 (6)
P1—C151.829 (4)C25—H250.9300
P1—C211.833 (4)C26—H260.9300
P1—C91.839 (4)C27—C281.363 (6)
P2—C271.820 (4)C27—C321.386 (6)
P2—C331.831 (4)C28—C291.390 (7)
P2—C391.833 (4)C28—H280.9300
S1—C11.689 (4)C29—C301.361 (8)
C2—C71.373 (6)C29—H290.9300
C2—C31.378 (6)C30—C311.344 (8)
C3—C41.395 (6)C30—H300.9300
C4—C51.389 (7)C31—C321.380 (7)
C4—H40.9300C31—H310.9300
C5—C61.383 (7)C32—H320.9300
C5—C81.514 (6)C33—C341.376 (6)
C6—C71.374 (6)C33—C381.382 (6)
C6—H60.9300C34—C351.376 (6)
C7—H70.9300C34—H340.9300
C8—H8A0.9600C35—C361.367 (7)
C8—H8B0.9600C35—H350.9300
C8—H8C0.9600C36—C371.352 (7)
C9—C101.378 (6)C36—H360.9300
C9—C141.387 (6)C37—C381.385 (6)
C10—C111.385 (6)C37—H370.9300
C10—H100.9300C38—H380.9300
C11—C121.360 (8)C39—C401.380 (6)
C11—H110.9300C39—C441.393 (6)
C12—C131.362 (8)C40—C411.392 (7)
C12—H120.9300C40—H400.9300
C13—C141.389 (7)C41—C421.367 (8)
C13—H130.9300C41—H410.9300
C14—H140.9300C42—C431.369 (8)
C15—C161.385 (5)C42—H420.9300
C15—C201.394 (5)C43—C441.384 (7)
C16—C171.387 (6)C43—H430.9300
C16—H160.9300C44—H440.9300
C17—C181.368 (7)C45—H45A0.9600
C17—H170.9300C45—H45B0.9600
C18—C191.358 (7)C45—H45C0.9600
C18—H180.9300
P1—Cu1—P2122.72 (4)C18—C19—H19119.9
P1—Cu1—S1102.91 (4)C20—C19—H19119.9
P2—Cu1—S1102.31 (4)C19—C20—C15120.7 (5)
P1—Cu1—I1106.54 (3)C19—C20—H20119.7
P2—Cu1—I1109.42 (3)C15—C20—H20119.7
S1—Cu1—I1112.81 (3)C26—C21—C22118.5 (4)
C1—N1—C3110.1 (4)C26—C21—P1119.3 (3)
C1—N1—H1125.0C22—C21—P1122.2 (3)
C3—N1—H1125.0C21—C22—C23120.9 (4)
C1—N2—C2111.5 (3)C21—C22—H22119.6
C1—N2—H2124.2C23—C22—H22119.6
C2—N2—H2124.2C24—C23—C22119.9 (4)
C45—O1—H1A109.5C24—C23—H23120.1
C15—P1—C21104.32 (17)C22—C23—H23120.1
C15—P1—C9104.08 (18)C25—C24—C23120.0 (4)
C21—P1—C9101.16 (17)C25—C24—H24120.0
C15—P1—Cu1110.15 (12)C23—C24—H24120.0
C21—P1—Cu1115.16 (12)C24—C25—C26120.1 (4)
C9—P1—Cu1120.27 (13)C24—C25—H25120.0
C27—P2—C33104.65 (19)C26—C25—H25120.0
C27—P2—C39102.86 (19)C21—C26—C25120.7 (4)
C33—P2—C39101.65 (19)C21—C26—H26119.7
C27—P2—Cu1115.37 (14)C25—C26—H26119.7
C33—P2—Cu1113.70 (14)C28—C27—C32118.3 (4)
C39—P2—Cu1116.85 (13)C28—C27—P2117.3 (3)
C1—S1—Cu1110.32 (15)C32—C27—P2124.4 (4)
N2—C1—N1106.0 (4)C27—C28—C29120.4 (5)
N2—C1—S1128.4 (3)C27—C28—H28119.8
N1—C1—S1125.6 (4)C29—C28—H28119.8
C7—C2—C3121.3 (4)C30—C29—C28120.6 (6)
C7—C2—N2133.6 (4)C30—C29—H29119.7
C3—C2—N2105.2 (4)C28—C29—H29119.7
C2—C3—N1107.2 (4)C31—C30—C29119.4 (6)
C2—C3—C4121.0 (4)C31—C30—H30120.3
N1—C3—C4131.8 (4)C29—C30—H30120.3
C5—C4—C3117.9 (4)C30—C31—C32121.0 (6)
C5—C4—H4121.0C30—C31—H31119.5
C3—C4—H4121.0C32—C31—H31119.5
C6—C5—C4119.6 (4)C31—C32—C27120.3 (5)
C6—C5—C8120.0 (5)C31—C32—H32119.9
C4—C5—C8120.5 (5)C27—C32—H32119.9
C7—C6—C5122.7 (5)C34—C33—C38118.0 (4)
C7—C6—H6118.7C34—C33—P2118.1 (3)
C5—C6—H6118.7C38—C33—P2123.9 (3)
C2—C7—C6117.5 (5)C33—C34—C35120.8 (4)
C2—C7—H7121.2C33—C34—H34119.6
C6—C7—H7121.2C35—C34—H34119.6
C5—C8—H8A109.5C36—C35—C34120.6 (5)
C5—C8—H8B109.5C36—C35—H35119.7
H8A—C8—H8B109.5C34—C35—H35119.7
C5—C8—H8C109.5C37—C36—C35119.4 (5)
H8A—C8—H8C109.5C37—C36—H36120.3
H8B—C8—H8C109.5C35—C36—H36120.3
C10—C9—C14118.7 (4)C36—C37—C38120.6 (5)
C10—C9—P1117.1 (3)C36—C37—H37119.7
C14—C9—P1124.2 (4)C38—C37—H37119.7
C9—C10—C11120.4 (5)C33—C38—C37120.6 (5)
C9—C10—H10119.8C33—C38—H38119.7
C11—C10—H10119.8C37—C38—H38119.7
C12—C11—C10120.2 (5)C40—C39—C44117.9 (4)
C12—C11—H11119.9C40—C39—P2124.4 (4)
C10—C11—H11119.9C44—C39—P2117.6 (3)
C11—C12—C13120.4 (5)C39—C40—C41121.0 (5)
C11—C12—H12119.8C39—C40—H40119.5
C13—C12—H12119.8C41—C40—H40119.5
C12—C13—C14120.1 (5)C42—C41—C40119.8 (5)
C12—C13—H13119.9C42—C41—H41120.1
C14—C13—H13119.9C40—C41—H41120.1
C9—C14—C13120.1 (5)C41—C42—C43120.4 (5)
C9—C14—H14119.9C41—C42—H42119.8
C13—C14—H14119.9C43—C42—H42119.8
C16—C15—C20118.2 (4)C42—C43—C44119.9 (5)
C16—C15—P1124.4 (3)C42—C43—H43120.1
C20—C15—P1117.3 (3)C44—C43—H43120.1
C15—C16—C17120.1 (4)C43—C44—C39120.9 (5)
C15—C16—H16119.9C43—C44—H44119.5
C17—C16—H16119.9C39—C44—H44119.5
C18—C17—C16120.6 (5)O1—C45—H45A109.5
C18—C17—H17119.7O1—C45—H45B109.5
C16—C17—H17119.7H45A—C45—H45B109.5
C19—C18—C17120.0 (5)O1—C45—H45C109.5
C19—C18—H18120.0H45A—C45—H45C109.5
C17—C18—H18120.0H45B—C45—H45C109.5
C18—C19—C20120.3 (5)
P2—Cu1—P1—C1555.75 (15)C20—C15—C16—C170.4 (6)
S1—Cu1—P1—C1558.28 (14)P1—C15—C16—C17175.6 (3)
I1—Cu1—P1—C15177.16 (14)C15—C16—C17—C180.3 (7)
P2—Cu1—P1—C21173.36 (13)C16—C17—C18—C190.4 (7)
S1—Cu1—P1—C2159.33 (14)C17—C18—C19—C200.6 (8)
I1—Cu1—P1—C2159.55 (14)C18—C19—C20—C150.8 (7)
P2—Cu1—P1—C965.20 (17)C16—C15—C20—C190.6 (6)
S1—Cu1—P1—C9179.23 (16)P1—C15—C20—C19176.2 (3)
I1—Cu1—P1—C961.90 (16)C15—P1—C21—C26114.3 (3)
P1—Cu1—P2—C2769.86 (15)C9—P1—C21—C26137.9 (3)
S1—Cu1—P2—C27175.81 (14)Cu1—P1—C21—C266.6 (4)
I1—Cu1—P2—C2755.97 (15)C15—P1—C21—C2266.4 (4)
P1—Cu1—P2—C33169.21 (16)C9—P1—C21—C2241.5 (4)
S1—Cu1—P2—C3354.88 (17)Cu1—P1—C21—C22172.8 (3)
I1—Cu1—P2—C3364.96 (16)C26—C21—C22—C231.0 (7)
P1—Cu1—P2—C3951.22 (16)P1—C21—C22—C23179.6 (4)
S1—Cu1—P2—C3963.11 (16)C21—C22—C23—C240.9 (7)
I1—Cu1—P2—C39177.05 (15)C22—C23—C24—C250.2 (8)
P1—Cu1—S1—C1139.24 (16)C23—C24—C25—C261.2 (8)
P2—Cu1—S1—C192.61 (16)C22—C21—C26—C250.1 (6)
I1—Cu1—S1—C124.83 (16)P1—C21—C26—C25179.5 (3)
C2—N2—C1—N12.3 (5)C24—C25—C26—C211.0 (7)
C2—N2—C1—S1178.6 (3)C33—P2—C27—C28150.5 (4)
C3—N1—C1—N22.0 (5)C39—P2—C27—C28103.6 (4)
C3—N1—C1—S1178.8 (3)Cu1—P2—C27—C2824.8 (4)
Cu1—S1—C1—N234.4 (4)C33—P2—C27—C3229.7 (4)
Cu1—S1—C1—N1146.7 (3)C39—P2—C27—C3276.2 (4)
C1—N2—C2—C7177.0 (5)Cu1—P2—C27—C32155.4 (3)
C1—N2—C2—C31.7 (5)C32—C27—C28—C291.6 (8)
C7—C2—C3—N1178.5 (4)P2—C27—C28—C29178.2 (4)
N2—C2—C3—N10.4 (5)C27—C28—C29—C301.7 (9)
C7—C2—C3—C41.3 (7)C28—C29—C30—C310.8 (10)
N2—C2—C3—C4179.8 (4)C29—C30—C31—C320.1 (9)
C1—N1—C3—C21.0 (5)C30—C31—C32—C270.1 (8)
C1—N1—C3—C4178.7 (4)C28—C27—C32—C310.7 (7)
C2—C3—C4—C50.7 (7)P2—C27—C32—C31179.1 (4)
N1—C3—C4—C5179.0 (4)C27—P2—C33—C3499.1 (4)
C3—C4—C5—C60.2 (7)C39—P2—C33—C34154.1 (4)
C3—C4—C5—C8179.1 (5)Cu1—P2—C33—C3427.7 (4)
C4—C5—C6—C70.1 (8)C27—P2—C33—C3881.9 (5)
C8—C5—C6—C7179.0 (5)C39—P2—C33—C3824.9 (5)
C3—C2—C7—C61.2 (7)Cu1—P2—C33—C38151.4 (4)
N2—C2—C7—C6179.7 (5)C38—C33—C34—C350.6 (8)
C5—C6—C7—C20.6 (8)P2—C33—C34—C35178.5 (4)
C15—P1—C9—C10168.4 (3)C33—C34—C35—C361.5 (9)
C21—P1—C9—C1083.6 (3)C34—C35—C36—C371.7 (11)
Cu1—P1—C9—C1044.5 (4)C35—C36—C37—C381.1 (11)
C15—P1—C9—C1413.8 (4)C34—C33—C38—C370.0 (9)
C21—P1—C9—C1494.3 (4)P2—C33—C38—C37179.1 (5)
Cu1—P1—C9—C14137.7 (3)C36—C37—C38—C330.3 (11)
C14—C9—C10—C111.8 (7)C27—P2—C39—C406.5 (4)
P1—C9—C10—C11176.1 (4)C33—P2—C39—C40114.6 (4)
C9—C10—C11—C121.7 (8)Cu1—P2—C39—C40121.0 (4)
C10—C11—C12—C130.9 (8)C27—P2—C39—C44176.4 (4)
C11—C12—C13—C140.3 (9)C33—P2—C39—C4468.2 (4)
C10—C9—C14—C131.2 (7)Cu1—P2—C39—C4456.1 (4)
P1—C9—C14—C13176.6 (4)C44—C39—C40—C411.4 (7)
C12—C13—C14—C90.5 (8)P2—C39—C40—C41178.5 (4)
C21—P1—C15—C169.9 (4)C39—C40—C41—C420.5 (8)
C9—P1—C15—C16115.6 (3)C40—C41—C42—C432.0 (9)
Cu1—P1—C15—C16114.2 (3)C41—C42—C43—C441.5 (9)
C21—P1—C15—C20174.9 (3)C42—C43—C44—C390.5 (8)
C9—P1—C15—C2069.2 (3)C40—C39—C44—C431.9 (7)
Cu1—P1—C15—C2061.0 (3)P2—C39—C44—C43179.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.972.755 (7)152
N2—H2···I10.862.803.539 (3)145
O1—H1A···I10.822.673.469 (5)164
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[CuI(C8H8N2S)(C18H15P)2]·CH4O
Mr911.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.6081 (11), 10.5938 (8), 25.976 (2)
β (°) 96.919 (1)
V3)4263.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.43 × 0.38 × 0.35
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.585, 0.641
No. of measured, independent and
observed [I > 2σ(I)] reflections
20808, 7504, 5465
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.088, 1.09
No. of reflections7504
No. of parameters478
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.54

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.972.755 (7)152
N2—H2···I10.862.803.539 (3)145
O1—H1A···I10.822.673.469 (5)164
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 21171119), the National High Technology Research and Development Program of China (863 Program) (2012 A A063201), Beijing Personnel Bureau, the National Keystone Basic Research Program (973 Program) (grant Nos. 2007CB310408 and 2006CB302901) and and the Committee of Education of the Beijing Foundation of China (grant No. KM201210028020).

References

First citationAslanidis, P., Hadjikakou, S. K., Karagiannidis, P., Gdaniec, M. & Kosturkiewicz, Z. (1993). Polyhedron, 12, 2221–2226.  CSD CrossRef CAS Web of Science Google Scholar
First citationBaxter, P., Lehn, J. M., Fischer, J. & Youinou, M. T. (1994). Angew. Chem. Int. Ed. Engl. 33, 2284–2287.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKitagawa, S., Kondo, M., Kawata, S., Wada, S., Maekawa, M. & Munakata, M. (1995). Inorg. Chem. 34, 1455–1465.  CSD CrossRef CAS Web of Science Google Scholar
First citationLewis, J. S., Zweit, J., Dearling, J. L. J., Rooney, B. C. & Blower, P. J. (1996). Chem. Commun. pp. 1093–1094.  CrossRef Web of Science Google Scholar
First citationLi, D., Luo, Y.-F., Wu, T. & Ng, S. W. (2004). Acta Cryst. E60, m726–m727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLobana, T. S., Rekha, Sidhu, B.S., Castineiras, A., Bermejo, E. & Nishioka, T. (2005). J. Coord. Chem. 58, 803–809.  Web of Science CSD CrossRef CAS Google Scholar
First citationOzturk, I. I., Hadjikakou, S. K., Hadjiliadis, N., Kourkoumelis, N., Kubicki, M., Tasiopoulos, A. J., Scleiman, H., Barsan, M. M., Butler, I. S. & Balzarini, J. (2009). Inorg. Chem. 48, 2233–2245.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchneider, J., Lee, Y. A., Perez, J., Brennessel, W. W., Flaschenriem, C. & Eisenberg, R. (2008). Inorg. Chem. 47, 957–968.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds