metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua­(μ-4,4′-bi­pyridine N,N′-di­oxide-κ2O:O′)(μ-terephthalato-κ2O1:O4)cobalt(II)] 4,4′-bi­pyridine N,N′-dioxide monosolvate]

aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
*Correspondence e-mail: songsy@ciac.jl.cn

(Received 16 September 2012; accepted 21 September 2012; online 26 September 2012)

In the title compound, {[Co(C8H4O4)(C10H8N2O2)(H2O)2]·C10H8N2O2}n, the CoII atom, lying on an inversion center, is hexa­coordinated in a distorted octa­hedral geometry defined by two O atoms from two terephthalate (tp) ligands, two O atoms from two 4,4′-bipyridine N,N′-dioxide (bpydo) ligands and two water mol­ecules. The coordinated tp and bpydo ligands and uncoordinated bpydo mol­ecule all have an inversion center. The CoII atoms are connected by the tp and bpydo ligands into a layer parallel to (111). In the crystal, O—H⋯O hydrogen bonds link the uncoordinated bpydo mol­ecules and the layers into a three-dimensional supra­molecular structure. Intra­layer O—H⋯O hydrogen bonds and ππ inter­actions [centroid-to-centroid distances = 3.6643 (13) and 3.8048 (13) Å] are also observed.

Related literature

For the design of supra­molecular structures containing metal ions and organic ligands, see: Liao et al. (2008[Liao, C. Y., Chan, K. T., Chiu, P. L., Chen, C. Y. & Lee, H. M. (2008). Inorg. Chim. Acta, 361, 2973-2978.]); Wang et al. (2008[Wang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2008). Cryst. Growth Des. 8, 1932-1939.]). For a related structure, see: Su et al. (2009[Su, S.-Q., Guo, Z.-Y., Li, G.-H., Deng, R.-P., Song, S.-Y., Qin, C., Pan, C.-L., Guo, H.-D., Cao, F., Wang, S. & Zhang, H.-J. (2009). Dalton Trans. 39, 9123-9130.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H4O4)(C10H8N2O2)(H2O)2]·C10H8N2O2

  • Mr = 635.44

  • Triclinic, [P \overline 1]

  • a = 7.3883 (10) Å

  • b = 9.1788 (13) Å

  • c = 9.8054 (13) Å

  • α = 81.312 (2)°

  • β = 82.200 (2)°

  • γ = 79.301 (2)°

  • V = 641.92 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 293 K

  • 0.27 × 0.24 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.825, Tmax = 0.866

  • 3574 measured reflections

  • 2516 independent reflections

  • 2340 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.081

  • S = 1.05

  • 2516 reflections

  • 202 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O2 0.84 (2) 1.92 (2) 2.755 (2) 170 (2)
O5—H5B⋯O3i 0.85 (2) 1.85 (2) 2.660 (2) 158 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Much progress has been achieved in the design of supramolecular structures containing metal–organic molecules during recent years (Liao et al., 2008; Wang et al., 2008). Multifunctional ligands can link metal ions into one-, two- or three-dimensional structures, and in this context, aromatic carboxylates and 4,4'-bipyridine N,N'-dioxide have been used successfully to synthesize such materials.

As shown in Fig. 1, the coordination environment of the CoII atom, lying on an inversion center, can be described as distorted octahedral, defined by four O atoms in the equatorial plane from two terephthalate (tp) ligands and two 4,4'-bipyridine N,N'-dioxide (bpydo) ligands, and two water molecules in the axial positions. The bond distances and angles are normal (Su et al., 2009). The CoII atoms are connected by the tp and bpydo ligands, forming a layer structure parallel to (111). O—H···O hydrogen bonds (Table 1) link the uncoordinated bpydo molecules and the layers into a three-dimensional supramolecular structure (Fig. 2). Intralayer O—H···O hydrogen bonds and ππ interactions [centroid–centroid distances = 3.6643 (13) and 3.8048 (13) Å] are also observed.

Related literature top

For the design of supramolecular structures containing metal ions and organic ligands, see: Liao et al. (2008); Wang et al. (2008). For a related structure, see: Su et al. (2009).

Experimental top

A mixture of terephthalic acid (0.1 mmol, 0.017 g), 4,4'-bipyridine N,N'-dioxide (0.2 mmol, 0.038 g), cobalt nitrate (0.1 mmol, 0.030 g), H2O (5 ml) and dimethylformamide (15 ml) was stirred at 358 K for 10 min. The mixture was filtrated and pink block crystals of the title compound were isolated after evaporation of the solvent.

Refinement top

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in a difference Fourier map and refined with a restraint of O—H = 0.85 (1) Å and with Uiso(H) = 1.5Ueq(O).

Structure description top

Much progress has been achieved in the design of supramolecular structures containing metal–organic molecules during recent years (Liao et al., 2008; Wang et al., 2008). Multifunctional ligands can link metal ions into one-, two- or three-dimensional structures, and in this context, aromatic carboxylates and 4,4'-bipyridine N,N'-dioxide have been used successfully to synthesize such materials.

As shown in Fig. 1, the coordination environment of the CoII atom, lying on an inversion center, can be described as distorted octahedral, defined by four O atoms in the equatorial plane from two terephthalate (tp) ligands and two 4,4'-bipyridine N,N'-dioxide (bpydo) ligands, and two water molecules in the axial positions. The bond distances and angles are normal (Su et al., 2009). The CoII atoms are connected by the tp and bpydo ligands, forming a layer structure parallel to (111). O—H···O hydrogen bonds (Table 1) link the uncoordinated bpydo molecules and the layers into a three-dimensional supramolecular structure (Fig. 2). Intralayer O—H···O hydrogen bonds and ππ interactions [centroid–centroid distances = 3.6643 (13) and 3.8048 (13) Å] are also observed.

For the design of supramolecular structures containing metal ions and organic ligands, see: Liao et al. (2008); Wang et al. (2008). For a related structure, see: Su et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, 2 - y, -z; (iii) 2 - x, 1 - y, -z; (iv) 2 - x, 2 - y, -z.]
[Figure 2] Fig. 2. View of the three-dimensional structure of the title compound, built by hydrogen bonds (dashed lines).
Poly[[diaqua(µ-4,4'-bipyridine N,N'-dioxide-κ2O:O')(µ-terephthalato- κ2O1:O4)cobalt(II)] 4,4'-bipyridine N,N'-dioxide monosolvate] top
Crystal data top
[Co(C8H4O4)(C10H8N2O2)(H2O)2]·C10H8N2O2Z = 1
Mr = 635.44F(000) = 327
Triclinic, P1Dx = 1.644 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3883 (10) ÅCell parameters from 2899 reflections
b = 9.1788 (13) Åθ = 2.3–26.1°
c = 9.8054 (13) ŵ = 0.74 mm1
α = 81.312 (2)°T = 293 K
β = 82.200 (2)°Block, pink
γ = 79.301 (2)°0.27 × 0.24 × 0.20 mm
V = 641.92 (15) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2516 independent reflections
Radiation source: fine-focus sealed tube2340 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 26.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 89
Tmin = 0.825, Tmax = 0.866k = 1011
3574 measured reflectionsl = 812
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.3924P]
where P = (Fo2 + 2Fc2)/3
2516 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.48 e Å3
2 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Co(C8H4O4)(C10H8N2O2)(H2O)2]·C10H8N2O2γ = 79.301 (2)°
Mr = 635.44V = 641.92 (15) Å3
Triclinic, P1Z = 1
a = 7.3883 (10) ÅMo Kα radiation
b = 9.1788 (13) ŵ = 0.74 mm1
c = 9.8054 (13) ÅT = 293 K
α = 81.312 (2)°0.27 × 0.24 × 0.20 mm
β = 82.200 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2516 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2340 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.866Rint = 0.017
3574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0312 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.48 e Å3
2516 reflectionsΔρmin = 0.33 e Å3
202 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.01630 (11)
C10.3852 (3)0.7380 (2)0.2083 (2)0.0221 (4)
H10.35280.64390.21420.027*
C20.4275 (3)0.8156 (2)0.08038 (19)0.0209 (4)
H20.42490.77270.00070.025*
C30.4745 (2)0.9580 (2)0.06822 (18)0.0186 (4)
C40.4684 (3)1.0181 (2)0.1918 (2)0.0233 (4)
H40.49251.11450.18870.028*
C50.4271 (3)0.9365 (2)0.3176 (2)0.0242 (4)
H50.42460.97810.39880.029*
C60.8804 (3)0.7935 (2)0.2615 (2)0.0270 (4)
H60.85340.69800.29090.032*
C70.9285 (3)0.8359 (2)0.1234 (2)0.0264 (4)
H70.93130.76890.06060.032*
C80.9735 (3)0.9770 (2)0.0743 (2)0.0217 (4)
C90.9655 (3)1.0700 (2)0.1762 (2)0.0317 (5)
H90.99581.16490.14960.038*
C100.9150 (3)1.0265 (2)0.3131 (2)0.0344 (5)
H100.91021.09200.37770.041*
C110.6942 (2)0.44694 (19)0.21107 (18)0.0164 (4)
C120.8539 (2)0.47312 (19)0.10187 (18)0.0162 (3)
C131.0328 (2)0.46045 (19)0.13839 (18)0.0175 (4)
H131.05490.43450.23080.021*
C141.1778 (2)0.4865 (2)0.03689 (18)0.0179 (4)
H141.29700.47700.06170.021*
N10.3901 (2)0.79675 (17)0.32562 (16)0.0206 (3)
N20.8716 (2)0.88841 (18)0.35576 (18)0.0254 (4)
O10.3567 (2)0.71908 (15)0.44822 (14)0.0266 (3)
O20.8186 (2)0.84874 (17)0.48725 (15)0.0350 (4)
O30.57776 (18)0.37620 (15)0.18300 (14)0.0232 (3)
O40.68909 (17)0.50355 (14)0.32145 (12)0.0194 (3)
O50.67652 (19)0.59404 (15)0.59885 (14)0.0225 (3)
H5A0.719 (3)0.6689 (19)0.555 (2)0.034*
H5B0.605 (3)0.626 (3)0.6676 (17)0.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01820 (19)0.02037 (19)0.01144 (18)0.00652 (13)0.00000 (13)0.00296 (13)
C10.0249 (9)0.0193 (9)0.0237 (10)0.0039 (7)0.0069 (8)0.0034 (7)
C20.0255 (9)0.0216 (9)0.0175 (9)0.0037 (7)0.0071 (7)0.0046 (7)
C30.0171 (8)0.0206 (9)0.0179 (9)0.0003 (7)0.0048 (7)0.0026 (7)
C40.0280 (10)0.0213 (9)0.0218 (10)0.0048 (7)0.0024 (8)0.0057 (7)
C50.0301 (10)0.0250 (10)0.0188 (9)0.0041 (8)0.0018 (8)0.0081 (8)
C60.0300 (10)0.0204 (9)0.0310 (11)0.0082 (8)0.0042 (8)0.0062 (8)
C70.0288 (10)0.0210 (9)0.0302 (11)0.0063 (8)0.0028 (8)0.0086 (8)
C80.0179 (9)0.0185 (9)0.0289 (11)0.0020 (7)0.0020 (7)0.0048 (7)
C90.0451 (13)0.0205 (10)0.0318 (12)0.0132 (9)0.0024 (10)0.0026 (8)
C100.0504 (14)0.0267 (11)0.0304 (12)0.0155 (10)0.0029 (10)0.0080 (9)
C110.0182 (8)0.0164 (8)0.0137 (8)0.0020 (6)0.0012 (7)0.0008 (7)
C120.0190 (8)0.0162 (8)0.0141 (9)0.0044 (6)0.0011 (7)0.0055 (7)
C130.0218 (9)0.0200 (8)0.0113 (8)0.0042 (7)0.0021 (7)0.0028 (7)
C140.0166 (8)0.0217 (9)0.0167 (9)0.0039 (7)0.0026 (7)0.0051 (7)
N10.0212 (8)0.0229 (8)0.0159 (8)0.0011 (6)0.0012 (6)0.0009 (6)
N20.0265 (8)0.0251 (8)0.0252 (9)0.0074 (7)0.0007 (7)0.0043 (7)
O10.0343 (8)0.0249 (7)0.0168 (7)0.0022 (6)0.0022 (6)0.0016 (5)
O20.0473 (9)0.0337 (8)0.0253 (8)0.0170 (7)0.0073 (7)0.0058 (6)
O30.0241 (7)0.0301 (7)0.0195 (7)0.0133 (6)0.0022 (5)0.0095 (5)
O40.0221 (6)0.0259 (7)0.0123 (6)0.0093 (5)0.0018 (5)0.0055 (5)
O50.0234 (7)0.0282 (7)0.0181 (7)0.0109 (6)0.0008 (5)0.0048 (6)
Geometric parameters (Å, º) top
Co1—O4i2.0865 (12)C7—H70.9300
Co1—O42.0865 (12)C8—C91.398 (3)
Co1—O52.0975 (13)C8—C8iii1.475 (4)
Co1—O5i2.0976 (13)C9—C101.364 (3)
Co1—O1i2.1141 (13)C9—H90.9300
Co1—O12.1141 (13)C10—N21.356 (3)
C1—N11.350 (2)C10—H100.9300
C1—C21.373 (3)C11—O31.250 (2)
C1—H10.9300C11—O41.263 (2)
C2—C31.397 (3)C11—C121.510 (2)
C2—H20.9300C12—C14iv1.395 (2)
C3—C41.398 (3)C12—C131.396 (2)
C3—C3ii1.479 (4)C13—C141.389 (3)
C4—C51.371 (3)C13—H130.9300
C4—H40.9300C14—C12iv1.395 (2)
C5—N11.349 (3)C14—H140.9300
C5—H50.9300N1—O11.319 (2)
C6—N21.350 (3)N2—O21.312 (2)
C6—C71.368 (3)O5—H5A0.84 (2)
C6—H60.9300O5—H5B0.85 (2)
C7—C81.395 (3)
O4i—Co1—O4180.0C6—C7—H7119.1
O4i—Co1—O590.46 (5)C8—C7—H7119.1
O4—Co1—O589.54 (5)C7—C8—C9115.04 (18)
O4i—Co1—O5i89.54 (5)C7—C8—C8iii122.1 (2)
O4—Co1—O5i90.46 (5)C9—C8—C8iii122.9 (2)
O5—Co1—O5i180.00 (6)C10—C9—C8122.32 (19)
O4i—Co1—O1i95.05 (5)C10—C9—H9118.8
O4—Co1—O1i84.95 (5)C8—C9—H9118.8
O5—Co1—O1i92.31 (6)N2—C10—C9120.4 (2)
O5i—Co1—O1i87.69 (6)N2—C10—H10119.8
O4i—Co1—O184.95 (5)C9—C10—H10119.8
O4—Co1—O195.05 (5)O3—C11—O4126.25 (16)
O5—Co1—O187.69 (6)O3—C11—C12117.81 (15)
O5i—Co1—O192.31 (6)O4—C11—C12115.90 (15)
O1i—Co1—O1180.0C14iv—C12—C13119.39 (16)
N1—C1—C2120.77 (17)C14iv—C12—C11119.82 (15)
N1—C1—H1119.6C13—C12—C11120.77 (15)
C2—C1—H1119.6C14—C13—C12120.09 (16)
C1—C2—C3120.92 (17)C14—C13—H13120.0
C1—C2—H2119.5C12—C13—H13120.0
C3—C2—H2119.5C13—C14—C12iv120.52 (16)
C2—C3—C4116.56 (17)C13—C14—H14119.7
C2—C3—C3ii121.9 (2)C12iv—C14—H14119.7
C4—C3—C3ii121.5 (2)O1—N1—C5119.74 (16)
C5—C4—C3120.68 (18)O1—N1—C1120.43 (16)
C5—C4—H4119.7C5—N1—C1119.82 (16)
C3—C4—H4119.7O2—N2—C6120.49 (16)
N1—C5—C4121.11 (17)O2—N2—C10120.07 (17)
N1—C5—H5119.4C6—N2—C10119.44 (18)
C4—C5—H5119.4N1—O1—Co1121.82 (11)
N2—C6—C7120.93 (18)C11—O4—Co1130.60 (11)
N2—C6—H6119.5Co1—O5—H5A117.3 (17)
C7—C6—H6119.5Co1—O5—H5B102.4 (17)
C6—C7—C8121.82 (19)H5A—O5—H5B106 (2)
N1—C1—C2—C30.8 (3)C4—C5—N1—C13.0 (3)
C1—C2—C3—C42.5 (3)C2—C1—N1—O1177.21 (16)
C1—C2—C3—C3ii178.3 (2)C2—C1—N1—C53.6 (3)
C2—C3—C4—C53.1 (3)C7—C6—N2—O2177.42 (19)
C3ii—C3—C4—C5177.7 (2)C7—C6—N2—C101.4 (3)
C3—C4—C5—N10.5 (3)C9—C10—N2—O2178.3 (2)
N2—C6—C7—C81.1 (3)C9—C10—N2—C60.5 (3)
C6—C7—C8—C90.0 (3)C5—N1—O1—Co1128.29 (15)
C6—C7—C8—C8iii179.6 (2)C1—N1—O1—Co152.5 (2)
C7—C8—C9—C100.9 (3)O4i—Co1—O1—N1171.81 (14)
C8iii—C8—C9—C10179.5 (2)O4—Co1—O1—N18.19 (14)
C8—C9—C10—N20.6 (4)O5—Co1—O1—N197.52 (14)
O3—C11—C12—C14iv42.0 (2)O5i—Co1—O1—N182.48 (14)
O4—C11—C12—C14iv135.93 (17)O3—C11—O4—Co12.1 (3)
O3—C11—C12—C13139.35 (17)C12—C11—O4—Co1179.77 (11)
O4—C11—C12—C1342.7 (2)O5—Co1—O4—C11170.87 (15)
C14iv—C12—C13—C140.6 (3)O5i—Co1—O4—C119.13 (15)
C11—C12—C13—C14179.28 (16)O1i—Co1—O4—C1178.51 (15)
C12—C13—C14—C12iv0.6 (3)O1—Co1—O4—C11101.49 (15)
C4—C5—N1—O1177.84 (17)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z; (iii) x+2, y+2, z; (iv) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O20.84 (2)1.92 (2)2.755 (2)170 (2)
O5—H5B···O3i0.85 (2)1.85 (2)2.660 (2)158 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(C8H4O4)(C10H8N2O2)(H2O)2]·C10H8N2O2
Mr635.44
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.3883 (10), 9.1788 (13), 9.8054 (13)
α, β, γ (°)81.312 (2), 82.200 (2), 79.301 (2)
V3)641.92 (15)
Z1
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.27 × 0.24 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.825, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
3574, 2516, 2340
Rint0.017
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.05
No. of reflections2516
No. of parameters202
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.33

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O20.84 (2)1.92 (2)2.755 (2)170 (2)
O5—H5B···O3i0.85 (2)1.85 (2)2.660 (2)158 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful for financial aid from the National Natural Science Foundation of China (grant No. 21001101).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiao, C. Y., Chan, K. T., Chiu, P. L., Chen, C. Y. & Lee, H. M. (2008). Inorg. Chim. Acta, 361, 2973–2978.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, S.-Q., Guo, Z.-Y., Li, G.-H., Deng, R.-P., Song, S.-Y., Qin, C., Pan, C.-L., Guo, H.-D., Cao, F., Wang, S. & Zhang, H.-J. (2009). Dalton Trans. 39, 9123–9130.  Web of Science CSD CrossRef Google Scholar
First citationWang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2008). Cryst. Growth Des. 8, 1932–1939.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds