organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Iodo-2,7-di­methyl-3-(4-methyl­phenyl­sulfon­yl)-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 14 August 2012; accepted 4 September 2012; online 8 September 2012)

In the title compound, C17H15IO3S, the 4-methyl­phenyl ring makes a dihedral angle of 76.95 (5)° with the mean plane [r.m.s. deviation = 0.019 (2) Å] of the benzofuran fragment. In the crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds, forming inversion dimers. These dimers are connected by slipped ππ inter­actions between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.671 (3) Å and slippage = 1.049 (3) Å].

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o930.]); Seo et al. (2012[Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2012). Acta Cryst. E68, o96.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15IO3S

  • Mr = 426.25

  • Monoclinic, P 21 /n

  • a = 11.5480 (5) Å

  • b = 9.9394 (4) Å

  • c = 14.8911 (6) Å

  • β = 107.611 (1)°

  • V = 1629.10 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.10 mm−1

  • T = 173 K

  • 0.33 × 0.27 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.634, Tmax = 0.746

  • 16012 measured reflections

  • 4075 independent reflections

  • 3619 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.070

  • S = 1.05

  • 4075 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O3i 0.95 2.58 3.246 (2) 127
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing study of 5-iodo-2,7-dimethyl-benzofuran derivatives containing either phenyl-sulfonyl (Choi et al., 2008) or 4-fluorophenyl-sulfonyl (Seo et al., 2012) substituents in 3-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.019 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 4-methylphenyl ring and the mean plane of the benzofuran fragment is 76.95 (5)°. In the crystal structure, molecules are linked via pairs of C—H···O hydrogen bonds (Fig. 2 & Table 1), forming inversion dimers. These dimers are connected by slipped ππ interactions between the benzene rings of neighbouring molecules, with a Cg···Cgii distance of 3.671 (3) Å and an interplanar distance of 3.518 (2) Å resulting in a slippage of 1.049 (3) Å (Fig. 2, Cg is the centroid of the C2–C7 benzene ring).

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2008); Seo et al. (2012).

Experimental top

3-Chloroperoxybenzoic acid (77%, 381 mg, 1.7 mmol) was added in small portions to a stirred solution of 5-iodo-2,7-dimethyl-3-(4-methylphenylsulfanyl)-benzofuran (315 mg, 0.8 mmol) in dichloromethane (50 mL) at 273 K. After being stirred at room temperature for 10h, the mixture was washed with saturated sodium bicarbonate solution, the organic layer was separated and dried over magnesium sulfate. After filtration the solution was concentrated at reduced pressure. The residue was purified by column chromatography (benzene ) to afford the title compound as a colorless solid [yield 68%, m.p. 483–484 K; Rf = 0.56 (benzene)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Structure description top

As a part of our ongoing study of 5-iodo-2,7-dimethyl-benzofuran derivatives containing either phenyl-sulfonyl (Choi et al., 2008) or 4-fluorophenyl-sulfonyl (Seo et al., 2012) substituents in 3-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.019 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 4-methylphenyl ring and the mean plane of the benzofuran fragment is 76.95 (5)°. In the crystal structure, molecules are linked via pairs of C—H···O hydrogen bonds (Fig. 2 & Table 1), forming inversion dimers. These dimers are connected by slipped ππ interactions between the benzene rings of neighbouring molecules, with a Cg···Cgii distance of 3.671 (3) Å and an interplanar distance of 3.518 (2) Å resulting in a slippage of 1.049 (3) Å (Fig. 2, Cg is the centroid of the C2–C7 benzene ring).

For background information and the crystal structures of related compounds, see: Choi et al. (2008); Seo et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O and ππ interactions (dotted lines) in the crystal structure of the title compound. H atoms not participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 1, - y + 1, - z + 1; (ii) - x, - y + 1, - z + 1.]
5-Iodo-2,7-dimethyl-3-(4-methylphenylsulfonyl)-1-benzofuran top
Crystal data top
C17H15IO3SF(000) = 840
Mr = 426.25Dx = 1.738 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7311 reflections
a = 11.5480 (5) Åθ = 2.5–28.3°
b = 9.9394 (4) ŵ = 2.10 mm1
c = 14.8911 (6) ÅT = 173 K
β = 107.611 (1)°Block, colourless
V = 1629.10 (12) Å30.33 × 0.27 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4075 independent reflections
Radiation source: rotating anode3619 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.028
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 2.0°
φ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1113
Tmin = 0.634, Tmax = 0.746l = 1919
16012 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.070H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.5412P]
where P = (Fo2 + 2Fc2)/3
4075 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
C17H15IO3SV = 1629.10 (12) Å3
Mr = 426.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.5480 (5) ŵ = 2.10 mm1
b = 9.9394 (4) ÅT = 173 K
c = 14.8911 (6) Å0.33 × 0.27 × 0.22 mm
β = 107.611 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4075 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3619 reflections with I > 2σ(I)
Tmin = 0.634, Tmax = 0.746Rint = 0.028
16012 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.05Δρmax = 0.49 e Å3
4075 reflectionsΔρmin = 0.91 e Å3
202 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.279119 (14)0.635214 (15)0.727688 (10)0.03911 (7)
S10.28800 (5)0.38147 (4)0.33837 (3)0.02292 (10)
O10.02336 (13)0.22668 (14)0.42013 (11)0.0294 (3)
O20.23919 (16)0.36296 (14)0.23798 (11)0.0318 (3)
O30.32866 (14)0.51329 (13)0.37468 (10)0.0294 (3)
C10.17945 (18)0.33310 (19)0.39126 (14)0.0235 (4)
C20.17346 (18)0.37898 (17)0.48211 (14)0.0230 (4)
C30.23659 (18)0.47147 (19)0.54969 (14)0.0258 (4)
H30.30510.51910.54350.031*
C40.1941 (2)0.4900 (2)0.62619 (14)0.0278 (4)
C50.0950 (2)0.4200 (2)0.63774 (15)0.0303 (4)
H50.07010.43690.69200.036*
C60.03155 (19)0.3262 (2)0.57189 (15)0.0290 (4)
C70.07526 (18)0.31046 (19)0.49528 (14)0.0253 (4)
C80.08764 (19)0.2427 (2)0.35754 (15)0.0277 (4)
C90.0757 (2)0.2491 (3)0.58031 (19)0.0416 (5)
H9A0.14000.25030.51970.062*
H9B0.10580.29060.62860.062*
H9C0.05180.15600.59810.062*
C100.0456 (2)0.1610 (2)0.27101 (18)0.0397 (5)
H10A0.09140.18600.22780.059*
H10B0.04120.17720.24060.059*
H10C0.05870.06540.28720.059*
C110.40852 (17)0.26776 (18)0.38089 (13)0.0222 (4)
C120.4107 (2)0.15132 (19)0.32984 (14)0.0260 (4)
H120.34910.13430.27220.031*
C130.5049 (2)0.0601 (2)0.36479 (15)0.0288 (4)
H130.50700.02000.33050.035*
C140.59577 (19)0.0837 (2)0.44849 (15)0.0277 (4)
C150.59026 (19)0.2003 (2)0.49941 (15)0.0279 (4)
H150.65110.21670.55760.033*
C160.49679 (19)0.2923 (2)0.46593 (14)0.0257 (4)
H160.49330.37120.50090.031*
C170.6981 (2)0.0151 (2)0.48381 (19)0.0383 (5)
H17A0.66760.10660.46710.057*
H17B0.73150.00750.55240.057*
H17C0.76200.00440.45490.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03727 (11)0.04423 (10)0.03268 (10)0.00198 (6)0.00588 (7)0.01371 (6)
S10.0247 (2)0.0226 (2)0.0205 (2)0.00060 (17)0.00545 (19)0.00125 (16)
O10.0244 (7)0.0299 (7)0.0336 (8)0.0057 (6)0.0082 (6)0.0044 (6)
O20.0369 (9)0.0364 (8)0.0192 (7)0.0038 (6)0.0040 (7)0.0024 (5)
O30.0339 (8)0.0217 (6)0.0328 (8)0.0032 (6)0.0106 (7)0.0010 (5)
C10.0213 (9)0.0236 (8)0.0248 (9)0.0005 (7)0.0058 (8)0.0001 (7)
C20.0209 (9)0.0219 (8)0.0249 (9)0.0031 (7)0.0052 (8)0.0016 (7)
C30.0222 (10)0.0263 (9)0.0278 (10)0.0010 (7)0.0058 (8)0.0002 (7)
C40.0268 (10)0.0294 (9)0.0238 (10)0.0019 (8)0.0027 (8)0.0011 (7)
C50.0296 (11)0.0363 (10)0.0268 (10)0.0041 (9)0.0113 (9)0.0037 (8)
C60.0239 (10)0.0313 (10)0.0319 (11)0.0017 (8)0.0087 (9)0.0058 (8)
C70.0220 (10)0.0230 (9)0.0290 (10)0.0001 (7)0.0047 (8)0.0004 (7)
C80.0242 (10)0.0264 (9)0.0315 (11)0.0000 (8)0.0068 (8)0.0023 (8)
C90.0330 (13)0.0508 (14)0.0434 (13)0.0100 (10)0.0153 (11)0.0022 (11)
C100.0372 (13)0.0400 (12)0.0421 (13)0.0113 (10)0.0124 (11)0.0185 (10)
C110.0215 (9)0.0230 (8)0.0221 (9)0.0015 (7)0.0063 (7)0.0015 (7)
C120.0273 (10)0.0271 (9)0.0226 (9)0.0037 (8)0.0062 (8)0.0027 (7)
C130.0328 (11)0.0248 (9)0.0314 (10)0.0008 (8)0.0137 (9)0.0004 (7)
C140.0249 (10)0.0277 (9)0.0332 (11)0.0017 (8)0.0127 (9)0.0070 (8)
C150.0222 (10)0.0345 (10)0.0250 (10)0.0055 (8)0.0041 (8)0.0020 (8)
C160.0262 (10)0.0267 (9)0.0246 (9)0.0042 (8)0.0082 (8)0.0023 (7)
C170.0308 (12)0.0344 (11)0.0489 (14)0.0051 (9)0.0108 (11)0.0111 (10)
Geometric parameters (Å, º) top
I1—C42.106 (2)C9—H9B0.9800
S1—O31.4408 (14)C9—H9C0.9800
S1—O21.4410 (16)C10—H10A0.9800
S1—C11.738 (2)C10—H10B0.9800
S1—C111.7556 (19)C10—H10C0.9800
O1—C81.365 (2)C11—C161.386 (3)
O1—C71.378 (2)C11—C121.389 (3)
C1—C81.364 (3)C12—C131.390 (3)
C1—C21.449 (3)C12—H120.9500
C2—C71.387 (3)C13—C141.385 (3)
C2—C31.395 (3)C13—H130.9500
C3—C41.382 (3)C14—C151.396 (3)
C3—H30.9500C14—C171.504 (3)
C4—C51.394 (3)C15—C161.387 (3)
C5—C61.391 (3)C15—H150.9500
C5—H50.9500C16—H160.9500
C6—C71.389 (3)C17—H17A0.9800
C6—C91.494 (3)C17—H17B0.9800
C8—C101.476 (3)C17—H17C0.9800
C9—H9A0.9800
O3—S1—O2119.09 (9)C6—C9—H9C109.5
O3—S1—C1106.23 (9)H9A—C9—H9C109.5
O2—S1—C1108.99 (10)H9B—C9—H9C109.5
O3—S1—C11108.50 (9)C8—C10—H10A109.5
O2—S1—C11108.09 (9)C8—C10—H10B109.5
C1—S1—C11105.09 (9)H10A—C10—H10B109.5
C8—O1—C7106.93 (15)C8—C10—H10C109.5
C8—C1—C2107.44 (17)H10A—C10—H10C109.5
C8—C1—S1127.02 (16)H10B—C10—H10C109.5
C2—C1—S1125.50 (15)C16—C11—C12121.08 (18)
C7—C2—C3119.54 (18)C16—C11—S1120.01 (15)
C7—C2—C1104.45 (17)C12—C11—S1118.86 (15)
C3—C2—C1135.97 (18)C11—C12—C13118.69 (19)
C4—C3—C2116.36 (18)C11—C12—H12120.7
C4—C3—H3121.8C13—C12—H12120.7
C2—C3—H3121.8C14—C13—C12121.37 (19)
C3—C4—C5123.01 (19)C14—C13—H13119.3
C3—C4—I1118.57 (15)C12—C13—H13119.3
C5—C4—I1118.38 (15)C13—C14—C15118.84 (19)
C6—C5—C4121.65 (19)C13—C14—C17120.4 (2)
C6—C5—H5119.2C15—C14—C17120.8 (2)
C4—C5—H5119.2C16—C15—C14120.7 (2)
C7—C6—C5114.20 (19)C16—C15—H15119.7
C7—C6—C9121.9 (2)C14—C15—H15119.7
C5—C6—C9123.9 (2)C11—C16—C15119.33 (19)
O1—C7—C2110.81 (17)C11—C16—H16120.3
O1—C7—C6123.92 (18)C15—C16—H16120.3
C2—C7—C6125.24 (19)C14—C17—H17A109.5
C1—C8—O1110.37 (18)C14—C17—H17B109.5
C1—C8—C10134.2 (2)H17A—C17—H17B109.5
O1—C8—C10115.38 (18)C14—C17—H17C109.5
C6—C9—H9A109.5H17A—C17—H17C109.5
C6—C9—H9B109.5H17B—C17—H17C109.5
H9A—C9—H9B109.5
O3—S1—C1—C8155.49 (18)C9—C6—C7—O11.6 (3)
O2—S1—C1—C826.0 (2)C5—C6—C7—C20.3 (3)
C11—S1—C1—C889.6 (2)C9—C6—C7—C2179.4 (2)
O3—S1—C1—C226.97 (19)C2—C1—C8—O10.2 (2)
O2—S1—C1—C2156.44 (16)S1—C1—C8—O1177.67 (14)
C11—S1—C1—C287.91 (18)C2—C1—C8—C10179.7 (2)
C8—C1—C2—C70.2 (2)S1—C1—C8—C101.8 (4)
S1—C1—C2—C7178.18 (15)C7—O1—C8—C10.6 (2)
C8—C1—C2—C3177.5 (2)C7—O1—C8—C10179.82 (19)
S1—C1—C2—C34.5 (3)O3—S1—C11—C1627.66 (18)
C7—C2—C3—C41.0 (3)O2—S1—C11—C16158.10 (15)
C1—C2—C3—C4176.0 (2)C1—S1—C11—C1685.63 (17)
C2—C3—C4—C50.9 (3)O3—S1—C11—C12154.88 (15)
C2—C3—C4—I1176.91 (14)O2—S1—C11—C1224.44 (18)
C3—C4—C5—C60.2 (3)C1—S1—C11—C1291.83 (16)
I1—C4—C5—C6177.66 (16)C16—C11—C12—C131.2 (3)
C4—C5—C6—C70.4 (3)S1—C11—C12—C13178.63 (15)
C4—C5—C6—C9179.5 (2)C11—C12—C13—C140.3 (3)
C8—O1—C7—C20.8 (2)C12—C13—C14—C151.5 (3)
C8—O1—C7—C6177.30 (19)C12—C13—C14—C17178.7 (2)
C3—C2—C7—O1178.48 (17)C13—C14—C15—C161.3 (3)
C1—C2—C7—O10.6 (2)C17—C14—C15—C16178.98 (19)
C3—C2—C7—C60.4 (3)C12—C11—C16—C151.5 (3)
C1—C2—C7—C6177.42 (19)S1—C11—C16—C15178.85 (15)
C5—C6—C7—O1177.48 (18)C14—C15—C16—C110.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O3i0.952.583.246 (2)127
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H15IO3S
Mr426.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)11.5480 (5), 9.9394 (4), 14.8911 (6)
β (°) 107.611 (1)
V3)1629.10 (12)
Z4
Radiation typeMo Kα
µ (mm1)2.10
Crystal size (mm)0.33 × 0.27 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.634, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
16012, 4075, 3619
Rint0.028
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.05
No. of reflections4075
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.91

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O3i0.952.583.246 (2)127.2
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan City.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o930.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSeo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2012). Acta Cryst. E68, o96.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds